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LT-10223 Vilnius, Lithuania

* Correspondence: edmundas.zavadskas@vgtu.lt; Tel.: +370-5-2744-910

Received: 13 March 2018; Accepted: 30 April 2018; Published: 4 May 2018
����������
�������

Abstract: This study compares screw joints made of different materials, including screws of different
diameters. For that purpose, 8, 10, 12, 14, 16 mm diameter steel screws and various parts made of
aluminum (Al), steel (Stl), bronze (Brz), cast iron (CI), copper (Cu) and brass (Br) are considered.
Multiple criteria decision making (MCDM) methods such as evaluation based on distance from
average solution (EDAS), simple additive weighting (SAW), technique for order of preference by
similarity to ideal solution (TOPSIS) and complex proportional assessment (COPRAS) are utilized
to assess reliability of screw joints also considering cost issues. The entropy, criterion impact loss
(CILOS) and integrated determination of objective criteria weights (IDOCRIW) methods are utilized
to assess weights of decision criteria and find the best design alternative. Numerical results confirm
the validity of the proposed approach.

Keywords: civil engineering; bolt joint; parameters; MCDM; entropy; TOPSIS; EDAS; CILOS; IDOCRIW

1. Introduction

Screw joints are widely used [1–4] in cars, trucks, marine engines, compressors and generators,
railway track construction, aviation, industrial fans, refrigeration equipment, machine tools, presses,
instrumentation, conveyors, all types of mining machines, etc. [5–10]. The most important concerns for
screw joints performance are (i) relaxation caused by vibration; and (ii) relaxation caused by dynamic
loading, fatigue or corrosion [5]. The mechanical behavior of screw joints subject to transverse loading
was investigated in [6–8]. Bhattacharya [9] showed that transverse or shear loads are the main cause
of vibration-induced loosening. In [10], it is shown that, at high loads, there is an appropriate ratio
between screw length and diameter to prevent sliding between threads. The theoretical model of
screw joint behavior of [11,12] introduced a few more parameters besides reciprocating and rotational
degrees of freedom and considered technical characteristics of connecting elements. The effect of
contact pressure distribution was analyzed in [13]. In [14], it was found that a screw joint is relaxed
at smaller loads than expected due to the sliding of contact area. Zapico-Valle [15] presented an
experimental validation of a new statistical process control feature for damage detection. In [16,17],
screw joints excited by vibrations of different frequencies were analyzed. Laser technologies were
used in [18–20]. Izumi and Yokoyama et al. [21,22] analyzed relaxation of screw joints with spring
washers using the finite element method. In [23–32], loosening of screws of different types, geometry,
and materials, was investigated by considering various clamping forces and temperatures: relaxation
rate was related to clamping force. Friction between joint parts were investigated in [31,32] and
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connection reliability was related to friction. In [33,34], continuous wavelet analysis of mode shapes
was utilized for damage detection.

Theoretical analyses and experimental tests serve to assess reliability of screw joints, clarifying
relationships between the cost of the junction and the technical parameters of the joint. For this
reason, multiple criteria decision-making (MCDM) analysis was carried out in [35–40]. Various MCDM
methods were successfully utilized in engineering problems. For example, the analytical hierarchy
process (AHP) was used for steel bridges [41,42], energy absorption parts [43] and cold-formed
thin-walled steel structures [44]. The TOPSIS (technique for order of preference by similarity to ideal
solution) method was applied to steel constructions [45].

Welding processes were evaluated with fuzzy logic [46]. Laser cutting technological parameters
were selected with AHP-TOPSIS [47]. Thin-walled structures were evaluated with the COPRAS
(complex proportional assessment) method [48–54]. A hybrid method, AHP-COPRAS-G, was used for
designing cold-formed steel structures [55]. MCDM methods helped to select materials for a cutting
tool [56], structural materials [57–60], machine tools for changing production flow [61].

In this study, classical MCDM methods such as EDAS (evaluation based on distance from
average solution), SAW (simple additive weighting), TOPSIS and COPRAS will be used for evaluating
performance of screw joints with respect to technical and economic parameters. Furthermore, recently
developed methods for rating the importance of decision making criteria, such as CILOS (criterion
impact loss) and IDOCRIW (integrated determination of objective criteria weights), will be used in the
general context of a MCDM framework.

2. Subject of the Study

This study focusses on screw joints like that shown in Figure 1 as they are the most popular
elements used in construction. We investigate behavior of a single joint, leaving investigation of
more complex structures for future studies. The single-joint case is relevant, however, because a
rather common approach in structural design and verification is to consider the most loaded screw of
the connection.
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Figure 1. Screw joint: 1—screw, 2, 3—joint element; 4—screw-nut, h—thickness of joint elements,
d—screw diameter, P—clamping force, T—torque.

In this study, we attempted to evaluate widely used screws M8, M10, M12, M14, M16 in civil
and mechanical engineering for connecting flat elements made of different materials. The connecting
details are made of Stl, CI, Al, Brz, Br and Cu. Parameters of the compounds used for calculations are
presented in Table 1.
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Table 1. Parameters of screw joints.

Row No.
Material Elastic

Coefficient E,
MPa

Screw
Diameter,

d, mm

Friction
Coefficient

between Screw
and Element, f 1

Friction
Coefficient

between
Elements, f 2

Clamping
Force, P, N

Torque, T,
N·m

Average
Price, €

1 Al, 7 × 104

8–16

0.4 0.7

4629–19,123 7.83–63.33

1.40–5.43
2 Stl, 2.1 × 105 0.16 0.16 0.25–0.97
3 Brz, 105 0.13 0.19 4.82–18.72
4 CI, 2.1 × 105 0.3 0.5 0.27–1.07
5 Cu, 1.2 × 105 0.45 0.8 6.25–24.25
6 Br, 1.2 × 105 0.35 0.82 4.05–14.42

3. Theoretical Analysis of a Screw Joint

Different requirements for material selections and construction must be satisfied in screw joint
technology. If the joint can be disassembled during operation, joint parts are usually connected
by screws. The definition of a joint’s strength depends on the operating loads. Slipping between
connecting parts is not possible if external load is perpendicular to the bolt’s axis. The maximum
clamping force that can be transmitted by a screw joint is [62]

P = 0.6P( f1 + f2), (1)

where 0.6 is the average value of the knockdown factor; P is the clamping force (expressed in Newtons);
f 1 is the coefficient of friction between the nut and the component; f 2 is the coefficient of friction
between the joint components.

Another requirement for reliability of the threaded connection is to ensure a good contact between
joint components. The possibility that joint dismantles depends on the flexibility of screws and joint
components. The separation force is [62]

Fat =
P

ν(1− χ) , (2)

where χ = λd
λd + λν

; λd is flexibility of joint components, λν is flexibility of screw stretching.

If the thickness of joint components is close to the screw’s diameter, it holds, λd = 0.82
Ed

, λν = 1.27
Ep

,
where Ed and Ep, respectively, are the values of elastic modulus of joint parts and screw (usually, steel
for the latter).

When the external load is oriented perpendicular to the bolt’s axis, the rationale of the screw
joint is the following: the equality between the bolt’s resistance to cutting and resistance of the joint
components to crumpling. The details are crumpled when the transverse force exceeds the permissible
shear force (1). Consequently, the minimum thickness of the joint components is [62]

hmin =
FS

σadm,ql
, (3)

where σadm,ql is the adhesion strength of joint parts.
The joint can be preliminarily designed using the following equation [62]:

σadm,ql = 0.45σadm, (4)

where σadm is the allowable tensile limit of the material.
Screw joints are also used for joining components subject to bending. Due to the normal

tensions in the joint parts directed in opposite directions, the joint components can push one another.
The maximum bending stress in case of non-slipping of the parts is [62]
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σmax =
6Ml

bh2 , (5)

where Ml is the bending moment working on the anchorage, b is the width of the joint components,
h is the total thickness of the joint components.

When the joint components are of the same thickness (h/2), the following relationship can be
used for each detail [62]:

Ft ≤
6
4

Ml
h

. (6)

The slipping of joint parts does not occur if (7) holds [62]:

Ft ≤ Ff = P f2, (7)

where P and f 2 are those defined for Equation (1).
The condition of prevention of slipping of the components can be expressed by the relative

internal bending stress divided by the integral thickness of the parts of the joint [62]:

Ml
h

=
4P f2

9

(
Nm
mm

)
. (8)

The strength of the joint is ensured by the tightening force created by the screw in the nut.
Tightening strength of the joint P is determined by the allowable stress of the screw material. Then,
the torque is defined as [62]

T = 0.5× 10−3Pd(
1
π
× s

d
+

D
d

f1 +
dm

d
f3), (9)

where d is the diameter of the thread; s is the step of the thread; D is the diameter of the nut of the
supporting surface (D = 1.3d); dm is the average diameter of the thread; the coefficient of friction f 1

between the nut and the detail (when both are made of steel) was accepted to be 0.16; f3 = f1
cos 30◦ is

the coefficient of friction between the screw and the nut of the threaded surfaces.
Output quantities of Equations (1)–(9) provide entries for the decision matrix (10).

4. The Multiple Criteria Evaluation

Some multiple criteria methods were used for evaluating the combinations of technical and
economic parameters of screw joints: EDAS [63], SAW [64], TOPSIS [64] and COPRAS [65].
The following methods for assessing importance weight of criteria were used: entropy, the criterion
loss method CILOS for the determination of weighting criteria and the integrating IDOCRIW
method [66]. Combination of various methods with different logic for making quantitative evaluations
allows smoothing over distortions introduced by intrinsic data transformations in each MCDM
method [67–70].

4.1. The EDAS Method

The EDAS method discerns alternatives based on the distance from the average solution [63].
Two measures for calculating the cumulative criterion of the method are used. The first measure is
the positive distance from the average solution (PD), and the second is the negative distance from the
average solution (ND). Evaluation of the alternatives is made according to higher values of PD and
lower values of ND. The steps for using the EDAS method are as follows:

Step 1: The decision matrix (R) is constructed:

R = ‖rij‖. (10)

The matrix is presented in Table 2. This decision matrix will also be used in other MCDM methods.
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Step 2: The vector of weights is created:

Ω = (ωj), (11)

where i = 1, 2, . . . , n; j = 1, 2, . . . , m; m—the number of criteria; n—the number of options compared [63].
Step 3: The average solution is calculated:

AVj =
n

∑
i=1

rij/n. (12)

Step 4: Positive distances from average (PD) and the negative distances from the average solution
(ND) are calculated for the maximizing criteria:

PDij =
max(0, (rij −AVj))

AVj
, (13)

NDij =
max(0, (AVj − rij))

AVj
, (14)

and for the minimizing criteria:

PDij =
max(0, (AVj − rij))

AVj
, (15)

NDij =
max(0, (rij −AVj))

AVj
, (16)

where PDij and NDij denote the positive and negative distance of the i-th alternative from the average
solution in terms of j-th criterion, respectively.

Step 5: The weighted sum of PD and ND is calculated for all alternatives:

SPi =
m

∑
j=1
ωj · PDij, (17)

SNi =
m

∑
j=1
ωj ·NDij, (18)

whereωj is the weight of j-th criterion.
Step 6: Values of SP and SN are normalized for all alternatives:

NSPi =
SPi

maxiSPi
, (19)

NSNi = 1− SNi
maxiSNi

. (20)

Step 7: The cumulative criterion AS of the EDAS method is calculated for all alternatives:

ASi =
1
2
(NSPi + NSNi), (21)

where 0 ≤ ASi ≤ 1.

4.2. The SAW Method

The basic idea behind the MCDM methods is to combine values of criteria and weights to obtain
a single cumulative criterion for evaluation of the method. The most common example is the SAW
method [64], where the method’s cumulative criterion Si is calculated as
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Si = ∑m
j=1wj r̃ij

, (22)

where wj are weights of the j-th criterion and r̃ij are normalized (dimensionless) values of the j-th
criterion for the i-th alternative:

r̃ij =
rij

∑n
i=1 rij

. (23)

4.3. The TOPSIS Method

The TOPSIS method is characterized by the use of vector normalization [64] and by its specific
features described in [71] which allow using it for making an evaluation of a single alternative:

r̃ij =
rij√
n
∑

i=1
r2

ij

(i = 1, . . . , n; j = 1, . . . , m), (24)

where r̃ij are normalized values of j-th criterion for i-th alternative.
The best alternative V∗ and the worst alternative V− are determined as

V∗ = {V∗1 , V∗2 , . . . , V∗m} = {(max
i
ωj r̃ij/j ∈ J1), (min

i
ωj r̃ij/j ∈ J2)}, (25)

V− =
{

V−1 , V−2 , . . . , V−m
}
=

{
(min

i
ωj r̃ij/j ∈ J1), (max

i
ωj r̃ij/j ∈ J2)

}
, (26)

where J1 is a set of indices of the maximized criteria, J2 is a set of indices of the minimized criteria.
The distance D∗i of every considered alternative to the ideal (best) solution and its distance

D−i from the worst solution are calculated (27):

D∗i =

√√√√ m

∑
j=1

(ωj r̃ij −V∗j )
2, (27)

D−i =

√√√√ m

∑
j=1

(ωj r̃ij −V−j )
2. (28)

The criterion C∗i of the TOPSIS method is determined:

C∗i =
D−i

D∗i + D−i
(i = 1, . . . , n), (29)

(0 ≤ C∗i ≤ 1).
The largest value of the criterion C∗i corresponds to the best alternative.

4.4. The COPRAS Method

The Zi criterion of the COPRAS method is determined as [65]

Zi = S+i +

n
∑

i=1
S−i

S−i
n
∑

i=1

1
S−i

, (30)
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where S+i =
m
∑

j=1
ωj r̃+ij is the sum of the weighted values of the maximized criteria r̃+ij,

S−i =
m
∑

j=1
ωj r̃−ij. The same applies for the minimizing criteria.

In order to compute values of the Zi criterion, input data are normalized using Equation (23).

4.5. Methods for Determining the Weights of the Criteria

4.5.1. The Entropy Method

The entropy method was proposed by Claude E. Shannon in [72]. Entropy weights are defined as
follows [64,66]:

1. The values of criteria are normalized as

r̃ij =
rij

∑n
i=1 rij

. (31)

2. The entropy level of each criterion is calculated as follows:

Ej = −
1

ln n ∑n
i=1r̃ij · ln r̃ij, (j = 1, 2, . . . , m; 0 ≤ Ej ≤ 1). (32)

3. The variation level of each criterion is calculated:

dj = 1− Ej, (33)

4. Entropy weights are calculated by normalizing values dj:

Wj =
dj

∑m
j=1 dj

. (34)

Entropy weights reflect the structure of data revealing the degree of non-homogeneity of data.
Weights of homogeneous data (when the values of the criteria do not differ considerably) for a certain
criterion obtained by the entropy method [66] should be close to zero and would have only a minor
influence on the results of evaluation. The largest weight of a criterion obtained from entropy method
corresponds to the criterion with the highest rate of data inhomogeneity.

4.5.2. Method of Criterion Impact Loss—CILOS

In this method, impact loss is measured and objective weights are determined based on this
measurement [60,73]. The method evaluates the loss of impact for each criterion until one of the
remaining criteria acquires the optimum—the maximum or the minimum value. The algorithm of the
method, formalization, description and application has been presented in [66]. The logic of the method
of criteria significance loss, its basic ideas, stages and implementation steps are as follows.

The method can be applied only to the maximizing criteria, therefore minimizing criteria are to
be transformed into the maximizing ones. There could be different transformations for this purpose.
The inverse transformation was applied:

rij =
minirij

rij
. (35)

The new matrix with transformed minimizing values and the same maximizing values is
denoted as X = ‖xij‖. The maximum values for each column (i.e., each criterion) are calculated:
xj = maxixij = xkj j, where kj is the number of the row of j-th column hosting the largest value,
is obtained.
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A square matrix A = ‖aij‖ is formed from values of kj rows of the X matrix. xki j correspond to
the maximum values of i-th criterion: ajj = xj, aij = xki j (i,j = 1, 2, . . . , m; m—number of criteria).

A matrix P = ‖pij‖ of the relative losses is created:

pij =
xj − aij

xj
. (pii = 0; i, j = 1, 2, . . . , m). (36)

Elements pij of P matrix show the loss of alternative relatively to the j-th criterion, if the i-th
criterion is selected as the best.

Weights q = (q1, q2, . . . , qm) can be determined by solving the linear system:

F · q = 0, (37)

where, the matrix F is as follows:

F =


−∑m

i=1 pi1 p12 · · · p1m
p21 −∑m

i=1 pi2 · · · p2m
...

...
. . .

...
pm1 pm2 · · · −∑m

i=1 pim

. (38)

The method based on the criterion significance loss offsets the drawback of the entropy method.
Thus, when the values of a criterion do not considerably differ, the element spij of the matrix P of
relative loss of criterion impact (36) becomes close to zero, while the respective criterion weight
increases and has a strong impact on the evaluation. If data are homogeneous, when values of a
criterion are similar for all alternatives, all relative losses of the criterion, as well as its total loss,
become close to zero. Consequently, the linear system of Equation (37) loose of significance because
one column of elements in matrix P is close to zero.

4.5.3. Aggregate Objective Weights (IDOCRIW Method)

Using the idea of comprising different weights of significance obtained by different
methods [64,74,75], the entropy weights Wj [64], and weights qj of criteria impact loss [74] into a
single overall weight, the ultimate weightsωj for the evaluation are obtained:

ωj =
qjWj

∑m
j=1 qjWj

(39)

The method of obtaining such ultimate weights is called Integrated determination of objective
criteria weights (IDOCRIW) [66].

These weights incorporate both deviation of particular values of criteria (entropy characteristic)
and with relative losses of impact (36). Therefore, extreme possible values obtained by the entropy
method are compensated by the CILOS method.

Calculated weights of the entropy and criteria loss of impact are combined into aggregated
weights and then are used in multiple criteria assessment for ranking options and for selecting the
best alternative.

5. Results and Discussion

5.1. Results of Theoretical Analysis of Screw Joints

Results of theoretical analysis carried out on screw joints are presented in Table 2. The values
listed in the table are obtained from Equations (1)–(9).
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Table 2. Results of evaluation of screw joints.

Trial
Young’s

Modulus E,
MPa

Screw
Diameter,

d, mm

Friction
Coefficient

between Screw
and Elements, f 1

Friction
Coefficient

between
Elements, f 2

Clamping
Force P, N

Torque,
T, N·m

Limit
Shear

Force Fs, N

Limit
Abruption
Force Fat, N

Minimal Thickness
of Connected

Elements, h, mm

Limit Relative
Bending Stress,

Nm/mm

Average
Price, €

ω1 ω2 ω3 ω4 ω5 ω6 ω7

1 Al, 7 × 104

8

0.4 0.7

4629 7834

3055 6827 9.93 1.851 1.40
2 Stl, 2.1 × 105 0.16 0.16 889 5904 0.398 0.329 0.25
3 Brz, 105 0.13 0.19 807 6341 1.64 0.329 4.82
4 CI, 2.1 × 105 0.3 0.5 2221 5904 4.11 1.027 0.27
5 Cu, 1.2 × 105 0.45 0.8 3471 7035 4.38 1.643 6.25
6 Br, 1.2 × 105 0.35 0.82 3523 4903 1.99 1.687 4.05

1 Al, 7 × 104

10

0.4 0.7

7423 15,663

4899 10,492 12.73 2.968 2.46
2 Stl, 2.1 × 105 0.16 0.16 1425 9427 0.51 0.527 0.44
3 Brz, 105 0.13 0.19 1291 9427 2.10 0.527 8.49
4 CI, 2.1 × 105 0.3 0.5 3563 9427 5.27 1.647 0.48
5 Cu, 1.2 × 105 0.45 0.8 5567 11,283 5.62 2.635 11.0
6 Br, 1.2 × 105 0.35 0.82 5611 7861 2.55 2.710 7.13

1 Al, 7 × 104

12

0.4 0.7

10,008 25,220

6605 14,752 14.30 3.113 3.75
2 Stl, 2.1 × 105 0.16 0.16 1921 12,710 0.576 0.71 0.67
3 Brz, 105 0.13 0.19 1741 12,710 2.36 0.710 12.93
4 CI, 2.1 × 105 0.3 0.5 4804 12,710 5.92 2.22 0.73
5 Cu, 1.2 × 105 0.45 0.8 7506 15,212 6.31 3.552 16.75
6 Br, 1.2 × 105 0.35 0.82 7026 10,060 2.87 3.643 10.85

1 Al, 7 × 104

14

0.4 0.7

14,362 42,124

9479 21,169 17.60 4.446 4.98
2 Stl, 2.1 × 105 0.16 0.16 2757 18,240 0.709 1.019 0.89
3 Brz, 105 0.13 0.19 2498 18,239 2.91 1.0197 17.18
4 CI, 2.1 × 105 0.3 0.5 6862 18,240 7.29 3.188 0.98
5 Cu, 1.2 × 105 0.45 0.8 10,771 21,830 7.77 5.098 22.25
6 Br, 1.2 × 105 0.35 0.82 10,082 15,209 3.53 5.228 14.42

1 Al, 7 × 104

16

0.4 0.7

19,123 63,335

12,621 28,187 20.51 5.947 5.43
2 Stl, 2.1 × 105 0.16 0.16 3672 24,286 0.826 1.358 0.97
3 Brz, 105 0.13 0.19 3327 26,007 3.39 1.357 18.72
4 CI, 2.1 × 105 0.3 0.5 9179 24,286 8.49 4.245 1.07
5 Cu, 1.2 × 105 0.45 0.8 13,842 39,641 9.05 6.788 24.25
6 Br, 1.2 × 105 0.35 0.82 14,024 20,251 4.11 6.960 14.42
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5.2. Assessment of Results and Analysis

The results of theoretical evaluation of screw joints (Table 2) are analyzed using multiple criteria
analytical methods: EDAS, TOPSIS, COPRAS and SAW. All variants are evaluated twice: using seven
criteria (with price) and using six criteria (without price). All calculations are performed with the
aggregate IDOCRIW weights.

The results obtained using all seven criteria are presented in Tables 3–7.
The weights of decision criteria resulting from the entropy method are computed with

Equations (31)–(34). They are presented in Table 3.

Table 3. Weights of decision criteria determined with the entropy method.

Screw Diameter, d, mm
Weights

ω1 ω2 ω3 ω4 ω5 ω6 ω7

8 0.067 0.119 0.105 0.005 0.256 0.139 0.310
10 0.067 0.119 0.105 0.005 0.256 0.139 0.309
12 0.068 0.120 0.103 0.007 0.259 0.130 0.314
14 0.068 0.120 0.103 0.005 0.259 0.130 0.314
16 0.067 0.119 0.102 0.019 0.256 0.128 0.310

The weights of decision criteria resulting from the CILOS method are computed with
Equations (35)–(38). They are presented in Table 4.

Table 4. Weights of decision criteria determined with the criterion impact loss (CILOS) method.

Screw Diameter, d, mm
Weights

ω1 ω2 ω3 ω4 ω5 ω6 ω7

8 0.116 0.158 0.172 0.224 0.107 0.123 0.101
10 0.117 0.157 0.174 0.214 0.108 0.127 0.102
12 0.118 0.170 1.127 0.204 0.110 0.170 0.100
14 0.117 0.166 0.125 0.217 0.109 0.166 0.099
16 0.120 0.172 0.190 0.105 0.127 0.172 0.113

The weights of decision making criteria resulting from the IDOCRIW method are computed with
Equation (39) and are presented in Table 5.

Table 5. Weights of decision criteria determined with the integrated determination of objective criteria
weights (IDOCRIW) method.

Screw Diameter, d, mm
Weights

ω1 ω2 ω3 ω4 ω5 ω6 ω7

8 0.064 0.154 0.149 0.010 0.225 0.140 0.258
10 0.064 0.152 0.149 0.008 0.225 0.144 0.258
12 0.064 0.163 0.104 0.011 0.229 0.176 0.252
14 0.065 0.163 0.105 0.010 0.230 0.175 0.253
16 0.058 0.146 0.139 0.014 0.233 0.158 0.252

Joints including parts made of different materials and screws of different diameters are evaluated
with the EDAS, TOPSIS, COPRAS and SAW multiple criteria methods including generalized IDOCRIW
weights. For example, Table 6 shows the results of the evaluation carried out for the joints with 8 mm
diameter screws.
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Table 6. Comparison of screwing joints made of different materials by multiple criteria methods
(case d = 8 mm). EDAS: evaluation based on distance from average solution; TOPSIS: technique for
order of preference by similarity to ideal solution; COPRAS: complex proportional assessment; SAW:
simple additive weighting.

Ranks (Al),
E, 7 × 104

(Stl),
E, 2.1 × 105

(Brz),
E, 105

(CI),
E, 2.1 × 105

(Cu),
E, 1.2 × 105

(Br),
E, 1.2 × 105

EDAS
0.524 0.678 0.145 0.717 0.444 0.786

4 3 6 2 5 1

TOPSIS
0.4862 0.6805 0.4778 0.6977 0.4490 0.6357

4 2 5 1 6 3

COPRAS
0.1416 0.3588 0.0594 0.1375 0.1458 0.1570

4 1 6 5 3 2

SAW
0.1463 0.2802 0.0695 0.2001 0.1442 0.1597

4 1 6 2 5 3

Sum rank 16 7 23 10 19 9

Total rank 4 1 6 3 5 2

Comparing the results obtained by the different methods of multiple criteria analyses, it can be
observed that, depending on the screw diameter, the joints are ranked in a different way. Generally,
the first rank is attained by the Stl joint, although the EDAS method ranked the brass joint as first.

Evaluation results for the other screw diameters are presented in Table 7.

Table 7. Ranking of joints with parts made of different materials connected by 10 to 16 mm diameter
screws (cost included) (cases d = 10, 12, 14, 16 mm).

Screw Diameter,
d, mm

(Al),
E, 7 × 104

(Stl),
E, 2.1 × 105

(Brz),
E, 105

(CI),
E, 2.1 × 105

(Cu),
E, 1.2 × 105

(Br),
E, 1.2 × 105

10 4 1 6 3 5 2
12 5 1 6 2–3 4 2–3
14 5 1 6 2–3 4 2–3
16 5 1 6 2–3 4 2–3

The results show that the best variant, after incorporating the price criterion into the evaluation,
appears to be Stl irrespective of the diameters of the screws. Furthermore, the worst variant is a joint
made of Brz.

The average price of the material of the joint (the seventh evaluation criterion of screw) has
significant influence on the evaluation. All calculations were repeated without considering the cost of
the joint material criterion. Weights determined with the entropy, CILOS and IDOCRIW methods were
calculated using only 6 criteria, Equations (31)–(39). The weights obtained by the IDOCRIW method
are provided in Table 8.

Table 8. Weights of decision criteria determined with the IDOCRIW method (cost criterion omitted).

Screw Diameter, d, mm
Weights

ω1 ω2 ω3 ω4 ω5 ω6

8 0.072 0.212 0.207 0.009 0.296 0.204
10 0.072 0.208 0.207 0.007 0.296 0.210
12 0.072 0.233 0.135 0.009 0299 0.251
14 0.072 0.233 0.136 0.008 0.301 0.251
16 0.061 0.205 0.196 0.012 0.305 0.221



Metals 2018, 8, 318 12 of 16

Now, the EDAS, TOPSIS, COPRAS and SAW multiple criteria methods with generalized
IDOCRIW weights will be applied to joints of all diameters, but omitting the price criterion. The results
of such evaluation of the joints with screws of d = 8 mm diameter are presented in Table 9.

Table 9. Multiple criteria method-based evaluation of 8 mm diameter screw joints made of different
materials (price omitted) (d = 8 mm).

Ranks (Al),
E, 7 × 104

(Stl),
E, 2.1 × 105

(Brz),
E, 105

(CI),
E, 2.1 × 105

(Cu),
E, 1.2 × 105

(Br),
E, 1.2 × 105

EDAS
0.303 0.316 0.210 0.428 0.807 0.998

5 4 6 3 2 1

TOPSIS
0.3815 0.5918 0.5543 0.5727 0.6752 0.8577

6 4 5 3 2 1

COPRAS
0.1719 0.2187 0.0842 0.1275 0.1897 0.2079

4 1 6 5 3 2

SAW
0.1719 0.2187 0.0842 0.1275 0.1897 0.2079

4 1 6 5 3 2

Sum rank 19 10 23 16 10 6

Total rank 5 3 6 4 2 1

Differences between the results with the price and without the price are observed. If cost is
included in the analysis, the steel joint is the best design concept, followed by brass and cast-iron joints;
the bronze joint is the worst design. Conversely, if cost is not considered, the brass joint is the best
design concept, followed by copper and steel joints; bronze is again the worst design. Consequently,
it can be observed that a single parameter such as the price makes a considerable influence on
distribution ranks of screw joints in the multiple criteria analysis. More details on triangulation tools
in MCDM are given in [76].

Similarly, applying the EDAS, TOPSIS, COPRAS and SAW multiple criteria methods with
generalized IDOCRIW weights joints with screws of d = 10, 12, 14, 16 mm, omitting the price criterion,
are compared.

Table 10 presents the evaluation results for the other screw diameters of 10, 12, 14 and 16 mm,
yet without considering cost.

Table 10. Ranking of joints with parts made of different materials connected by 10 to 16 mm diameter
screws (cost not included).

Screw Diameter,
d, mm

(Al),
E, 7 × 104

(Stl),
E, 2.1 × 105

(Brz),
E, 105

(CI),
E, 2.1 × 105

(Cu),
E, 1.2 × 105

(Br),
E, 1.2 × 105

10 5 3 6 4 2 1
12 5 3 6 4 2 1
14 5 3 6 4 2 1
16 4–5 3 6 4–5 2 1

Multiple criteria evaluation based only on technical parameters (i.e., regardless of cost) indicated
that the best choice is to use brass joints, while the worst design is the bronze joint. If cost is included
in the analysis, steel joints are the best design concept while bronze joints take again the last rank.
The same conclusion was obtained by all EDAS, COPRAS and SAW methods used in the evaluation.

The results show that the price has a significant influence on the choice of the variant.
A decision-maker may decide to account for cost effects or even avoid selecting joint material.

The cost of screw joints may greatly affect the global cost of a designed component. This study
proved that it is possible to obtain a satisfactory solution using multiple criteria analysis of screw
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joints that encompasses both technical and economic factors. This would lead to reducing cost of the
final product.

Since screw joints are used in almost all modern machines, the results obtained in this study may
be very useful for the design stage of screw joints in civil and mechanical engineering.

6. Conclusions

Various screw joints were evaluated by MCDM methods using two sets of criteria. The first set
included only technical parameters of screw joints, while in the second set, the price together with
technical criteria was used.

The multiple criteria evaluation indicated that cost should have a significant impact on the
selection of best screw joint.

Evaluation based on technical parameters only was carried out using four multiple criteria
methods: SAW, TOPSIS, COPRAS and EDAS. It was found that the brass joint is the best choice while
the worst option is the bronze joint.

If cost is included in the analysis, steel joints are the best design concept regardless of the diameter
of the screw, while bronze joints are again the worst design.

The present results confirm that MCDM methods can be applied to engineering design problems
including reliability and rationality aspects.

Since it was not possible to assign weights using only expert opinions, the entropy method and
the more recently developed CILOS IDOCRIW methods were utilized in order to objectively assign
weights to different criterions.

The proposed approach appears to be general and suited for a wide range of technical and
technological problems.
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