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Abstract: In this study, the weld quality of 780 MPa grade dual phase (DP) steel with 1.0 mm thickness
was predicted using adaptive resonance theory (ART) artificial neural networks. The welding voltage
and current signals measured during resistance spot welding (RSW) were used as the input layer data,
and the tensile shear strength, nugget size, and fracture shape of the weld were used as the output
layer data. The learning was performed by the ART artificial neural networks using the input layer
and output layer data, and the patterns of learning result were classified by the setting of vigilance
parameter, $. When the vigilance parameter is 0.8, the best-predicted results were obtained for the
tensile shear strength, nugget size, and fracture shape of welds.

Keywords: adaptive resonance theory; artificial neural networks; resistance spot welding;
weld quality

1. Introduction

Recently, there has been an increasing demand for lightweight automobiles to improve fuel
efficiency worldwide, and regulations for crashworthiness are being strengthened [1,2]. In order to
enhance the crashworthiness, the thickness of the material for the automobile’s body must be increased.
However, as the thickness increases, the effect of weight reduction is reduced. Therefore, studies have
been carried out to obtain the crashworthiness and the effect of weight reduction, simultaneously.
As a result, the application of advanced high strength steel (AHSS, 590–780 MPa grade) or ultra-high
strength steel (UHSS, 980 MPa grade or more) has been expanded for automobile body materials.
To increase the strength of high strength steel (HSS), many alloying elements are added or a heat
treatment process is performed during the cooling process [3–6].

There are various methods of joining automobile bodies for weight reduction of automobiles,
such as fusion welding, mechanical fastening (clinching, riveting), and adhesive bonding [7,8].
The resistance spot welding (RSW) is one of the effective welding methods of joining HSS for
automobiles. The RSW of HSS is likely to cause expulsion easily due to high resistivity, and the range
of appropriate welding conditions, such as welding current, welding time and electrode force, tends to
be very narrow. In general, the welding quality in RSW can be expressed in terms of strength (tensile
shear strength or cross tensile strength), nugget size, or fracture mode (interfacial fracture or pull-out
fracture). Many studies have been carried out on the welding quality in RSW. Ramazani et al. [9]
presented the characterization and mechanical properties of the spot welded dual phase (DP) 600 steel
under fixed welding condition. Jia et al. [10] investigated the microstructure, tensile shear strength,
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nugget size and failure mode of resistance spot welded 0.1C–5Mn steel under the various welding
currents and times. Spena et al. [11] reported the welding current and time are the main factors
affecting the shear strength of galvanized quenching and partitioning (Q&P) and transformation
induced palasticity (TRIP) steel spot welds, and electrode force is a minor factor. Also, the author
reported the electrode force has a beneficial effect on corrosion resistance of the internal side of the spot
welds. Tutar et al. [12] evaluated the effect of the weld current on the microstructure and mechanical
properties of spit welded twinning-induced plasticity (TWIP) steel sheet. The higher welding currents
accelerated the formation of a macro expulsion cavity in the fusion zone and no strong relationship
was between the hardness in the weld zone and the welding current. Chabok et al. [13] reported the
microstructural evolution of resistance spot welded 1000 MPa DP steel under single pulse weld and
double pulse weld, and mechanical properties and failure mechanisms. And cross-tension strength
under a double pulse weld scheme was higher than that under a single pulse weld scheme. It is very
important to predict weld quality in real time by inspecting the weld in a short time during welding
process or immediately after welding. There are several previous kinds of research to examine or
predict weld quality using various methods. Chen et al. [14] measured the nugget size of the weld
using an ultrasonic sensor. However, using an ultrasonic sensor, there is a possibility that an error of
the measurement value may occur due to the change of the weld shape depending on the indentation
depth of the welds. Lee et al. [15] measured the temperature distribution of the material surface around
the electrodes using a thermal imaging camera and evaluated the weld quality. In addition, there is
a study that estimates the weld quality by measuring the expansion and contraction behavior of the
weld nugget using a displacement sensor [16]. In these methods mentioned above, the prediction
result may vary depending on the thickness or the kind of the material, and the prediction error due to
the contamination or deterioration of the sensor may be largely generated.

On the other hand, in the RSW, the welding voltage and current signal affect the amount
of heat input to the material and the welding quality. Therefore, some research on the welding
quality monitoring using the welding voltage and current signal have been recently reported.
El-Banna et al. [17] proposed a model that predicts the size of welding nugget and the occurrence
of expulsion through learning vector quantization (LVQ) artificial neural network using input layer
parameters such as maximum value, minimum value, standard deviation, and slope of dynamic
resistance extracted from dynamic resistance pattern of RSW. In the study of Zhao et al. [18], a graph of
the voltage-current (U-I image) was drawn using the welding voltage and current signal of RSW. In this
paper, a model was proposed for determining the nugget size and the occurrence of expulsion by
applying artificial neural network using the shape information of the graph as input layer parameter.
Kim et al. [19] showed that the adaptive resonance theory ART neural network can be used to classify
the dynamic resistance signals of RSW into six patterns, and the correlation between these patterns and
the tensile shear strength of the weld was investigated. Also, it was confirmed that the pattern satisfying
the required strength is classified according to the shape of six kinds of dynamic resistance patterns.

It is very important to predict the weld quality of RSW with high accuracy in real time. Recently,
along with the remarkable advancement of computer performance, a technology for accurately
predicting natural phenomena using an ART has greatly advanced. In particular, when a prediction
model was made by inputting the new learning data, ART artificial neural networks have the
advantage of learning based on existing learning models, unlike other artificial neural network
prediction methods.

The purpose of this study is to predict the welding quality using ART artificial neural networks
and verify the prediction accuracy through comparison with experimental data. The welding voltage
and current signal measured during RSW were used as the input layer data, and the tensile strength,
nugget size, and fracture shape of the weld were used as the information of the output layer. Learning
of ART artificial neural networks was performed using the input layer signals and the output layer
information, and patterns were classified according to the similar level of each output layer information
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based on the learning results. Using the obtained learning model, the accuracy of the prediction for
the new input layer data was verified quantitatively.

2. Experimental Procedures

2.1. Base Materials, Welding Equipment, and Conditions

The base material used in this study is the 780 MPa grade dual phase (DP) steel with the 1.0 mm
thickness. The chemical compositions and the mechanical properties of the base material are given in
Table 1. Figure 1 shows the shape of the base material used in the RSW experiment produced according
to the standards of the American Welding Society (AWS D8.9M:2012) [20]. The RSW system used in
this study is composed of a power supply, a servo welding gun and medium frequency direct current
(MFDC) transformer with built-in welding voltage and current sensor. The power supply used was an
inverter-controlled power supply that has a rated output current of 400 A and controls power at a switching
frequency of 1 kHz. As the MFDC transformer, a transformer capable of converting a power-controlled
alternative current (AC) voltage and current signal with a switching frequency of 1 kHz to a power
conversion ratio of 50:1 was used. The servo welding gun was used with a maximum pressure of 400 kgf.

Table 1. Chemical composition and mechanical properties of base material used in this study.

Chemical Composition (wt. %) Mechanical Properties

C Si Mn P S Fe Tensile Strength
(MPa)

Yield Strength
(MPa)

Elongation
(%)

0.073 0.996 2.271 0.01 0.001 Bal. 813 508 21

Figure 1. The shape of specimen for resistance spot welding.

The welding electrode used was a dome type electrode with an electrode diameter of 16 mm and
a radius of 40 mm and a face diameter of 6 mm, as shown in Figure 2. Table 2 shows the welding
conditions used for learning the tensile shear strength, nugget size, and fracture shape of resistance
spot welds using the ART artificial neural network. In the field of automobile production, welding
time of 333 ms or less is mainly used because productivity is emphasized in the field. Therefore, in this
study, 167, 250, and 333 ms were selected as the welding time. Four experiments were conducted
under the same conditions to reduce the error of the experiment. Three of these specimens were used
in the tensile test and one was used to measure the nugget size.

Table 2. Welding conditions used in this study.

Welding Current (kA) Welding Time (ms) Electrode Force (kgf)

4.0, 5.0, 6.0, 7.0 167, 250, 333 300
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Figure 2. The shape of Cr–Cu electrode for resistance spot welding.

2.2. Measurement of the Welding Voltage and Current Signal

In order to measure the welding voltage and current signal for learning of input layer and
verification of the output layer of ART artificial neural network, the welding voltage signal at the
center position of the electrode was measured, and the welding current signal was measured by
a hole sensor attached to the arm of the servo welding gun. The sampling rate of each signal is
50,000 samples/s. The average values of every 50 signals are calculated considering the switching
frequency of 1 kHz. It means that average values of welding voltage and current signal per 1 ms were
calculated. These average values were used as input layer signal parameters of the ART artificial
neural network.

2.3. Evaluation of the Weld Quality

The tensile shear strength, nugget size, and fracture shape of weld were used for learning
and verification of the output layer of ART artificial neural network. A universal testing machine
with a maximum load of 5 tons was used for measuring the tensile shear strength of welds at the
tensile test speed of 10 mm/min according to the standards of the American Welding Society (AWS
D8.9M:2012) [20]. The tensile shear load of each of the three specimens subjected to the RSW under
the same welding conditions was used as the output layer learning data of the ART artificial neural
network. The nugget size was measured by cutting the center line of the sample of the RSW.

2.4. Adaptive Resonance Theory

The ART model is characterized in that already learned information is not erased by new
information, and even when learning new information, only the corresponding information can
be learned. In addition, even if a completely new category of information is entered, learning is
performed by setting a new unit, thereby preventing existing learned information from being erased
even for information exceeding the storage capacity. Figure 3 shows the structure of the ART network.
The ART network consists of F1 layer as input layer, F2 layer as competition layer, gain control to
control activation of each layer, and orienting subsystem to check matching with input pattern. The F1
layer and the F2 layer are called short term memory (STM) because they accept and erase data at that
time. The up and down weights between F1 layer and F2 layer are called long term memory (LTM)
because they memorize information of learned data up to now. First, the current and voltage signals
converted into the F1 layer are input. Data input to the F1 layer is calculated by weighting from the
F1 layer to the F2 layer, and then goes to the F2 layer. At this time, the F2 layer compares the input
data with the previously learned data, and outputs the data that is predicted to be the most similar
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among the learned data. The output data is sent back to the F1 layer, and the similarity between the
input data and the prediction data is compared in the orienting subsystem. If the degree of similarity
is larger than the predetermined value $, resonance occurs and the corresponding data is output. If the
similarity is smaller than $, the learned data is excluded from the search and brought to the other
learned data.

Figure 3. The structure of the adaptive resonance theory (ART) network.

2.5. Conversion of the Input Layer Data for ART Artificial Neural Networks

The input layer information of ART network is a set composed of binary data of 0 and 1. Therefore,
input layer signals must be converted into binary data of 0 and 1. Also, these input layer signals are
equally divided at a constant interval with respect to the minimum value and the maximum value
of the horizontal and the vertical axis is equally divided, thereby two-dimensional plane vectors
could be obtained. The welding voltage signal was divided equally between 0 V and 0.05 V, and the
welding current signal was divided from 0 kA to 20 kA at intervals of 0.1 kA. For these two signals,
the horizontal axis was divided by the time from 0 ms to 300 ms at 1 ms intervals. Accordingly,
the signals of the welding current and voltage can be expressed in a two-dimensional plane vector of
100,000 grid lines, respectively. Figure 4a is the mapping of the signal to the two-dimensional plane
vector with respect to the welding voltage signal. If the grid where the signal of the welding voltage
passes is expressed as 1 and a grid that does not pass a welding voltage signal is expressed as 0, it can
be finally expressed as shown in Figure 4c.

Figure 4. Cont.
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Figure 4. Conversion process of input layer data for ART artificial neural networks in the welding
voltage: (a) average welding voltage signal during 1 ms; (b) zoom-in of the average welding
voltage signal; and (c) pattern matching result of zoom-in average welding voltage by ART artificial
neural networks.

3. Results and Discussion

3.1. Weld Quality of RSW for 780 MPa Grade DP Steel

Figure 5 shows the average welding voltage and welding current signals measured at the RSW
between two layers of 780 MPa grade DP steel with a 1.0 mm thickness under the electrode force of
300 kgf, the welding current of 7 kA and welding time of 333 ms, respectively. These signals were used
as the input layer data of the ART artificial neural network. Figure 6 shows the average tensile shear
strength and fracture shape of the welds after the tensile test. Also, the measured nugget size and
its shape are shown in Figure 7. In this study, the required strength of weld is the 5.9 kN as per the
Korean Industrial Standards (KS B0850 B). As shown in Figure 6, when the welding current is 4.0 kA,
the required strength was not satisfied at all welding times. For the welding currents of 5.0 and 6.0 kA,
tensile shear strength from 7.5 kN to 11 kN was obtained according to the welding time. At welding
current of 7.0 kA, tensile shear strength from 12.5 kN to 13.6 kN was shown, and pull-out fracture
occurred under all welding times. As shown in Figure 7, the nugget size is from 2.4 mm to 2.6 mm
at welding current of 4.0 kA. In the case of welding current with 5.0 kA and 6.0 kA, a nugget size
from 3.2 mm to 4.4 mm was obtained according to welding time. At the welding current of 7.0 kA,
the nugget sizes were higher than 5.2 mm. As shown in Figures 6 and 7, tensile shear strength and
nugget size show no significant difference with increasing welding time at the same welding current,
but tend to increase with increasing welding current. Generally, the nugget size is more affected by
the welding current than the welding time during RSW of high strength materials. This is related to
the increase of contact area during welding by electrode force. The higher strength of the material,
the lower initial contact area at the same electrode force, thereby reducing the maximum nugget
size. In addition, the contact area by the electrode force during welding is not so large because of the
repulsive force due to the high rigidity of the base metal. Therefore, it is advantageous to increase the
contact area due to the initial melting by applying a high welding current to obtain a larger nugget
size. Therefore, in high-strength materials, the welding current has a greater effect on the change of
the nugget size than the welding time. Tensile shear strength is also affected by the nugget size and
thus tends to be similar tendency.
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Figure 5. Measured average welding current and voltage signal of 780 MPa grade DP steel with 1.0 mm
under the welding current of 7 kA, welding time of 333 ms and electrode force of 300 kgf.

Figure 6. Measured tensile shear strength and fracture shape of the weld with various welding currents
and times.

Figure 7. Measured nugget size of the weld with various welding currents and times.
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3.2. Optimal Pattern Classification Using ART Artificial Neural Networks

Figure 8 shows the pattern classification of input layer signal for ART artificial neural network
according to various welding currents. The prediction principle of ART artificial neural network is to
find the most similar pattern among the classified signals by learning the signal pattern of the input
layer and the output layer value of the learned signal pattern is used as the predicted value. Therefore,
if the output layer variables have values within a certain range, it is very important to group them into
the same classification. However, the most important variable affecting this classification is the value
of the vigilance parameter ($) used in the learning of the ART artificial neural network. When the input
data pattern is compared with the clustered pattern that is learned, if the value of the $ is too high, it is
determined that the input data pattern is classified as a pattern of another cluster or that there is no
matched pattern. On the other hand, if the value of $ is too low, even if the input data pattern is greatly
changed, it is classified into the same cluster pattern. This results in a large error in the predicted
value of the weld quality. Therefore, it is very important to select the appropriate $ value in order
to improve the prediction accuracy of the ART artificial neural network. In order to set the optimal
$ values, the input data of the welding current and voltage were classified using the ART artificial
neural network into the cluster data when the $ are set to 0.7, 0.8, and 0.9, respectively. When $ is 0.7,
the welding current and voltage signals are classified into eight clusters for 15 welding conditions.
When $ is 0.9, 15 welding conditions are divided into 20 clusters. On the other hand, when $ is 0.8,
15 welding conditions are classified as clusters consisting of 15 welding currents and voltage signals as
given. According to the cluster classification result with the change of $ value, a cluster of the learning
data signal is constructed with the $ = 0.8 in this study. Table 3 gives the tensile shear strength, nugget
size, and fracture shape for the clustered input signal patterns when the $ equals 0.8. As shown in
Table 3, the tensile shear strength and nugget size vary according to the RSW conditions, and the
difference in the patterns of the classified signals becomes clear.

Table 3. Final learning data of ART artificial neural networks at $ = 0.8.

Clusters
No.

Tensile Shear
Strength (kN)

Nugget
Size (mm)

Fracture
Shape

CLASSIFIED patterns of
Input Signal Parameters

1 3.8 2.4 interfacial 1- 1©, 1- 2©
2 4.0 2.5 interfacial 2- 1©, 2- 2©
3 4.1 2.6 interfacial 3- 1©, 3- 2©
4 5.6 3.0 interfacial 4- 1©, 4- 2©
5 6.5 3.1 interfacial 5- 1©, 5- 2©
6 7.5 3.2 interfacial 6- 1©, 6- 2©
7 7.8 3.5 interfacial 7- 1©, 7- 2©
8 8.2 3.6 interfacial 8- 1©, 8- 2©
9 9.8 4.0 interfacial 9- 1©, 9- 2©

10 10.4 4.2 interfacial 10- 1©, 10- 2©
11 10.7 4.3 interfacial 11- 1©, 11- 2©
12 11.0 4.4 interfacial 12- 1©, 12- 2©
13 12.5 5.2 pull-out 13- 1©, 13- 2©
14 13.1 5.3 pull-out 14- 1©, 14- 2©
15 13.6 5.4 pull-out 15- 1©, 15- 2©
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Figure 8. Cont.
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Figure 8. Pattern classification of input layer signal for ART artificial neural networks according to the
welding current of: (a) 4 kA; (b) 4.2 kA; (c) 4.5 kA; (d) 5 kA; (e) 5.5 kA; (f) 6 kA; and (g) 7 kA.
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3.3. Prediction of Weld Quality Using ART Artificial Neural Networks

In order to verify the pattern matching of the new input pattern on the ART network, the welding
specimen was prepared for each condition shown in Table 1 and the welding current and voltage
signal at that time were measured by the same method as in the previous experiment.

Figure 9 shows a comparison of measured nugget size and tensile shear strength with experimental
values using an ART network. The predictive reliability was evaluated by linear regression analysis.
The relationship between predicted and experimental results was shown in Figure 9 by the linear
equation. And the closer the coefficient of determination (R2) value is to 1, the higher the predictive
reliability. For nugget size and tensile shear strength, R2 values were 0.9978 and 0.9984, respectively,
which means that the predicted value is close to the experimental value. The reason why the prediction
accuracy of the tensile strength was slightly higher than the nugget size is that it is difficult to accurately
cut the center line in the weld to measure the nugget size and there is an error in the measurement
of the length. However, as can be seen from the average prediction results, it is possible to provide
useful information for real-time prediction of the nugget size of RSW. In addition, the fracture shape
was predicted and compared with the experimental results. In all of the 15 conditions given in Table 3,
the predicted results matched the experimental results.

Figure 9. The relationship between the predicted and experimental: (a) nugget size and (b) tensile
shear strength.

4. Conclusions

In this study, a model was developed that can predict the quality of RSW using ART artificial
neural networks, which is one of the several methods of artificial neural network. The signal
information of the welding voltage and current was used as the input parameters of the artificial
neural network, and the tensile shear strength, nugget size, and fracture shape of the resistance spot
welds were used as output parameters. In ART artificial neural networks pattern classification, it was
confirmed that different patterns can be classified under the same welding condition according to the
vigilance parameter, $. The optimal prediction results were obtained when the vigilance parameter
was 0.8. At this time, the predicted values for nugget size and tensile strength using the ART networks
were very close to the experimental results. In the prediction of the fracture shape, the accuracy of the
prediction was 100%. Based on these results, in the case of predicting the weld quality of RSW in real
time, the prediction performance will be excellent when applied to the ART artificial neural networks
using the signal of welding voltage and current as input parameters. In addition, it is expected that if
welding is carried out under various welding conditions for various types and thicknesses of steel,
and the signal of each welding voltage and current is learned, the prediction performance of welding
quality will be much better.
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