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Abstract: This paper introduces a new phenomenological cumulative damage rule to predict damage
and fatigue life under variable amplitude loading. The rule combines a residual S-N curve approach
and a material memory concept to describe the damage accumulation behavior. The residual S-N
curve slope is regarded as a variable with respect to the loading history. The change in slope is then
used as a damage measure and quantified by a material memory degeneration parameter. This model
improves the traditional linear damage rule by taking the load-level dependence and loading
sequence effect into account, which still preserves its superiority. A series of non-uniform fatigue
loading protocols are used to demonstrate the effectiveness of the proposed model. The prediction
results using the proposed model are more accurate than those using three popular damage models.
Moreover, several common characteristics and fundamental properties of the chosen fatigue models
are extracted and discussed.
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1. Introduction

In practical engineering, most structural components and mechanical parts in service usually
endure the cyclic fluctuating loads with varying intensity. Fatigue is the major cause of the catastrophic
failures of these elements or parts. Fatigue failure invariably occurs in the localized weak areas of
the material and permanently deteriorates its performance and safe usage. The concept of damage is
typically assigned to characterize such a failure process and also plays a fundamental role in fatigue
life prediction [1–5]. In spite of extensive investigations to address fatigue theories, the problem of
assessing the extent of fatigue damage and then predicting fatigue life still remains a major challenge
in fatigue resistant design. Therefore, a reliable cumulative damage rule is strongly expected in
structural integrity, reliability-based design, and safety assessments [6]. It should contribute to the
increased prediction accuracy, and especially, to obtain maintenance strategies for replacing the
damaged elements or parts before failure.

Essentially, fatigue damage mainly includes the process of crack initiation and crack propagation
involving various micro-scale behaviors, such as surface extrusion-intrusion, dislocations, plastic slip
bands, vacancies, and crack coalescence [7,8]. Although great advancements have been made in
the micro-physical mechanisms of fatigue failure, it is not surprising that such analytical theories
are relatively complicated and difficult to implement in engineering. In contrast, phenomenological
theories [9–14] are still the main approaches for fatigue analysis, where simple fatigue formulas
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that can be identified directly from experiments are preferred. In cases of uniform fatigue loading,
some phenomenological formulas are representative and constitute the generic fatigue rules available
for many different materials, such as Basquin’s law (stress-life), Manson-Coffin’s law (strain-life),
Goodman’s law (mean stress correction), and Paris’ law (crack propagation rate).

However, the fatigue modeling under non-uniform cyclic loading becomes much more intractable
due to the complexity of loading histories. In such a fatigue loading, assessment of the damage and
fatigue life often relies on cumulative damage theories, including various linear and non-linear
hypotheses. A comprehensive overview of cumulative damage and life predictive models has
been achieved by Fatemi and Yang [15] and Schijve [16]. The Palmgren-Miner’s hypothesis [17]
is acknowledged as a pioneering research on the linear damage rule (LDR) as well as a unified
methodology to address fatigue issues under arbitrary non-uniform loading protocols, in spite of
limited physical insights and non-conservative predictions. Many researchers suggested that the
prediction error of LDR is not necessarily responsible for the linear summation form but mainly
responsible for the lack of load-level dependence and loading sequence effects [15,18,19]. Despite the
major deficiencies, LDR is still dominantly used in practical engineering design, because the linear
summation form can significantly reduce the calculation effort. In order to improve the LDR,
a considerable number of non-linear hypotheses [20–24] are proposed to explain the loading sequence
observed in the experiments, yet most of them substantially need more parameters to calibrate and
are often computationally expensive, especially for multi-stage block loadings when compared with
the LDR. The main advantages of LDR lie in its conceptual simplicity, in following a simple linear
summation of damage that is inexpensive both computationally and experimentally, and particularly
in a small amount of data necessary from the Basquin’s law (S-N curve).

In recent years, fatigue damage modeling in terms of the S-N curve approach has been reported
quite intensively and received increasing attention in fatigue life prediction. Corten and Dolan [25]
and Freudenthal and Heller [26] put forward a clockwise rotation method of the S-N curve to account
for the load interaction effects. Subramanyan [27] introduced an isodamage line to present the damage
accumulation process and all of the damage lines were assumed to converge into the knee point of the
S-N curve around the endurance limit. Hashin and Rotem [28] extended Subramanyan’s hypothesis
and presented a discussion of damage curve families that could pass through either static ultimate
or endurance point. Leipholz [29] demonstrated an analytical life-reducing approach to obtain a
modified S-N curve, which intersects the original curve at a higher stress level and deviates from it
at lower ones. Liu and Mahadevan [19] developed a non-linear cumulative damage model based on
the LDR theory, together with a stochastic S-N curve technique, to predict the probabilistic fatigue
life of metallic materials under both constant and variable loadings. Lately, Aghoury and Galal [30]
proposed a stress-life damage accumulation model by using a concept of virtual target life curve
(VTLC) derived from the conventional S-N curve. In this model, fatigue damage is defined as the
accumulated loss of the expected life in VTLC, and the loading amplitudes and overloading effects
can be captured. Kwofie and Rahbar [31] pointed out that the fatigue failure process was probably
dominated by the fatigue driving stress in materials, while also formulating a simple cumulative
damage rule using the regular S-N curve. Peng et al. [32] subsequently improved the theory with the
strain energy parameter, resulting in more accurate calculations. Several researchers [33–37] suggested
a new framework for the damaged stress models connected to the S-N curve to address various
fatigue programs, including variable, random, uniaxial, and multiaxial loadings. As stated above,
the basic idea of these modeling approaches is to alleviate the effects caused by shortcomings of LDR by
considering additional damaging effects responsible for the loading histories. However, most of them
are based on the non-linear damage theories, which may cause a large amount of calculation [38,39].
The cumulative damage models are mainly derived from the transformation of the conventional
S-N curve that is only suitable for the virgin material without initial damage. Moreover, from the
phenomenological point of view, the fatigue damage accumulation is a direct result of irreversible
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degradation of material properties, whereas the existing models fail to characterize the degradation
mechanisms on damage accumulation.

In this paper, a phenomenological damage accumulation model for predicting damage and fatigue
life under variable amplitude loading is proposed, which incorporates a residual S-N curve approach
and a material memory concept [40]. The residual S-N curve is used to describe the stress-life relation
of the damaged material and its slope is considered as a variable with respect to the loading history.
Fatigue damage is measured by assessing the change in slope or slope ratio. Then, the material memory
concept is introduced to present the material degradation behavior and quantify the slope ratio when
accumulating fatigue damage. The proposed model aims to improve the performance of the LDR to
make it load-level dependent while still preserving the superiority. A series of experimental data in
the literature are used to verify the effectiveness of the model, which covers several metallic materials
under non-uniform fatigue loading protocols (two-stage and multi-stage). Moreover, three commonly
used cumulative damage rules are chosen for the model comparisons.

2. Formulation of the Proposed Model and Commonly Used Cumulative Damage Rules

2.1. Proposed Model

The usual way of analyzing and predicting fatigue life of metallic materials or components is to
plot the stress amplitude against the number of loading cycles to failure, i.e., S-N diagram. It is widely
accepted that the basic stress-life relation can be expressed by the Basquin’s power law [41], shown as:

σmN f = C or σ = σ′ f
(

2N f

)h
(1)

where Nf is the number of loading cycles to failure at a given stress level σ; m and C are material
constants; σ′f and h denote the fatigue strength coefficient and fatigue strength exponent, respectively.
Equation (1) can be rewritten as a linear function in log-log coordinates, as shown in Figure 1, that is:

log(σ) = a + b log(N f ) (2)

where a is the intercept and b is the slope (b = −1/m).
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Given that a specimen suffers the initial damage induced by the loading stress amplitude σ1 for
n1 cycles, the residual number of cycles to fracture (residual life Nr) at the same stress amplitude is
Nr = N f 1− n1 (see Figure 1). For the undamaged specimen, the residual life corresponds to the fatigue
failure cycles determined from the conventional S-N curve. Considering the damaged specimen as an
undamaged one, a simple procedure for describing the stress-life relation of the damaged specimen
is to use the residual S-N curve, which is assumed to have a similar mathematical description of the
conventional one. Thus, a residual S-N curve with the same slope in Equation (2) can take the form:

log(σ) = a′ + b log(Nr) (3)

where a′ is the intercept of residual S-N curve.
For variable amplitude loading tests, particular attention is often given to the commonly used

and simplest case of the two-stage cyclic loading. Under laboratory loading condition, such loading
pattern is defined as the procedure that the specimen is first pre-cycled at a certain stress amplitude
σ1 for n1 cycles, then cycled at another stress amplitude σ2 for n2 cycles to failure. The relationship
between Equations (2) and (3) means to a linear cumulative damage rule, that is:

n1

N f 1
+

n2

N f 2
= 1 (4)

According to this, Equation (3) is thus called the Miner’s residual S-N curve, because the slope
in Equation (3) is the same as that in Equation (2). Since Equation (4) does not consider the effect of
loading histories, the slope in Equation (3) may be a dominant factor of describing the loading effects
on fatigue. In this work, the residual S-N curve slope is considered as a variable with respect to the
previous fatigue loadings, instead of a basic material constant. Then, a dynamic residual S-N curve,
as shown in Figure 1, can be expressed as:

log(σ) = a′′ + ∆b log(Nr) (5)

where a′ ′ is the intercept and ∆b is the dynamic slope.
The fatigue behaviors responsible for Equation (5) can be described as: for the material in virgin

state without initial damage, ∆b is identical to the original slope b; as the fatigue loading continues,
the absolute value of ∆b increases with the progressive fatigue damage; at fracture, it tends to be
infinite. Consequently, the slope ratio b/∆b, which is defined as br for later convenience, will decrease
with the loading cycles or the expended life fraction and should range from 1 to 0. In the dynamic
residual S-N curve method, the change in slope is appropriate to present the fatigue failure process
and the evolution law of damage accumulation. It is essential to quantify br when accumulating
fatigue damage.

Recently, Böhm et al. [40,42] presented a material memory concept that was taken from the
psychology domain for fatigue damage analysis. There are some similarities between the human
memory and the material properties. In general, the human memory performance is described as an
exponential function of time, for example the Ebbinghaus forgetting curve [43]. Through taking the
fatigue loading cycles to replace the time function, their authors also suggested a material memory
function as:

M = (A− B)e−
n
d + B (6)

where M is the material memory performance; A is the memorization factor; B is the asymptote;
d denotes the reverse of forgetting factor that is given by fatigue cycles and recommended as d = Nf for
simplicity. The forgetting curve is shown in Figure 2.
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From Equation (6), the performance measure of material memory degenerates progressively
under the cyclic loading. At the initial state, i.e., n = 0, the memory performance is
M|n=0 = A ; when the material is fatigued, it will decrease with the accumulated loading cycles,
and M|n=N f = (A− B)e−1 + B; at the critical state, i.e., n = Nf,M|n=N f = (A− B)e−1 + B. In order
to present the degree of degradation, a decay coefficient of the material memory performance is
introduced and simply described as follows:

α =
M|n −M|n=N f

M|n=0 −M|n=N f

=

[
(A− B)e−n/N f + B

]
−
[
(A− B)e−1 + B

]
A− [(A− B)e−1 + B]

=
e
− n

Nf − e−1

1− e−1 (7)

It is noted that α is a function of the expended life fraction and varies from 1 to 0. For the initial
condition, i.e., n/Nf = 0, α = 1, the material is undamaged without degeneration; after that, α decreases
with the fatigue loading cycles; when n/Nf = 1, α = 0, the material will fully be degenerated. To a
certain extent, this decay coefficient can correctly characterize the fatigue damage behaviors and the
damaged degree of the material. As stated before, the slope ratio br in dynamic residual S-N curve
is used to characterize the evolution law of damage accumulation. Thus, it is suitable to use the
degeneration parameter of α to quantify br.

In the case of two-stage cyclic loading, the material is fatigued by the first stress amplitude σ1 for
n1 cycles, and the slope in Equation (5) becomes ∆b1. The change in slope from b to ∆b1 represents
the damage degree of the material, which can be characterized by the decay coefficient α. Besides,
α satisfies the boundary conditions (it ranges from 1 to 0) with respect to b/∆b1. Therefore, the slope
ratio for the first operation can be assumed as:

br1 =
b

∆b1
= α1 =

e
− n1

Nf 1 − e−1

1− e−1 (8)

According to the conventional S-N curve in Figure 1, the points M (Nf1, σ1) and N (Nf2, σ2) should
satisfy Equation (2), that is:

log(σ1) = a + b log(N f 1) (9)

log(σ2) = a + b log(N f 2) (10)

Subtracting Equation (10) from Equation (9) gives:

log
(

σ1

σ2

)
= b log

(
N f 1

N f 2

)
(11)
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In the dynamic residual S-N curve, the residual life at the second stress amplitude σ2 is Nr2 = n2,
and the points P (Nf1 − n1, σ1) and Q (n2, σ2) should satisfy Equation (5), that is:

log(σ1) = a′′ + ∆b1 log(N f 1 − n1) (12)

log(σ2) = a′′ + ∆b1 log(n2) (13)

Subtracting Equation (13) from Equation (12), we obtain:

log
(

σ1

σ2

)
= ∆b1 log

(N f 1 − n1

n2

)
(14)

Combing Equations (11) and (14) yields:

b
∆b1

log

(
N f 1

N f 2

)
= log

(N f 1 − n1

n2

)
= log

(
N f 1

N f 2
×

1− n1
N f 1

n2
N f 2

)
(15)

Substituting Equation (8) into Equation (15), the life fraction at the second loading level can be
derived as:

n2

N f 2
=

(
1− n1

N f 1

)(
N f 1

N f 2

)1−α1

=

(
1− n1

N f 1

)(
N f 1

N f 2

) 1−e
−n1/Nf 1

1−e−1

(16)

For the high-low loading sequence (0 < Nf1/Nf2 < 1), the sum of the expended life fractions is:

2

∑
i=1

ni
N f i

=
n1

N f 1
+

(
1− n1

N f 1

)(
N f 1

N f 2

)1−α1

< 1 (17)

For the low-high loading sequence (Nf1/Nf2 > 1), it is:

2

∑
i=1

ni
N f i

=
n1

N f 1
+

(
1− n1

N f 1

)(
N f 1

N f 2

)1−α1

> 1 (18)

Considering that the final fracture occurs when the cumulative damage reaches a failure threshold
of Df = 1, by rearranging Equation (16), one can obtain a failure criterion of cumulative damage
as follows:

n1

N f 1
+

n2

N f 2

(
N f 1

N f 2

)α1−1

= 1 (19)

For a three-stage fatigue loading, using a similar analytical method and derivation procedure of
the two-stage loading, the slope ratio and the life fraction at the third loading level can be expressed
by Equations (20) and (21), respectively:

br2 =
b

∆b2
=

b
∆b1
× ∆b1

∆b2
= α1 × α2 =

e
− n1

Nf 1 − e−1

1− e−1 × e
− n2

Nf 2 − e−1

1− e−1 (20)

n3

N f 3
=

(1− n1

N f 1

)(
N f 1

N f 2

)1−α1

− n2

N f 2

(N f 2

N f 3

)1−α1α2

(21)

By rearranging Equation (21), it leads to the following failure criterion:

n1

N f 1
+

n2

N f 2

(
N f 1

N f 2

)α1−1

+
n3

N f 3

(
N f 2

N f 3

)α1α2−1(
N f 1

N f 2

)α1−1

= 1 (22)
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It should be pointed out that Equations (20) and (22) can be generalized to the multi-stage loading
protocols. The representation of the slope ratio for the i-level fatigue loading is calculated by:

br(i−1) =
b

∆bi−1
=

b
∆b1
× ∆b1

∆b2
× · · · × ∆bi−2

∆bi−1
= α1 × α2 × · · · × αi−1 =

i−1

∏
1

e
− ni

Nf i − e−1

1− e−1 (23)

Accordingly, the cumulative damage criterion of fatigue failure can be derived as:

n1
N f 1

+ n2
N f 2

(N f 1
N f 2

)α1−1
+ n3

N f 3

(N f 2
N f 3

)α1α2−1(N f 1
N f 2

)α1−1
+ n4

N f 4

(N f 3
N f 4

)α1α2α3−1(N f 2
N f 3

)α1α2−1(N f 1
N f 2

)α1−1
+ · · · = 1 (24)

For each item in Equation (24), a general form of the damage variable Di is obtained as:

Di =
ni

N f i
×

i−1

∏
j=1

(
N f j

N f (j+1)

)(
j

∏
k=1

e
− nk

Nf k −e−1

1−e−1 )−1

(25)

Therefore, a new cumulative fatigue damage rule yields:

∑ Di =
i

∑
1

ni
N f i
×

i−1

∏
j=1

(
N f j

N f (j+1)

)(
j

∏
k=1

e
− nk

Nf k −e−1

1−e−1 )−1

= 1 (26)

Note that Equation (25) relates to the parameters of expended life fraction and fatigue failure
lives, and they can be determined directly from the experimental data and conventional S-N curve.
In Equation (24), fatigue damage is accumulated by taking a linear summation of the segmental
damage caused by each loading stress level. For constant amplitude loading, Nf1 = Nf2 = . . . = Nfi
and that Nfj/Nf(j+1) = 1, then Equation (26) degenerates to the Miner rule. Hence, Miner rule can be
viewed as a particular case of the proposed model under constant amplitude loading. As a matter of
fact, the proposed model improves the Miner rule by multiplying a load effect coefficient in connection
with previous fatigue loadings to represent the loading sequence effect.

2.2. Typical Cumulative Damage Rules

In this study, three typical and commonly used cumulative damage rules, i.e., Palmgren-Miner
rule, Corten-Dolan rule, and Kwofie-Rahbar rule, are chosen and briefly reviewed for analysis.

2.2.1. Palmgren-Miner Rule (Miner Rule for Short)

The initial treatment of cumulative fatigue damage is the LDR, i.e., Palmgren-Miner rule or Miner
rule [17], with a basic assumption of constant work absorption in materials. In this rule, fatigue damage
accumulates progressively in a linear manner, and the cumulative damage at failure is assumed as
Df = 1. Mathematically, Miner rule can be expressed as:

∑ Di =
n1

N f 1
+

n2

N f 2
+

n3

N f 3
+

n4

N f 4
+ · · · = 1 (27)

The damage variable for each loading stress level is given by:

Di =
ni

N f i
(28)

In Equation (28), the measure of fatigue damage is simply defined as a life fraction or cycle ratio.
The load effect coefficient can be taken as unity without considering fatigue loading histories.
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2.2.2. Corten-Dolan Rule (Corten’s Model for Short)

Corten-Dolan rule [25] is one of the earliest theories to predict load interaction effects by modifying
the slope of conventional S-N curve. The rule hypothesizes that fatigue damage is a result of the
nucleation of microscopic voids, which cause crack initiation and crack propagation. The damage is
described as a function of the number of damaged nuclei, the rate of damage propagation, and the
accumulated loading cycles. The theory predicts the failure criterion as follows:

i

∑
1

ni

N f i,max

(
σi,max

σi

)d = 1 (29)

where σi,max and Nfi,max denote the maximum loading stress level of applied loads and its fatigue life,
respectively; d is a material parameter that is recommended as 4.8 for high strength steel and 5.8 for
other materials.

Supposing that σi,max = σ1, Equation (29) can be rewritten as:

∑ Di =
n1

N f 1
+

n2

N f 2

N f 2

N f 1

(
σ2

σ1

)d
+

n3

N f 3

N f 3

N f 1

(
σ3

σ1

)d
+

n4

N f 4

N f 4

N f 1

(
σ4

σ1

)d
+ · · · = 1 (30)

For each item in Equation (30), the damage variable is:

Di =
ni

N f i
×

N f i

N f 1

(
σi
σ1

)d
(31)

In this model, the life fraction is amplified by a load effect coefficient with respect to applied loads,
fatigue lives, and the exponent d. If the d value is identical to the material constant m in Equation (1),
Equation (30) reduces to Equation (27), i.e., Miner rule.

2.2.3. Kwofie-Rahbar Rule (Kwofie’s Model for Short)

Recently, Kwofie and Rahbar [31] proposed a fatigue driving stress concept to describe the damage
accumulation process. The driving stress model is expressed by a function of expended life fraction,
cyclic stress amplitude, and fatigue life. By using an equivalent driving stress approach similar to the
equivalent damage rule [44], a cumulative damage model can be derived as follows:

∑ Di =
n1

N f 1
+

n2

N f 2

ln
(

N f 2

)
ln
(

N f 1

) +
n3

N f 3

ln
(

N f 3

)
ln
(

N f 1

) +
n4

N f 4

ln
(

N f 4

)
ln
(

N f 1

) + · · · = 1 (32)

For each stage of loading amplitudes, the damage variable is defined as:

Di =
ni

N f i
×

ln
(

N f i

)
ln
(

N f 1

) (33)

In the model, a load effect coefficient associated with the fatigue lives of the current load and the
initial load is introduced to present the loading sequence effects. In particular, for constant amplitude
loading, Equation (32) is reduced as the Miner rule.

3. Experiments and Discussions

In this section, the results from a series of two-stage and multi-stage experimental investigations
are used to validate the proposed model. For the purpose of model comparison, three commonly
used damage models, i.e., Miner rule, Corten’s model, and Kwofie’s model, are also employed to
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compare with the proposed model on the predictive capability. According to the total amount of
cumulative damage obtained by different models, the total fatigue life can be calculated by the
following formula [45]:

Npre =

k
∑

i=1
ni

k
∑

i=1
Di

(34)

where Npre denotes the predicted fatigue life. If the cumulative fatigue damage tends to unity (or the
critical damage), then the predicted fatigue life should be close to the experimental result and the
corresponding fatigue model becomes more effective.

3.1. Two-Stage Fatigue Loading

3.1.1. Results from Manson

The test material used here is the maraging 300 CVM steel [46] with the following mechanical
properties: yield strength σs = 2098 MPa, ultimate strength σb = 2590 MPa, and fatigue limit
σf = 662 MPa. The tests were conducted on a rotating-beam fatigue machine under rotating bending
loading. Four sets of high-low load spectrums were chosen, i.e., 1111–833 MPa, 1372–1111 MPa,
1303–751 MPa, and 1095–751 MPa. The fatigue lives of the loading stress amplitudes are determined
from the S-N curve data as listed in Table 1. The comparisons between the experimental and predicted
results are summarized in Table 2 (Nexp is the experimental fatigue life) and represented in Figure 3.

Table 1. The loading stress amplitudes and their fatigue lives.

Stress Amplitude (MPa) 1372 1303 1111 1095 833 751
Fatigue Life (Cycles) 12,000 15,925 44,000 47,625 244,000 584,740

Table 2. Experimental data and models predictions for maraging 300 CVM steel.

Experimental Data
Predicted Results Using Different Models

Miner Rule Corten’s Model Kwofie’s Model Proposed Model

n1 n2 Nexp Npre ΣDi Npre ΣDi Npre ΣDi Npre ΣDi

High-low loading sequence: σ1 = 1111 MPa, σ2 = 833 MPa

11,968 49,044 61,012 128,990 0.4730 126,630 0.4818 120,770 0.5052 93,120 0.6552
16,412 33,672 50,084 98,010 0.5110 96,870 0.5170 93,950 0.5331 72,190 0.6938
24,420 21,228 45,648 71,100 0.6420 70,680 0.6458 69,600 0.6559 54,940 0.8309
31,900 9028 40,928 53,710 0.7620 53,600 0.7636 53,300 0.7679 46,790 0.8747

High-low loading sequence: σ1 = 1372 MPa, σ2 = 1111 MPa

960 24,684 25,644 40,010 0.6410 37,440 0.6850 35,690 0.7186 34,800 0.7370
948 40,832 41,780 41,490 1.0070 38,700 1.0797 36,800 1.1354 35,900 1.1638

4944 12,364 17,308 24,980 0.6930 24,210 0.7150 23,650 0.7319 17,760 0.9745
7404 8580 15,984 19,680 0.8120 19,320 0.8273 19,050 0.8390 14,280 1.1194

High-low loading sequence: σ1 = 1303 MPa, σ2 = 751 MPa

971 367,810 368,781 534,470 0.6900 366,470 1.0063 399,030 0.9242 391,320 0.9424
1991 93,560 95,551 335,270 0.2850 261,430 0.3655 277,280 0.3446 218,350 0.4376
3790 45,610 49,400 156,330 0.3160 139,080 0.3552 143,190 0.3450 99,020 0.4989
7166 19,300 26,466 54,800 0.4830 52,970 0.4996 53,430 0.4953 37,260 0.7104

10,001 18,130 28,131 42,690 0.6590 41,700 0.6746 41,960 0.6705 26,280 1.0704

High-low loading sequence: σ1 = 1095 MPa, σ2 = 751 MPa

3953 479,500 483,453 535,390 0.9030 398,590 1.2129 441,950 1.0939 400,310 1.2077
11,811 183,610 195,421 347,720 0.5620 287,090 0.6807 307,700 0.6351 195,710 0.9985
15,192 90,640 105,832 223,270 0.4740 198,710 0.5326 207,470 0.5101 136,190 0.7771
31,575 26,900 58,475 82,480 0.7090 80,500 0.7264 81,250 0.7197 59,810 0.9777
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3.1.2. Results from Pavlou

The tested material is the Al-2024-T42 aluminum alloy [9], which has been widely used in
aerospace design. The polished specimens were subjected to complete reverse bending loading for
both high-low and low-high loading sequences with several configurations of specified fatigue cycles.
The loading stress ratio is set to be R = −1. The applied stress amplitudes are 200 MPa and 150 MPa,
and the corresponding fatigue lives are 150,000 cycles and 430,000 cycles, respectively. Two sets
of two-stage load spectrums are 200–150 MPa for high-low loading and 150–200 MPa for low-high
loading, respectively. The comparisons of the observed and theoretical results are shown in Table 3
and illustrated in Figure 4.

Table 3. Experimental data and models predictions for Al-2024-T42 aluminum alloy.

Experimental Data
Predicted Results Using Different Models

Miner Rule Corten’s Model Kwofie’s Model Proposed Model

n1 n2 Nexp Npre ΣDi Npre ΣDi Npre ΣDi Npre ΣDi

High-low loading sequence: σ1 = 200 MPa, σ2 = 150 MPa

30,000 259,100 289,100 360,020 0.8030 549,620 0.5260 337,730 0.8560 284,830 1.0150
233,400 263,400 354,510 0.7430 534,280 0.4930 333,000 0.7910 282,010 0.9340
193,500 223,500 343,850 0.6500 504,510 0.4430 323,910 0.6900 276,270 0.8090

60,000 90,300 150,300 246,390 0.6100 292,410 0.5140 238,950 0.6290 196,730 0.7640
98,250 158,250 251,590 0.6290 302,000 0.5240 243,840 0.6490 198,810 0.7960
114,600 174,600 261,770 0.6670 320,960 0.5440 253,040 0.6900 202,550 0.8620

90,000 86,000 176,000 220,000 0.8000 248,590 0.7080 215,160 0.8180 171,880 1.0240
42,300 132,300 189,540 0.6980 202,600 0.6530 187,130 0.7070 163,540 0.8090
99,800 189,800 228,130 0.8320 261,790 0.7250 222,510 0.8530 173,810 1.0920

Low-high loading sequence: σ1 = 150 MPa, σ2 = 200 MPa

86,000 138,000 224,000 200,000 1.1200 217,900 1.0280 214,350 1.0450 254,550 0.8800
147,000 233,000 197,460 1.1800 214,150 1.0880 211,820 1.1000 251,890 0.9250
148,500 234,500 197,060 1.1900 213,570 1.0980 211,260 1.1100 251,610 0.9320

172,000 138,000 310,000 234,850 1.3200 272,890 1.1360 249,000 1.2450 332,980 0.9310
139,500 311,500 234,210 1.3300 271,820 1.1460 248,210 1.2550 332,440 0.9370
123,000 295,000 241,800 1.2200 284,750 1.0360 255,850 1.1530 337,920 0.8730

258,000 89,000 347,000 290,860 1.1930 378,000 0.9180 303,060 1.1450 394,320 0.8800
81,000 339,000 297,370 1.1400 392,360 0.8640 309,310 1.0960 396,490 0.8550
75,000 333,000 302,730 1.1000 404,130 0.8240 314,450 1.0590 398,330 0.8360



Metals 2018, 8, 456 11 of 17

Metals 2018, 8, x FOR PEER REVIEW  11 of 17 

 

 123,000 295,000 241,800 1.2200 284,750 1.0360 255,850 1.1530 337,920 0.8730 
258,000 89,000 347,000 290,860 1.1930 378,000 0.9180 303,060 1.1450 394,320 0.8800 

 81,000 339,000 297,370 1.1400 392,360 0.8640 309,310 1.0960 396,490 0.8550 
 75,000 333,000 302,730 1.1000 404,130 0.8240 314,450 1.0590 398,330 0.8360 

105 8x105

105

8x105

 Miner rule (high-low)
 Corten's model (high-low)
 Kwofie's model (high-low)
 Proposed model (high-low)
 Miner rule (low-high)
 Corten's model (low-high)
 Kwofie's model (low-high)
 Proposed model (low-high)

 Error factor:×±1.25
 Error factor:×±1.5

Experimental life Nexp/cycles

Pr
ed

ic
te

d 
lif

e 
N

pr
e/c

yc
le

s

 

Figure 4. Comparison between the experimental lives and the predicted lives by Miner rule, 
Corten’s model, Kwofie’s model, and the proposed model for Al-2024-T42 aluminum alloy. 

3.1.3. Results from Dattoma 

The material tested is a hardened and tempered 30NiCrMoV12 steel [47,48], which is mainly 
used for railway axle applications. The mechanical properties of the material are listed as: Young’s 
modulus E = 201.4 GPa, fatigue limit σf = 391 MPa, yield strength σs = 755 MPa, and ultimate 
strength σb = 1035 MPa. The tests were carried out on a servo-hydraulic MTS810 testing machine 
under oscillating tensile-compression loading in stress-controlled mode with R = −1. Five loading 
stress amplitudes are chosen, i.e., 485 MPa, 465 MPa, 450 MPa, 420 MPa, and 400 MPa, and their 
fatigue lives, determined from the S-N curve at 50% of probability of failure, are 54,998 cycles, 
68,053 cycles, 80,330 cycles, 113,876 cycles, and 145,749 cycles, respectively. Three sets of two-stage 
high-low load spectrums are 485–400 MPa, 465–420 MPa, and 450–420 MPa, respectively. Three sets 
of two-stage low-high load spectrums are 400–485 MPa, 420–465 MPa, and 420–450 MPa, 
respectively. The comparisons between the observed results and models predictions are given in 
Table 4 and depicted in Figure 5. 

To clearly show the predicted results, the scatter band is used to assess the predictive 
capability, as shown in Figures 2–4. It is observed that the proposed model shows a good 
agreement between the experimental and theoretical results. From Tables 2–4, the cumulative 
damage calculated by the proposed model is found to be closer to unity than that of other models, 
and resulting in more accurate fatigue lives. 

Among three typical damage models, the Miner rule has the simplest form that the segmental 
damage for each loading stress level is defined as a life fraction, but it fails to account for the effects 
of loading histories as a result of large prediction errors. The Corten’s model improves the Miner 
rule by modifying the S-N curve slope to consider load interaction effects, while the exploration of 
the predictions still shows a large deviation. This might be attributed to that the chosen value of the 
exponent d in Equation (31) is taken as an empirical constant, which is in reality independent of the 

Figure 4. Comparison between the experimental lives and the predicted lives by Miner rule, Corten’s
model, Kwofie’s model, and the proposed model for Al-2024-T42 aluminum alloy.

3.1.3. Results from Dattoma

The material tested is a hardened and tempered 30NiCrMoV12 steel [47,48], which is mainly
used for railway axle applications. The mechanical properties of the material are listed as: Young’s
modulus E = 201.4 GPa, fatigue limit σf = 391 MPa, yield strength σs = 755 MPa, and ultimate
strength σb = 1035 MPa. The tests were carried out on a servo-hydraulic MTS810 testing machine
under oscillating tensile-compression loading in stress-controlled mode with R = −1. Five loading
stress amplitudes are chosen, i.e., 485 MPa, 465 MPa, 450 MPa, 420 MPa, and 400 MPa, and their
fatigue lives, determined from the S-N curve at 50% of probability of failure, are 54,998 cycles,
68,053 cycles, 80,330 cycles, 113,876 cycles, and 145,749 cycles, respectively. Three sets of two-stage
high-low load spectrums are 485–400 MPa, 465–420 MPa, and 450–420 MPa, respectively. Three sets of
two-stage low-high load spectrums are 400–485 MPa, 420–465 MPa, and 420–450 MPa, respectively.
The comparisons between the observed results and models predictions are given in Table 4 and
depicted in Figure 5.

To clearly show the predicted results, the scatter band is used to assess the predictive capability,
as shown in Figures 2–4. It is observed that the proposed model shows a good agreement between
the experimental and theoretical results. From Tables 2–4, the cumulative damage calculated by the
proposed model is found to be closer to unity than that of other models, and resulting in more accurate
fatigue lives.

Among three typical damage models, the Miner rule has the simplest form that the segmental
damage for each loading stress level is defined as a life fraction, but it fails to account for the effects
of loading histories as a result of large prediction errors. The Corten’s model improves the Miner
rule by modifying the S-N curve slope to consider load interaction effects, while the exploration of
the predictions still shows a large deviation. This might be attributed to that the chosen value of the
exponent d in Equation (31) is taken as an empirical constant, which is in reality independent of the
loading histories. The Kwofie’s model is designed to consider the loading sequence effects, yet the
predicted results by the model are slightly better than the counterparts from the Miner rule. It could
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be explained by the fact that the load effect coefficient in Equation (33) only relates to the initial and
current fatigue lives, regardless of previous loading cycles on damage accumulation.

Table 4. Experimental data and models predictions for 30NiCrMoV12 steel.

Experimental Data
Predicted Results Using Different Models

Miner Rule Corten’s Model Kwofie’s Model Proposed Model

n1 n2 Nexp Npre ΣDi Npre ΣDi Npre ΣDi Npre ΣDi

High-low loading sequence: σ1 = 485 MPa, σ2 = 400 MPa

13,749 51,304 65,053 108,060 0.6020 117,190 0.5551 102,700 0.6334 87,310 0.7451
27,499 45,765 73,264 90,000 0.8140 94,880 0.7722 87,010 0.8420 68,090 1.0760
41,249 16,032 57,281 66,610 0.8600 67,760 0.8453 65,860 0.8698 57,390 0.9981

High-low loading sequence: σ1 = 465 MPa, σ2 = 420 MPa

17,013 66,845 83,858 100,190 0.8370 105,570 0.7943 97,040 0.8642 88,000 0.9529
34,027 30,405 64,432 84,010 0.7670 86,190 0.7476 82,670 0.7794 74,240 0.8679
51,040 38,262 89,302 82,230 1.0860 84,120 1.0616 81,070 1.1015 70,520 1.2664

High-low loading sequence: σ1 = 450 MPa, σ2 = 420 MPa

20,082 79,372 99,454 105,020 0.9470 109,030 0.9122 102,690 0.9685 95,860 1.0375
40,165 24,711 64,876 90,480 0.7170 91,870 0.7062 89,640 0.7237 84,300 0.7696
60,248 15,943 76,191 85,610 0.8900 86,290 0.8830 85,200 0.8943 81,290 0.9373

Low-high loading sequence: σ1 = 400 MPa, σ2 = 485 MPa

36,440 53,348 89,788 73,600 1.2200 75,660 1.1867 78,730 1.1405 95,550 0.9397
72,870 45,373 118,243 89,240 1.3250 93,960 1.2584 94,040 1.2574 124,490 0.9498
109,310 46,693 156,003 97,560 1.5990 104,060 1.4991 102,000 1.5294 138,500 1.1264

Low-high loading sequence: σ1 = 420 MPa, σ2 = 465 MPa

28,469 58,594 87,063 78,360 1.1110 79,670 1.0928 81,150 1.0729 89,840 0.9691
56,938 56,416 113,354 85,290 1.3290 87,690 1.2926 87,710 1.2923 102,890 1.1017
85,407 48,998 134,405 91,430 1.4700 94,960 1.4154 93,450 1.4382 110,300 1.2185

Low-high loading sequence: σ1 = 420 MPa, σ2 = 450 MPa

28,469 70,530 98,999 87,770 1.1280 88,750 1.1155 89,860 1.1017 96,390 1.0271
56,938 39,362 96,300 97,270 0.9900 99,790 0.9650 98,740 0.9753 107,680 0.8943
85,407 10,523 95,930 108,890 0.8810 113,720 0.8436 109,370 0.8771 113,140 0.8479
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Through comparison with the above-mentioned models, the proposed model in the form
of Equation (25) is closely linked to the expended life fractions and fatigue lives of previous
loads. The model takes more fatigue loading history information into account and thus leads to
relatively small prediction errors. It should be noted that the model follows a simple linear trend
in accumulating fatigue damage and also accounts for load-level dependence and loading sequence
effects. Consequently, the cumulative damage model presented here is expected to be reasonable and
it should be easy to calculate damage and fatigue life using the conventional S-N curve data.

3.2. Multi-Stage Fatigue Loading

In order to further demonstrate the effectiveness of the proposed model, results from the
multi-stage fatigue loading test data available in the literature are used. The tested material is
41Cr4 [45] with the following mechanical properties: ultimate strength σb = 850~900 MPa and fatigue
limit σf = 173.5 MPa. Two sets of cumulative fatigue damage (CFD) tests, i.e., CFD1 test and CFD2 test,
were performed under cyclic bending loading with R = −1. To check the capability of the predicted
fatigue lives, the relative forecast error δ is employed and defined as follows:

δ(%) =

∣∣∣∣Npre − Nexp

Nexp

∣∣∣∣× 100 (35)

3.2.1. Results from CFD1 Test

In the test, the cylindrical specimen was subjected to eight-stage high-low fatigue loading with six
stress levels above the fatigue limit. The experimental fatigue life at fracture is Nexp = 2.00 × 106 cycles.
The loading test parameters and the predicted damage are listed in Table 5. A comparison of models
prediction performances is shown in Table 6.

Table 5. Experimental data and the predicted damage for CFD1 test.

Stress
Level

Stress Amplitude,
σi (MPa)

ni (Cycles) Nfi (Cycles)
Segmental Damage Caused by Each Stress Level

Miner
Rule

Corten’s
Model

Kwofie’s
Model

Proposed
Model

1 505 4 9.00 × 103 0.0004 0.0004 0.0004 0.0004
2 475 32 1.16 × 104 0.0028 0.0025 0.0029 0.0028
3 423 560 2.10 × 104 0.0267 0.0223 0.0292 0.0268
4 362 5440 4.70 × 104 0.1158 0.0877 0.1368 0.1206
5 287 40,000 1.55 × 105 0.2580 0.1676 0.3387 0.3458
6 212 184,000 8.70 × 105 0.2110 0.1328 0.3169 0.6645
7 137 560,000 ∞ 0 0 0 0
8 63 1,210,000 ∞ 0 0 0 0

Table 6. Prediction performances of Miner rule, Corten’s model, Kwofie’s model, and the proposed
model for CFD1 test.

Prediction Performance Experimetal
Result

Miner
Rule

Corten’s
Model

Kwofie’s
Model

Proposed
Model

8
∑

i=1
Di 1 0.6147 0.4133 0.8249 1.1609

Predicted fatigue life Npre (cycles) 2.00 × 106 3.25 × 106 4.84 × 106 2.42 × 106 1.72 × 106

Relative forecast error δ (%) — 62.50 142.00 21.00 14.00

3.2.2. Results from CFD2 Test

The test was carried out under eight-stage high-low fatigue loading with five stress levels above
the fatigue limit. The experimental fatigue life is Nexp = 2.20 × 107 cycles. The models predictions and
the corresponding prediction performances are shown in Tables 7 and 8, respectively.
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Table 7. Experimental data and the predicted damage for CFD2 test.

Stress
Level

Stress Amplitude,
σi (MPa)

ni (cycles) Nfi (cycles)
Segmental Damage Caused by Each Stress Level

Miner
Rule

Corten’s
Model

Kwofie’s
Model

Proposed
Model

1 350 44 5.60 × 104 0.0008 0.0008 0.0008 0.0008
2 332 352 7.40 × 104 0.0047 0.0046 0.0048 0.0047
3 298 6160 1.30 × 105 0.0475 0.0434 0.0512 0.0477
4 254 59,840 2.80 × 105 0.2140 0.1667 0.2455 0.2290
5 201 440,000 1.25 × 106 0.3520 0.3149 0.4520 0.6468
6 149 2,024,000 ∞ 0 0 0 0
7 96 6,160,000 ∞ 0 0 0 0
8 44 13,310,000 ∞ 0 0 0 0

Table 8. Prediction performances of Miner rule, Corten’s model, Kwofie’s model, and the proposed
model for CFD2 test.

Prediction Performance Experimetal
Result

Miner
Rule

Corten’s
Model

Kwofie’s
Model

Proposed
Model

8
∑

i=1
Di 1 0.6190 0.6631 0.7543 0.9290

Predicted fatigue life Npre (cycles) 2.20 × 107 3.55 × 107 3.32 × 107 2.92 × 107 2.37 × 107

Relative forecast error δ (%) — 61.36 50.91 32.73 7.73

According to Tables 6 and 8, it can be seen that the proposed model predicts the cumulative
damage closer to unity and more accurate fatigue lives than three typical models. Tables 5 and 7 list
the segmental damage predicted by different models. It should be pointed out that the segmental
damage caused by the stress levels below the fatigue limit is negligible.

From the above-mentioned two cases, the predictions using the Miner rule show a large deviation
with the experimental data, due to the lack of loading history effects. The Corten’s model and the
Kwofie’s model are also found to predict large deviations, because their load effect coefficients only
relate to limited fatigue loadings. This may not be sufficient to characterize the complex behaviors
of loading histories, especially for multi-stage variable loadings. It should be anticipated that the
proposed damage model shows a high sensitivity to the details of previous fatigue loadings with more
loading histories for consideration and thus predicts better results.

Furthermore, some common characteristics and fundamental properties of the chosen fatigue
models can be extracted as follows:

(1) In the models, the damage variable can be characterized by a general form available for different
loading amplitudes. Fatigue damage is accumulated by adding up the segmental damage caused
by each loading stress level. These models are essentially the LDRs, and this makes it convenient
to calculate damage and fatigue life, compared with various non-linear theories.

(2) Miner rule defines the damage variable as a life fraction regardless of loading histories
accountability, while three typical damage models improve this basic rule by multiplying a load
effect coefficient, which tends to consider previous fatigue loadings on damage accumulation.

(3) For constant amplitude loading, the proposed model, Corten’s model, and Kwofie’s model will
degenerate to the Miner rule. It can be concluded that the Miner rule forms a particular basis
for these linear extensions and should be sufficient to assess fatigue damage under constant
amplitude loading because loading history effects can be ignored under such loading condition.

The findings obtained in this study are based on the S-N curve approach and should be restricted
to the applicable range of high-cycle fatigue regime. The proposed model is calibrated by the uniaxial
fatigue experimental data, and may be extended to the field of multiaxial fatigue criterion. The
model improves some of the shortcomings of the Miner rule, but the void response for low amplitude
loads below the fatigue limit still remains [49]. The cumulative damage formula of Equation (26)
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can also be improved by adjusting the critical failure criterion (conventionally, Df = 1), depending
on the material properties, external loads, and safety factor, for increased prediction accuracy and
fatigue resistant design. The fatigue modeling presented here pertains to a deterministic methodology,
whereas the fatigue process is stochastic in nature with various uncertainties [50–52], such as load
variation, model parameters, and statistical errors. Therefore, further insights into these uncertainties
on fatigue are still in demand.

4. Conclusions

In this paper, the S-N curve approach is used to deal with the development of variable amplitude
fatigue damage. From the present comparisons between the published experimental data and
theoretical results, some conclusions can be drawn as follows:

(1) A phenomenological cumulative damage rule is proposed by incorporating a dynamic residual
S-N curve and material memory concept to describe damage accumulation behavior. The model
follows a linear trend in accumulating damage and also takes the load-level dependence and
loading sequences into account. It predicts the damage and fatigue life with a small amount of
data necessary from the conventional S-N curve.

(2) The proposed model is calibrated and verified by a series of non-uniform fatigue loading protocols.
Comparing with the commonly used damage rules, the model predicts the cumulative damage
closer to unity and more accurate fatigue lives. The present damage formula shows a high
sensitivity to the details of previous fatigue loadings with more loading histories for consideration.

(3) Several common characteristics and fundamental properties of the chosen fatigue models are
briefly discussed. Miner rule is improved by multiplying a load effect coefficient with respect to
previous fatigue loadings for three typical damage models. In particular, the Miner rule is also
found to form a general basis for these linear extensions under constant amplitude loadings.
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