**Table S1.** Glass transition temperature  $T_s$  determined by the minimum of storage modulus E<sub>0</sub> curves at different frequencies and the difference between the maximum  $T_s$  and the minimum  $T_s$ ,  $\Delta T_s$ , of storage modulus E<sub>0</sub> dip at different frequencies in Ti<sub>48.7</sub>Ni<sub>51.3</sub> SMA for different aging times. (All the data are come from Fig. S3).

| $T_{\rm g}(\mathcal{C})$                  |       |       |       |       |       |      |
|-------------------------------------------|-------|-------|-------|-------|-------|------|
| Aging Time, t<br>(h)<br>Frequency<br>(Hz) | 0     | 1     | 3     | 5     | 10    | 20   |
| 1                                         | -56.7 | -46.9 | -37.5 | -19.6 | -7.29 | 3.55 |
| 5                                         | -51.5 | -45.2 | -35.7 | -19.2 | -7.11 | 3.47 |
| 20                                        | -50.7 | -43.2 | -35.3 | -18.8 | -6.02 | 3.33 |
| 50                                        | -45.6 | -43.0 | -35.0 | -17.6 | -5.51 | 3.71 |
| $\Delta T_g$ (°C)                         | 11.1  | 3.9   | 2.5   | 2.0   | 1.38  | 0.38 |



**Figure S1.** Kratky-Porod plots ( $\ln I(Q)Q^2$  versus  $Q^2$ ), selected to show the evolution of thickness (determined by the slope of fitting lines) of Ti<sub>3</sub>Ni<sub>4</sub> nanoprecipitates with aging time (The data are separated by vertical translation).



**Figure S2.** Guinier plots  $(\ln I(Q_Z) \text{ versus } Q_Z^2)$ , selected to show the evolution of thickness (determined by the slope of fitting lines) of Ni-rich nanodomains with aging time (The data are separated by vertical translation).



**Figure S3.** Frequency-dependent dip in the storage modulus E<sub>0</sub> vs. temperature curves of the Ti<sub>48.7</sub>Ni<sub>51.3</sub> specimens aged at 250 °C for 0, 1, 3, 5, 10 and 20 h measured by DMA at frequencies 1~50 Hz.