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Abstract: Serrated flow and work-hardening behavior (by Voce equation) of China low activation
martensitic (CLAM) steel were investigated in the temperature range of 300–923 K (27 ◦C to 650 ◦C).
The steel exhibited serrated flow at intermediate temperatures of 573–623 K (300–350 ◦C) and elevated
temperatures higher than 773 K (500 ◦C), respectively. Type A, A + B, A + C, A + D, and mild
serrations were identified. The observed serrations, the plateau/peak in flow stress and a minimum in
ductility suggested the occurrence of dynamic strain aging (DSA), a phenomenon due to interactions
between solute atoms and dislocations during plastic deformation, at intermediate temperatures,
while the mild serrations observed at high temperatures were ascribed to a combined effect of
tensile deformation and dynamic recovery. The variations of work-hardening parameters including
saturation stress σS, initial stress σI and rate parameter nV with respect to temperatures also implied
the dominance of DSA at intermediate temperatures. CLAM steel in present investigation generally
displayed two-stage work-hardening behavior consisting of transient stage and stage-III. Good
correlations had been presented between work-hardening parameters obtained by Voce equation and
the respective experimental tensile properties, suggesting adequate applicability of Voce relationship
for CLAM steel.

Keywords: CLAM steel; serrated flow; tensile flow; work hardening behavior; Voce equation;
dynamic strain ageing

1. Introduction

Fusion energy is commonly considered as one of the most important long-term energy options.
The harsh operating environment can, however, cause serious damage—irradiation swelling,
hardening, and embrittlement—to materials in fusion reactors [1]. China low activation martensitic
(CLAM) steel, as a reduced activation ferritic/martensitic (RAFM) steel, is thus a promising structural
material for blanket modules, plasma facing components and divertors due to its attractive properties,
which include relatively small thermal expansion, high thermal conductivity, and negligible irradiation
swelling and embrittlement when compared to austenitic stainless steels, vanadium alloys and
SiC/SiC composites [2–4]. The development of CLAM is of great importance and will be a stepping
stone for fusion reactors in the future. However, CLAM steel may be subject to the influence of
dynamic strain aging (DSA), which can induce changes in material properties such as strength
and ductility. Occurrences of DSA have been identified in several previous reports for certain
high-Cr ferritic/martensitic (F/M) steels [5–10]. Consequently, serrated flow (the most important
manifestations of DSA) and tensile properties of CLAM steel should be investigated in detail.

Besides the serrated flow behavior, tensile flow and work-hardening behavior also attract continuous
scientific and technological interest on account of improving conditions for material processing,
and ensuring safe performance during service [11]. Work-hardening phenomenon is related to steel
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behavior in secondary processes, and dynamic behavior after steel production in some previous
reports [12–14]. Several constitutive relationships [15–19] have been proposed to depict tensile flow and
work-hardening behavior of metals, while Voce relationship [15,16] attracts more attention. The Voce
equation [15,16] can be expressed as:

σ = σS − (σS − σI) exp[−(ε − εI)/εC] (1)

where σS represents the saturation stress, a stress at which work-hardening rate becomes zero,
σI represents the true stress at the onset of true plastic strain ε I , and εC is a strain constant. By setting
ε I = 0 and nV = −1/ εC, Equation (1) reduces to:

σ = σS − (σS − σI) exp(nVε) (2)

with three constants. The physical significance of Voce equation was interpreted by the Kocks-Mecking
(K-M) phenomenological model [20–23]. Many investigations have been performed previously to
describe the tensile flow and work-hardening behavior in the frame work of Voce relationship for a
wide range of temperatures and strain rates, demonstrating the adequate applicability of Voce equation
for different types of steel [5,24–31].

The aim of this present work is to investigate the serrated flow, tensile flow, and work-hardening
behavior of CLAM steel in the frame work of Voce equation in the temperature range of 300 K to 923 K
(27 ◦C to 650 ◦C), and to further understand DSA phenomena and the applicability of Voce relationship
for CLAM F/M steel.

2. Materials and Methods

The test material studied in the present investigation was CLAM steel (HEAT-9), which was
supplied by the Fission/Fusion Design Study (FDS) team affiliated to the Institute of Nuclear Energy
Safety Technology, Chinese Academy of Sciences (CAS). The main chemical composition of this CLAM
steel is listed in Table 1. The initial as-received CLAM steel plate was in normalizing-and-tempering
(NT) condition—normalizing at 1253 K (980 ◦C) for 30 min, followed by air cooling, and then tempering
at 1033 K (760 ◦C) for 1 h with subsequent air-cooling to room temperature.

Table 1. Chemical composition of China low activation martensitic (CLAM) steel (in wt.%).

C N Si O S P B Mn Cr W Ta V Nb

0.097 0.0092 0.056 0.004 0.0019 0.003 0.0012 0.49 8.85 1.47 0.12 0.21 0.01

Flat tensile specimens of 10 mm × 4 mm × 2 mm in gauge dimension were cut from the
steel plate. Tensile tests were conducted on an SHIMADZU AG100KN-A universal testing machine
with a load accuracy of ±0.3% and a maximum load of 100 KN. The specimens were tensioned
at different temperatures in the range from 300 K to 923 K (27◦C to 650 ◦C) at the initial strain
rates of 10−5–2 × 10−4 s−1. Notably, no strain gage was employed, and the crosshead displacement
was obtained as the specimen extension. Therefore, the linear elastic part of the load-elongation
data consisted of the specimen, load-train assembly, and machine frame. The combination of these
elastic portions was finally subtracted from total elongation to estimate the plastic strain [5,24–26].
Consequently, the absence of an extensometer did not cause problems with the stress-strain behavior.

For tensile flow behavior in the frame work of Voce relationship, stress and plastic strain data was
used with some formula to obtain true stress (σ)-true plastic strain (ε) at first. Experimental σ-ε data
was fitted to the Voce equation using the Levenberg-Marquardt least square method with unknown
constants as adjustable parameters. The applicability of fit was judged by a low value of Reduced
Chi-Sqr (χ2), which represented the mean square of the deviations of the calculated stress values from
the experimental stress data. Centered difference formula was used to calculate instantaneous work
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hardening rate (θ) from the σ-ε data at each experimental point. The methods mentioned above has
been demonstrated in many previous reports [11,24–26,31].

3. Results and Discussion

3.1. Serrated Flow Behavior

Engineering stress-strain curves of the CLAM steel at an initial strain rate of 2 × 10−4 s−1 at
temperatures ranging 300 K to 923 K (27 ◦C to 650 ◦C) are shown in Figure 1. Those tensile curves
exhibit typical shapes at temperatures up to 773 K (500 ◦C), as shown in Figure 1a, and rapid failure
phenomenon after yield at temperatures higher than 823 K (550 ◦C), as present in Figure 1b. The results
also clearly indicate that serrations emerge in the temperature range of 573–623 K (300–350 ◦C) and over
773 K (500 ◦C), respectively. Figure 2 show some engineering stress-strain curves in the intermediate
temperature range at different strain rates in CLAM steel, revealing serrated flow during tensile
deformation. Based on the acceptance classification and nomenclature [5,32,33], type A serrations
are periodic serrations, which show an abrupt rise in stress value followed by discontinuous drops
below the general/mean level of stress-strain curves; type B serrations are slight oscillations about
the general/mean level of the stress-strain curves, and often develop from type A serrations; type C
serrations are stress drops that always occur below the general or mean level of the stress-strain curves;
type D serrations are characterized by nearly plateaus/decrease in stress after a peak following initial
rapid increase in stress value from the general or mean level of stress-strain curves. According to
these definitions, different types of serrations, including tape A, A + B, A + C, and A + D serrations
are identified. Figure 2a shows tensile curves in different temperatures at strain rate of 2 × 10−4 s−1.
Serrations of type A + D are observed at 573 K (300 ◦C) while type A + B serrations are found at
598 K (325 ◦C). Toward the end of the serrations at 623 K (350 ◦C), type A + C serrations are noticed.
At an intermediate temperature of 623 K (350 ◦C), type A serrations at strain rate of 5 × 10−5 s−1

followed by type A + C serrations at 10−4 s−1 and type A + C serrations at 2 × 10−4 s−1 are observed,
which is presented in Figure 2b. Generally, type D serrations occur at the beginning or toward the end
of the serrated flow temperature range, while type C serrations are often observed toward upper-end
temperatures of serrated flow behavior as mixed A + C and/or D + C serrations [5]. In the temperature
range higher than 773 K (500 ◦C), as shown in Figure 1b, mild irregular serrations are observed.
Those mild serrations are similar to typical type E serrations, which are generally changed over from
type A serrations in the relatively low temperature range at high strains [32].
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Figure 1. Engineering stress-strain curves of China low activation martensitic (CLAM) steel at different
test temperatures, (a) 300–773 K, (b) 823–923 K, at an initial strain rate of 2 × 10−4 s−1.
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Figure 2. Parts of engineering stress-strain curves in China low activation martensitic (CLAM) steel at
(a) various temperatures and (b) different strain rates, showing diverse types of serrations.

Variation of tensile properties of CLAM steel; including ultimate tensile strength (UTS),
yield strength (YS), and total elongation with temperature at the initial strain rate of 2 × 10−4 s−1 is
shown in Figure 3. The plots in Figure 3a reveal that both UTS and YS values exhibit a decrease with
increasing temperature from 300 K to 523 K (27 ◦C to 250 ◦C), followed by insignificant variations at
an intermediate temperature range of 573–673 K (300–400 ◦C) and a rapid decrease in stress values at
high temperatures in the range 723–923 K (450–650 ◦C). In other words, the stress values of UTS and
YS exhibit a “plateau” at intermediate temperatures. Variation of total elongation with temperature,
as presented in Figure 3b, generally display a decrease at temperatures from 300 K to 648 K (27 ◦C to
375 ◦C) followed by an increase at temperatures higher than 673 K (400 ◦C). Therefore, the elongation
value obtains a minimum at the intermediate temperature range.
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in China low activation martensitic (CLAM) steel: (a) ultimate tensile strength (UTS) and yield
strength (YS); (b) total elongation.

There have been previous reports on serrated flow behavior in high-Cr ferritic/martensitic (F/M)
steel. In those studies [5–8], serrations were generally observed at intermediate temperatures; different
types of serrations, including type A, A + B, A + C, C, D, D + C and mild serrations with respect to
temperature and/or strain rate were detected. Serrated flow observed in the present investigation is
consistent with these previous results at intermediate temperatures though the number of stress drops
is comparatively lower [5–8]. However, mild serrations are also observed in elevated temperatures
in CLAM steel, which is different from these reports [5–8]. Notably, as distinct from present study,
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Vanaja investigated tensile tests for a series of reduced activation ferritic/martensitic steels, and no
serrated flow was observed over the entire temperature range [34,35].

The observation about serrated flow in present CLAM steel (Figures 1 and 2) is regarded as
one of the most important manifestations of DSA [5,7,32]. Other manifestations of DSA, including
peaks/plateaus in flow stress and a minimum or minima in ductility [7,32], are also consistent with
the results in the present investigation. Consequently, the CLAM steel in this study exhibits DSA
phenomenon at intermediate temperatures. Activation energy, as a measure of energy required
for appropriate solute diffusion to affect serrated flow in solid solution alloys, can be obtained in
the way of calculation by model [36] or an alternate method [5,7] to understand the mechanism
of serration phenomena. The obtained values of activation energy at intermediate temperatures in
high-Cr ferritic/martensitic were in the range of 64–100 kJ/mol in previous reports [5,7,9,10]. Based on
these values, the occurrence of DSA could be attributed to locking of mobile dislocations by diffusing
carbon atoms [5,7]. However, at elevated temperatures higher than 773 K (500 ◦C), these observed
mild serrations were not considered to result from DSA. The rapid decrease of tensile flow stress
and increase of ductility with increasing temperatures suggest the dominance of dynamic recovery
process at high temperatures [5,26]. Therefore, dynamic recovery is significant during tensile test
at high temperatures, which can result in a softening effect to the material; on the other hand, the
continuous tensile deformation will harden the steel. Therefore, those mild serrations observed
at elevated temperatures appear to be attributed to a combined effect of tensile deformation and
dynamic recovery.

3.2. Work Hardening Behavior

Figure 4 shows typical true stress (σ)-true plastic strain (ε) plots of CLAM steel obtained in
the temperature range of 300–923 K (27–650 ◦C) at strain rate of 2 × 10−4 s−1. The tendency for
saturation of flow stress at high strains is illustrated in this figure. The plots indicate that σ-ε data
obtained at temperatures from 300 K to 823 K (27◦C to 550 ◦C) exhibit curvilinear behavior. However,
at temperatures higher than 873 K (600 ◦C), σ-ε data is observed to be nearly linear. The results also
reveal that true flow stress exhibits a general decrease with respect to increasing temperature in the
range of 300–923 K (27–650 ◦C). The values of flow stress show a decrease with increase at relatively
low temperatures followed by a marginal change in the values at intermediate temperatures and
a rapid decrease at temperatures higher than 723 K (450 ◦C). In intermediate temperature range of
573–673 K (300–400 ◦C), five σ-ε plots seem to lie in a narrow band, intertwined with each other.
This phenomenon appears to relate to the occurrence of DSA at intermediate temperatures. Besides
variations in tensile stress, a general decrease in true uniform plastic strain with increase in temperature
from 300 K to 923 K (27 ◦C to 650 ◦C) is also exhibited. Nevertheless, the values of true uniform plastic
strain appear to get a minimum or minima between 773 K and 873 K (500 ◦C and 600 ◦C), which is
different from some previous reports for high-Cr F/M steels [5,24].
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Figure 4. Voce fit to true stress (σ)-true plastic strain (ε) at strain rate of 2 × 10−4 s−1 in China low
activation martensitic (CLAM) steel.

The fitted curves generated based on Voce’s constitutive equation in the temperature range of
300–923 K (27–650 ◦C) are also depicted along with corresponding experimental σ-ε data in Figure 4.
The values of reduced χ2 obtained at different temperatures are listed in Table 2. These reduced
Chi-Sqr values are lower than 10 for all test temperatures, which demonstrate the applicability of Voce
equation for tensile flow behavior. Furthermore, no obvious correlation exists between these reduced
χ2 values and temperatures.

Table 2. Reduced χ2 values obtained for Voce relationship at different temperatures for present CLAM
steel at strain rate of 2 × 10−4 s−1.

Temperature (K) 300 373 473 573 598 623 648
Reduced χ2 8.92 2.34 0.68 1.36 3.36 4.35 0.75

Temperature (K) 673 723 773 823 873 898 923
Reduced χ2 2.41 2.39 2.72 5.02 2.32 0.19 1.14

The variations of work-hardening parameters, namely, saturation stress (σS), initial stress (σI) and
rate parameter nV , with respect to temperature for all tensile conditions are shown in Figures 5–7.
Modulus compensated stress values for different temperatures are considered in present analyses
to bring out the effect of temperatures, because temperatures generally influence the modulus and
flow stress [24,25]. The values of Young’s modulus (E) of CLAM steel at various temperatures can be
obtained by a computational formula elsewhere [3]. In Figure 5, normalized saturation stress (σS/E)
with temperature reveals a marginal variation from 300 K to 573 K (27 ◦C to 300 ◦C) followed by
a plateau at intermediate temperatures of 573–673 K (300–400 ◦C), and finally a rapid decrease at
elevated temperatures higher than 723 K (450 ◦C). Similarly, normalized initial stress (σI/E) with
respect to temperature, as shown in Figure 6, also exhibit a marginal variation followed by a peak,
and a rapid decrease in corresponding temperature ranges of variations of saturation stress. However,
parameter nV behaves in a different manner, namely, a general marginal increase in absolute values
with increasing temperatures from 300 K to 773 K (27 ◦C to 500 ◦C), followed by a rapid increase at
temperatures of 773–873 K (500–600 ◦C) and a rapid decrease in the temperature range of 873–923 K
(600–650 ◦C), as shown in Figure 7.
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Saturation stress is considered as the stress at which work-hardening rate becomes zero
(δσ/δε = 0) for some conditions like strain or temperature. In Mecking and Kocks’s interpretation [21],
stress saturation is a state of constancy in dislocation density and its arrangement. It has been
reported that the occurrence of a plateau/peak in the values of σS/E and σI/E and a marginal
increase in nV can be interpreted to DSA, as illustrated by the occurrence of serrated flow behavior
at intermediate temperatures [25,26]. The observed rapid decrease in the values of σS/E and σI/E
with increasing temperatures indicate the dominance of recovery processes [25–27] in the temperature
range of 723–923 K (450–650 ◦C). However, the variations of nV as a function of temperature is
significantly different from several previous reports for F/M steels [24–26,34,35], in which nV exhibits
a rapid increase with increasing temperatures in the elevated temperature range. Generally, the
values of nV are conceded to depend on the relative contribution of glide and climb mechanisms to
recovery [27], and the mechanism of climb or sub-boundary migration in the high temperature range
should correspond to a large absolute value of nV .

According to K-M formula [21,22], instantaneous work-hardening rate (θ = dσ/dε) can be
considered to understand tensile work-hardening behavior. Figure 8 shows the variations of θ with
respect to true stress (σ) in the temperature range of 300–923 K (27–650 ◦C) for CLAM steel. At all
the temperatures, θ-σ plots in general exhibit a rapid decrease initially in θ at relative low stresses
(transient stage), subsequent to a gradual decrease at high stresses (stage-III). Following the K-M
approach [21], saturation stresses can also be obtained as extrapolated stress values at θ = 0 from the
linear portion of θ-σ plots in stage-III at different temperatures. A good match has been observed for
saturation stresses respectively obtained from Voce equation and K-M approach [23,27] in some steels.
Reference θ = σ line is also shown as a broken line in Figure 8, which corresponds with the onset of
necking at various temperatures [25]. Similar to the variations of flow, saturation and initial stresses, θ-σ
plots also exhibits three temperature regimes. The grouping of θ-σ data at intermediate temperatures
implies the occurrence of DSA. It should be noted that the temperature range of DSA in the present
work is narrower when compared to some other previous research [5–8].
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Figure 8. Variation of instantaneous work hardening rate (θ) as a function of true stress (σ) at different
temperatures in China low activation martensitic (CLAM) steel.

Applicability of Voce relationship to CLAM steel in all tensile conditions in the present
investigation can be further confirmed by comparing the predicated work-hardening parameters
and the ductility values (obtained from Voce equation) with the corresponding experimental results
(measured from the tensile tests). A comparison of saturation stress (σS,Voce) values obtained in the
temperature range of 300–923 K (27–650 ◦C) using Voce equation with the corresponding true ultimate
tensile strength (σU) values for CLAM steel is shown in Figure 9. The reference σS,Voce = σU line is also
shown as a full line in Figure 9. The results display a good match between σS and σU as σS,Voce ≈ σU
for all tensile temperatures at strain rate of 2 × 10−4 s−1 in the Voce relationship. It is accepted
that σS,Voce in the Voce equation is obtained as the asymptotic stress value after severe deformation,
namely, the onset of necking [15,20]. According to Considere’s criterion for necking, σU is obtained
as σ = σU at θ = σ, which can be obtained in θ-σ plot in respective temperature. The approximate
equivalence of σS,Voce and σU is in accordance with the good fit obtained for Voce relationship in
CLAM steel in Figure 4. A similar comparison of initial stress (σI,Voce) and true yield strength (σY) is
shown in Figure 10. It can be seen clearly that the σI,Voce values are higher than the corresponding σY.
In other words, all the data points lie below the theoretical line σI,Voce = σY. This result is reasonable
since true yield strength (σY) values are the stress evaluated at an offset plastic strain of 0.2%, while σI
values are obtained as the true stress at zero plastic strain. In order to further illustrate the applicability
of Voce relationship for describing tensile flow behavior, a comparison between true uniform plastic
strain (εU,Voce) obtained by Voce equation and experimentally observed true uniform plastic strain (εU)
can be made. εU,Voce values are able to be predicted by differentiating Voce equation as:

εU,Voce =
1

nV,Voce
ln
[

σS,Voce

(σS,Voce − σI,Voce)(−nV,Voce)

]
. (3)

when ε = εU and dσ/dε = σU ≈ σS,Voce. Figure 11 shows variations of calculated εU,Voce with
experimental εU at different temperatures at 2 × 10−4 s−1 of CLAM steel. The theoretical line
representing εU,Voce = εU is also shown as a full line in Figure 11. The results indicated a reasonable
agreement between εU,Voce and εU in CLAM steel. The observed approximate equivalence in
Figures 9–11 between saturation stress, initial stress, and true uniform plastic strain predicted by
Voce equation and corresponding experimental values is in agreement with some previous reports
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for high-Cr ferritic steel [11,24–26,31]. In addition, these observations clearly indicate the good
applicability of Voce relationship for tensile flow and work-hardening behavior of CLAM steel.
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Figure 11. Comparison of predicted true uniform plastic strain (εU,Voce) and experimentally detected
true uniform plastic strain (εU) at different temperatures in China low activation martensitic
(CLAM) steel.

The present investigation notes some limitations. On one hand, no strain gage was employed,
so the critical strain method to evaluate activation energy was not successful. More tensile tests
should be further carried out so that the alternate method could be used to obtain activation energy
of present CLAM steel at intermediate temperatures. On the other hand, the variations of nV with
temperatures in present CLAM steel is different from other previous reports [11,24–26,31,34,35],
deserving further investigation.

4. Conclusions

Serrated flow and work-hardening behavior (in the frame work of Voce equation) of CLAM steel
have been investigated in the temperature range of 300–923 K (27 ◦C to 650 ◦C). Main conclusions are
summarized as follows:

(1) Serrated flow occurs in the temperature range of 573–623 K (300–350 ◦C) and over 773 K
(500 ◦C), respectively. Type A, A + B, A + C, A + D and mild serrations are identified.

(2) The occurrence of obvious serrations, a plateau in UTS, a peak in YS, and a minimum in
ductility suggests the occurrence of DSA at intermediate temperatures, while the mild serrations
observed at elevated temperatures are attributed to a combined effect of tensile deformation and
dynamic recovery.

(3) The occurrence of a plateau/peak in the work-hardening parameters, namely, σS, σI and nV ,
implies the dominance of DSA at intermediate temperatures.

(4) CLAM steel in the present investigation generally displays a two-stage work-hardening
behavior consisting of transient stage and stage-III.

(5) Good matches have been presented between the work-hardening parameters obtained by Voce
equation and the respective experimental data of tensile properties, suggesting adequate applicability
of Voce relationship for CLAM steel.

Author Contributions: Y.S. conceived and designed this experiment, and helped to analyze the data.
Z.X. performed the experiments, analyzed the experimental data, and wrote the paper.
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