
metals

Article

Tuning Interface to Improve Corrosion Resistance
of Electroless Ni-P Coating on AZ31B Alloy

Beilei Ma and Ruihong Wang *

School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China;
m1362512027@hotmail.com
* Correspondence: wangrh@xaut.edu.cn

Received: 28 March 2018; Accepted: 26 April 2018; Published: 8 May 2018
����������
�������

Abstract: Interface is crucial to enable desirable service performances of coatings on substrates.
In this paper, Ni-P coatings were prepared on AZ31B alloy by using electroless plating, with the
coating/substrate interface being tuned to improve the corrosion resistance. The interface tuning
involved a phosphate treatment prior to the electroless plating, which created a uniform surface of
the Mg substrate and finally led to Ni-P plating coatings with enhanced density during the electroless
plating. Electrochemical testing was performed to compare the corrosion properties between the Ni-P
coatings with and without phosphate treatment. The experimental results evidently showed that
the introduction of phosphate treatment, especially after an annealing treatment, greatly improved
the corrosion resistance. The underlying mechanisms, revealed by microstructural examinations,
were that the phosphate treatment reduced the substrate surface roughness and likely promoted a
high and uniform nucleation intensity of the Ni-P coating. Corrosion processes of the unannealed
and annealed Ni-P coatings with an interfacial phosphate layer were further clarified for comparison.
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1. Introduction

Due to their unique properties such as low density, high specific strength, good thermal
conductivity, castability, and relatively high stiffness [1–3], magnesium (Mg) alloys can be potentially
used in automotive, aerospace, electronics, chemical, and other fields. However, practical applications
of the Mg alloys are highly limited by their poor corrosion resistance [4,5].

A uniform coating prepared by surface treatment methods is usually adopted to modify physical
and chemical properties of metal materials, in particular to enhance the corrosion resistance. Electroless
nickel (EN) coating is one of the common surface treatment methods, which has been widely employed
to produce corrosion-resistant Ni-based coatings [6–11]. The corrosion resistance depends highly on
the quality of EN coatings. In nanocrystalline Ni-P coatings, for example, a good corrosion resistance
was found to be always associated with a high density [12,13]. To prepare dense nanocrystalline
Ni-P coatings, the key is to reach a high nucleation as well as a low growth rate in coating
formation, which are sensitive to many factors, such as the bath composition, preparation conditions,
and characteristics of substrate [1,14–17].

Experimental results have showed that the growth rate of electroless Ni-P plating was accelerated
in acid baths, causing dense hard coatings to form. While keeping the bath composition and preparing
conditions unchanged, the growth rate of the EN coating relied mainly on the characteristics of
substrate [18–21]. In particular, the substrate surface or interface between the coating and the substrate
played a critical role in determine the coating quality. Previous reports demonstrated that a relatively
rough substrate rather than a smooth one promoted a rapid formation of the Ni-P coating [22,23].
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However, the Ni-P coatings derived from rapid formation usually contain cauliflower-like granules in
large sizes, which are apt to yield high porosity and hence reduce the corrosion resistance.

The effect of substrate surface roughness on Ni-P coatings in alkaline baths has been extensively
studied for steel substrates and Mg substrates [12,13,19–21]. In the case of Mg substrate, the corrosion
resistance of Ni-P coatings is dominated by not only the coating quality but also the interfacial
bonding, both depending on the Mg substrate surface condition. Although some studies have used
a ground-polish with diamond paste to reduce the substrate surface roughness [23], the impact of
surface roughness on the microstructure, interfacial bonding, and final electrochemical performance
of the Ni-P coatings produced in the acid bath has not been systematically analyzed and discussed.
In this paper, a phosphate treatment will be applied to create a phosphate layer on Mg substrate
before Ni-P electroless plating. The influence of the phosphate layer on microstructure and interfacial
bonding of the subsequent Ni-P coating will be investigated deeply. The electrochemical properties of
the coatings with a tuned interface will be analyzed and discussed in comparison with those with no
interfacial tuning.

2. Experimental Procedures

The substrate used in the present work is commercial AZ31B cast magnesium alloy. Rectangular
coupons of the Mg alloy (10 × 15 × 3 mm3) were ground gradually from 1000 down to 3000 grit using
silicon carbide papers, and were subsequently subjected to the pre-treatment process (Table 1).

Table 1. Bath Compositions and operating conditions of each process for Ni-P coating.

Process Compositions
Operating Conditions

Temperature/◦C Time/min

Alkaline cleaning
Na3PO4•12H2O 20 g/L

65 5NaOH 30 g/L
OP-10 3 mL/L

Phosphating

H3PO4 650 mL/L

50 1
C3H8O3 250 mL/L

C6H8O7 0.6 g/L
CuSO4•5H2O 0.4 g/L

Activation HF (40%) 250 mL/L 25 1

Nickel plating

NiCO3·2Ni(OH)2•4H2O 12 g/L

80 15
20

NaH2PO2•H2O 20 g/L
C6H8O7 5 g/L

HF (40%) 12 mL/L
NH4HF 10 g/L

Thiourea 1 mg/L

The pre-treatment processes were as follows: (i) Alkaline cleaning was firstly performed to remove
oils and greases from the coupons surface; (ii) Secondly, a phosphate treatment was adopted to reduce
the substrate surface roughness; (iii) Finally, fluoride activation was applied.

To minimize air exposure and reduce atmospheric oxidation, the samples were rinsed thoroughly
with deionized water and as quickly as possible after each step during the pre-treatment processing.
After pre-treatment, the specimens were immersed in the EN plating acid bath (Table 1) for 20 min at
80 ◦C.

The structure of the Ni-P coatings were characterized by using Siemens X-ray diffractometer
5000 (XRD) equipped with a Cu Kα X-ray source. The surface morphology of the specimens was
examined by using FEI QUANTA 2000 scanning electron microscopy (SEM) together with EDS analyses
to determine the chemical composition of the deposits. Surface roughness of the samples was examined
and measured by using a OLYMPUS Laser Scanning Confocal Microscopy (LSCM) instrument. At least
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five measurements on each side of the coupons were recorded to obtain an average value. Corrosion
resistance was characterized by using the electrochemical method. The electrochemical tests were
carried out on a CHI604D electrochemical workstation by using a classical three-electrode cell with
platinum as the counter electrode. Saturated Ag/AgCl was used as the reference electrode, and the
coating samples with 1 cm2 exposed area as the working electrode. All samples for electrochemical
test were left standing for 600 s prior to the test in order to obtain stable open circuit potential (OCP).
Potentiodynamic polarization was measured at a scan rate of 2 mVs−1 at room temperature in 3.5 wt %
NaCl solution. The corrosion resistance was also measured under immersion in 3.5 wt % NaCl solution
with pH 7 at room temperature. The sample surface was examined at regular intervals, in which the
time for etch pits appearing can be recorded. After immersion testing, the surface morphology of
samples was observed with SEM to understand the corrosion behavior.

The examination of adhesion was performed by using a WS-2005 single scratch tester. The critical
load (LC) value was confirmed by the scratch tracks and acoustic emission signals, at which the coating
exhibited adhesion failure or was removed from the substrate. The chronologies of the abrupt changes
along the profile determined the critical loads on the scratch track. Acoustic emission signals were
measured with a 200 µm tip radius cone-shaped diamond indenter under a loading rate of 50 N/min,
loading range of 0–50 N, sliding speed of 10 mm/min, and scratch length of 10 mm.

3. Results and Discussions

3.1. Pre-Treatment Process and the Ni-P Electroless Plating Layer

The surface morphology and roughness of the AZ31B alloy substrate were greatly affected by the
pre-treatment process. In this paper, two kinds of pre-treatment processes were adopted for comparison.
One was alkaline cleaning followed directly by activation. The other was alkaline cleaning, phosphate
treatment, and finally activation. The difference between the two pre-treatment processes is that one
includes, while the other does not include, the phosphate treatment. Since the phosphate treatment
created a phosphate layer on the Mg substrate, the two pre-treatment processes caused different
substrate surfaces. After pre-treatment, the samples were subjected to electroless plating to produce
Ni-P coatings. Two Ni-P coatings with different interfaces were accordingly obtained: one was Ni-P
coating with interfacial phosphate layer (abbreviated NPC/Phosphate), and the other was Ni-P coating
with no interfacial layer (abbreviated NPC).

Figure 1 shows representative laser scanning confocal microscopy images to compare the sample
surface morphology after every step during pre-treatment processing. The values of surface roughness
(Ra) are accordingly given together with the images. It is quantitatively revealed that the final surface
roughness of the substrate after pre-treatment processing was 0.71 ± 0.02 µm and 8.53 ± 0.22 µm,
respectively, with and without phosphate treatment. The surface roughness was remarkably reduced
after the phosphate process. Surface morphology of the substrates after phosphate treatment was
further examined by using SEM, as typically shown in Figure 2. There were obvious scratches and
pores on the surface of samples without phosphate treatment (Figure 2a,c). These surface defects
were ready to serve as nucleation sites for the subsequent Ni-P coating formation. On the contrary,
the surface of samples with phosphate treatment was uniform and smooth, free of scratches and
pores (Figure 2b,d). The smooth and defect-free surface is favorable for the uniform formation of Ni-P
coatings. EDX analysis was inserted in Figure 2d, it could be seen that the phosphate layer consist of
Al, Mg, O, and P.
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after each pre-treatment step.

Metals 2018, 8, x FOR PEER REVIEW  4 of 11 

 

 

Figure 1. Representative Laser Scanning Confocal Microscopy images showing the sample surface 

after each pre-treatment step. 

 

Figure 2. Representative SEM images showing surface morphologies of the AZ31B alloy pre-treated 

(a,c)without, and (b,d) with phosphate process. Note that (a,b) are in low magnification, while (c,d) 

in high magnification. 
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After pre-treatment, the Ni-P coatings were deposited on the Mg substrates by using the
electroless plating. The relative technology parameters of the electroless plating are given in
Table 1. Representative SEM images in Figure 3 show morphology of the Ni-P coatings derived
from the two different pre-treatment processes, that is, NPC (Figure 3a,c) and NPC/Phosphate
(Figure 3b,d), respectively. Cauliflower-like patterns are evident on both the two Ni-P coatings.
However, the cauliflower-like domains in the two coatings are much different in size. The NPC has
cauliflower-like domains (~1.0 to 20.0 µm) greater than those in the NPC/Phosphate (~0.5 to 2 µm).
Additionally, there are clear cracks in the NPC as marked by white arrows in Figure 3c, while, in the
NPC/Phosphate, no obvious cracks are detected.
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Figure 3. Representative SEM images showing the in-plane (a,c), and cross-sectional (e) morphology
of the Ni-P coating with no interfacial layer (NPC); the in-plane (b,d), cross-sectional (f) morphology
of the Ni-P coating with interfacial phosphate layer (NPC/Phosphate). Note that (a,b) are in low
magnification, while (c,d) are in high magnification.

Cross-sectional microstructure examinations demonstrate that the coating thickness of NPC and
NPC/Phosphate are about 10 µm and 3 µm, respectively, as shown in Figure 3e,f. It is estimated that
the plating rates were 30 µm/h and 9 µm/h, respectively, provided that the deposition time was both
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20 min. The plating rate of Ni-P coating on the rough surface seems to be faster than on the smooth
one. This is consistent with the previous report by Liu and Gao [2] that a greater deposition rate was
achieved when a roughened AZ91 Mg substrate was used for electroless plating of Ni. Research by
Meenan et al. [24] also pointed that the Pd growth depended strongly on surface roughness during
the electroless deposition on tungsten oxide films, and smooth surfaces led to a uniform thickness.
In present Ni-P coating on AZ31B alloy, it was similarly found that the slower deposition rate resulted
in a uniform thickness. However, the adhesion between the coating and alloy substrate was weak,
which was evaluated by the scratch test. The coating surface was drawn across by a diamond indenter
as the applied load increased linearly from 0 to 50 N, with acoustic emission signals and frictional
forces recorded accordingly. Experimental results showed that the critical load was about 28 N and
13 N for the NPC and NPC/Phosphate, respectively, which can be used to characterize the adhesion
strength between the coating and the substrate [25]. It is estimated that the adhesion strength of the
NPC was greater than that of the NPC/Phosphate. Ranjbar et al. [26], Zhao et al. [27], and Liu and
Gao [28] also concluded that a substrate with a rougher surface improved the adhesion of the Ni-P film.

X-ray diffraction patterns of the NPC and NPC/Phosphate are presented in Figure 4,
both displaying a broad diffraction peak at 44.8◦. It is evident that the coatings have grains in
nano-crystalline size. Available previous reports showed similar results and the broad diffraction
pattern was interpreted as (1 1 1) plane of a face centered cubic phase of nickel with crystallite size
of 1.2 nm [29,30]. Chemical composition of the coatings from EDX measurements demonstrated a
phosphorus content of 3–4 wt % in both the two coatings. The phosphorus dissolved in the nickel
lattice, disturbing the atomic arrangement, should be partially responsible for the formation of small
grains (nano-crystalline) [23,31].
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3.2. Corrosion Resistance of the NPC and NPC/Phosphate

Potentiodynamic polarization curves of the AZ31B alloy, the NPC, and the NPC/Phosphate
were shown in Figure 5 for comparison, which were measured in neutral 3.5 wt % NaCl solution.
A significant shift in the corrosion potential (Ecorr) (Table 2) to a more positive value could be observed
for the Ni-P coated samples by comparing with the bare substrate alloy, indicative of a good corrosion
resistance resulting from the Ni-P coating. However, the corrosion current density (Icorr) (Table 2)
of the NPC coated alloy, extracted from the Tafel extrapolation on the potentiodynamic polarization
curves(OCP ± 0.2 V vs. Sat. Ag-AgCl), was almost the same as the substrate alloy, which should
be related to a high porosity in the coatings, caused by the high plating rate. The porosity could be
determined on basis of the potentiodynamic polarization curves [32], following the equation below.
The evaluations are listed in Table 2.
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Figure 5. Polarization curves of (a) the bare Mg alloy substrate, (b) the NiPC, (c) unannealed and
(d) annealed NPC/Phosphate, in a 3.5 wt % NaCl aqueous solution.

Table 2. Results of potentiodynamic polarization curves of AZ31B substrate, different Ni-P coating in
3.5 wt % NaCl solution.

Coating/Substrate Icorr
(×10−6 A/cm2)

Ecorr
(V vs. Sat.
Ag-AgCl)

Epore
(V vs. Sat.
Ag-AgCl)

Ip

(×10−5 A/cm2)
Porosity/% Rp/Ω ba/V

AZ31B alloy substrate 55.82 −1.52 - - - 240.84 0.083

Unannealed NPC 19.80 −1.08 - - 6.78 × 10−3 354.96 0.12

Unannealed
NPC/Phosphate 1.26 −0.61 −0.04 8.75 4.99 × 10−9 5282.61 0.027

Annealed
NPC/Phosphate 2.06 −0.53 0.29 2.03 4.76 × 10−20 6231.70 0.046

P =
Rps

Rp
× 10

−|∆Ecorr |
ba (1)

where P is the total coating porosity, Rps is the polarization resistance of the substrate alloy, Rp is the
polarization resistance of the coated alloy, ∆Ecorr is the difference in corrosion potential between the
coated alloy and the substrate, and ba is the anodic Tafel slope.

It is well known that Mg is one of the most electrochemically active metals. This means that the
EN coatings should be cathodic to the substrate, and hence they can only serve as a physical barrier
against corrosion. The remarkable potential difference between the substrate and the coated alloy will
yield pore corrosion, once cracks and pores are presented. In other words, defect-free coatings are of
special importance [33,34].

The corrosion current density (Icorr) of the NPC/Phosphate is 1.26 × 10−6 A/cm2, obviously
smaller than that of the NPC sample and bare Mg sample. In addition, it could be seen from the anodic
branch that there was a current plateau at potentials E ~−0.04 V vs. Sat. Ag-AgCl (Epore, pore potential)
for the NPC/Phosphate, showing a clear passivation behavior. Two distinct potential regimes are
evident: within the first regime from the open circuit potential to ca. −0.04 V vs. Sat. Ag-AgCl,
the current density raises very slowly and a current plateau is observed. The current density in the
plateau part (at ca. −0.04 V vs. Sat. Ag-AgCl), Ip, is about 8.75 × 10−5 A/cm2 in the 3.5 wt % NaCl
solution. Within the second regime at potential E greater than −0.04 V vs. Sat. Ag-AgCl, the current
increases rapidly with the applied potential. Samples preserve their shiny appearance up to −0.04 V
vs. Sat. Ag-AgCl. This also means that the Ni-P coating on the alloy pre-treated with phosphate
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process exhibits corrosion resistance superior to that without phosphate process, as well as the bare
Mg alloy.

As mentioned above, two main influencing factors dominate the corrosion resistance of the Mg
alloy with Ni-P coatings. One is coating density, and the other is the interfacial bonding between the
coating and the substrate. The denser the coating and the stronger the interfacial bonding, the higher
the corrosion resistance is. In present Mg alloy with Ni-P coatings, the sample derived from phosphate
treatment has an adhesion strength smaller than that without phosphate treatment, while the former
displays corrosion resistance better than the latter. This implies that the effect of coating density on the
corrosion resistance predominates over the effect of interfacial bonding in present Ni-P coating on Mg
alloy. However, the corrosion resistance of NPC/Phosphate will be further improved if the interfacial
bonding could be strengthened.

In order to increase the adhesion NPC/Phosphate, the samples were heated or annealed at 150 ◦C
for 2 h to release the internal stress. The LC measured with scratch test was evaluated to be 30 N for
the annealed NPC/Phosphate, which was much greater than its unannealed counterpart (13 N) and
also slightly greater than the NPC sample. After tuning the interface, the corrosion resistance of the
NPC/Phosphate samples was further improved. An immersion test at room temperature in 3.5 wt %
NaCl solution was additionally used to characterize the corrosion resistance and the corrosion behavior
of the unannealed and annealed NPC/Phosphate samples. The obvious appearance of etch pits were
found after 6 and 28 days for the unannealed and annealed NPC/Phosphate samples, respectively.

Surface morphologies of the unannealed NPC/Phosphate after the immersion test are shown in
Figure 6. The unannealed NPC/Phosphate showed a shiny appearance before immersion. With the
time increases, some large cracks were found to form in the coatings (Figure 6a). Besides, the coating
debonded from substrate, since the corrosion resulted in stress relief and interfacial delamination.
Once the cracks formed, penetration of the corrosive electrolyte toward the Mg substrate grew rapidly
and a strong galvanic response happened between the coating and the Mg substrate, leading to the
formation of etch pits as illustrated in Figure 6b.
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Figure 6. SEM images of unannealed NPC after immersion test showing (a) cracks, and (b) etch pits.

Evolution of surface morphologies of the annealed NPC/Phosphate during immersion test are
shown in Figure 7. The Ni-P player was firstly passivated, see Figure 7a, and then the passivation layer
was broken down and the corrosion of the Ni-P coating surface happened (Figure 7b), with a few black
spots being visibly detected on the coating surface. Once the Ni-P coating was corroded and broken,
galvanic corrosion was induced between the coating and the substrate, and the corrosion finally
happened in the substrate (Figure 7c). Figure 7d representatively shows a deep etch pit observed
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in the annealed sample after 28 days immersion. The immersion test proved that the annealed
NPC/Phosphate can effectively protect the Mg alloy from corrosion.Metals 2018, 8, x FOR PEER REVIEW  9 of 11 
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4. Conclusions

Electroless nickel plating was performed on AZ31B magnesium alloy, with different types of
pre-treatment process for comparison: with and without a phosphate process. It was found that the
phosphate process could effectively tune the interface by forming a phosphate layer on the substrate
and hence remarkably reducing the surface roughness. In particular, after an annealing treatment,
the coatings deposited on the substrate with the phosphate layer had a high density and a remarkably
improved corrosion resistance. The underlying corrosion process of the Ni-P coating with interfacial
tuning was different from those without phosphate treatment.
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