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Abstract: Fabrication of Fe3Al–TiB2–Al2O3 composites with a broad range of phase compositions
was studied by combustion synthesis involving aluminothermic reduction of oxide precursors.
Two reaction systems composed of elemental Fe, amorphous boron, and a thermite mixture of
Fe2O3/TiO2/Al were conducted in the mode of self-propagating high-temperature synthesis (SHS).
One was to produce the composites of 1.25Fe3Al + xTiB2 + Al2O3 with x = 0.3–1.0. The other
was to fabricate the products of yFe3Al + 0.6TiB2 + Al2O3 with y = 1.0–1.6. Reduction of Fe2O3

by Al acted as an initiation step to activate the SHS process. Complete phase conversion from
the reactants to Fe3Al–TiB2–Al2O3 composites was achieved. The variation of combustion front
velocity with sample stoichiometry was consistent with that of the reaction exothermicity. Based on
combustion wave kinetics, the activation energy of Ea = 86.8 kJ/mol was determined for formation
of the Fe3Al–TiB2–Al2O3 composite through the thermite-based SHS reaction. In addition, with an
increase in TiB2, the fracture toughness of the 1.25Fe3Al + xTiB2 + Al2O3 composite was found to
increase from 5.32 to 7.92 MPa·m1/2.
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1. Introduction

The iron aluminides Fe3Al and FeAl have been of significant importance for high-temperature
structural and coating applications due to their low cost, low density, relatively high melting point,
high electrical resistivity, and good oxidation, corrosion, and sulfidation resistance. However, they
exhibit low ductility and brittle fracture at ambient temperatures [1–3]. Efforts to strengthen iron
aluminides showed that the room-temperature strength and wear resistance of Fe3Al were greatly
improved by incorporating hard carbide or boride particles (such as TiC, WC, TiB2, and ZrB2) [4–7].
Also, oxide ceramics are effective in reinforcing iron aluminides. The addition of Al2O3 and ZrO2

particles can enhance the high-temperature strength of Fe3Al without compromising its oxidation
resistance [8–11].

A variety of processing techniques have been employed to fabricate iron aluminide–ceramic
composites, including liquid-phase sintering [4], hot pressing [8,9], mechanochemical synthesis [10],
solid-state displacement reactions [11], and combustion synthesis in the modes of self-propagating
high-temperature synthesis (SHS) [12] and thermal explosion [13]. Among them, the SHS method takes
advantage of highly exothermic reactions, and hence has the merits of a low energy requirement, a short
reaction time, inexpensive equipment, simplicity of operation, and a structural and functional diversity
of final products [14–16]. When combined with a thermite reaction using Al as the reducing agent,
combustion synthesis represents an in situ fabrication route to prepare Al2O3-reinforced intermetallics
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and ceramics [12,13,17,18]. Moreover, aluminothermic reduction of metal oxides is thermally beneficial
for the SHS process.

Preparation of transition-metal aluminides of the Ni–Al and Ti–Al systems has been studied by the
classical SHS method using elemental powder compacts of their corresponding stoichoimetries [19–21].
However, direct combustion between Fe and Al powders in a compressed form to produce Fe3Al and
FeAl is not feasible because of their low formation enthalpies or high activation energy barrier. As a
result, few related studies on combustion synthesis of iron aluminides are available. According to
Sharifitabar et al. [12], TiC/Al2O3-added Fe3Al was produced by combustion synthesis in the SHS
mode from a 3TiO2 + 4Al + 3C exothermic mixture with an addition of Fe. Liu et al. [13] obtained
FeAl/Al2O3 composites from a reactant mixture made up of Fe, Al, and Fe2O3 by thermal explosion of
combustion synthesis. The ignition temperatures were between 639 and 648 ◦C and the products were
highly porous [13].

This study aims to investigate in situ formation of TiB2/Al2O3-reinforced Fe3Al composites by
the SHS method involving aluminothermic reduction of Fe2O3 and TiO2. In addition to the thermite
reagents, the starting materials included elemental iron and amorphous boron powders. Effects of
TiB2 and Fe3Al contents on combustion characteristics were studied. The activation energy of the
Fe2O3–TiO2–Al–Fe–B combustion system was deduced from the measured combustion wave velocity
and temperature. Moreover, the strengthening effect of TiB2/Al2O3 on Fe3Al was examined.

2. Materials and Methods

The starting materials of this study included Fe2O3 (Alfa Aesar Co., <45 µm, 99.5%, Ward Hill,
MA, USA), TiO2 (Alfa Aesar Co., 1–2 µm, 99.5%), Al (Showa Chemical Co., <45 µm, 99.9%, Tokyo,
Japan), Fe (Alfa Aesar Co., <45 µm, 99.5%), and amorphous boron (Noah Technologies Corp., <1 µm,
92%, San Antonio, TX, USA). Two combustion systems adopting TiO2, Fe2O3, and Al as the thermite
reagents were prepared. Reaction (1) has a variable molar ratio of TiO2 to Fe2O3 and is to produce
Fe3Al–TiB2–Al2O3 composites with different contents of TiB2. On the other hand, the molar proportion
between the two oxide precursors is fixed and equal to unity in Reaction (2) and the resulting
composites contain different amounts of Fe3Al.
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where the stoichiometric coefficients, x and y, signify the molar contents of TiB2 and Fe3Al formed
in Fe3Al/TiB2/Al2O3 composites based upon Reactions (1) and (2), respectively. Reactant mixtures
were formulated with 0.3 ≤ x ≤ 1.0 in Reaction (1) and 1.0 ≤ y ≤ 1.6 in Reaction (2) to attain stable and
self-sustaining combustion.

The reactant powders were well-mixed and compressed into cylindrical samples that were 7 mm
in diameter, 12 mm in length, and had a relative density of 60%. The SHS reaction was conducted in a
windowed stainless-steel chamber under high purity argon (99.99%) of 0.15 MPa. The combustion wave
velocity (Vf) was deduced from the time sequence of recorded images. The combustion temperature
(Tc) was measured by a fine-wire (125 µm) Pt/Pt-13%Rh thermocouple attached on the sample surface.
Phase constituents of the final product were identified by carrying out phase analyses based on the
measured powder X-ray diffraction patterns (Bruker D2) using CuKα radiation with λ = 1.5406 Å.
The measured XRD patterns were corrected against an external silicon standard. FullProf software
(FullProf, Saclay, France) was used for the processing of the data and analyses of the X-ray diffraction
patterns. The FullProf program has been mainly developed for the Rietveld analysis of neutron
(constant wavelength, time of flight, and nuclear and magnetic scattering) or X-ray powder diffraction
data collected at a constant or variable step in scattering angle 2θ [22,23]. The program can be used as
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a profile matching (or pattern decomposition using the Le Bail method) tool without knowledge of
the structure. Single crystal refinement can also be performed alone or in combination with powder
data [23]. The microstructure of the synthesized product was examined under a scanning electron
microscope (SEM) (Hitachi, S3000H, Tokyo, Japan) and elemental analysis was performed by energy
dispersive spectroscopy (EDS) (Hitachi, S3000H, Tokyo, Japan). The fracture toughness (KIC) of the
SHS-derived composite was determined by the indentation method [24]. Details of the experimental
methods were previously reported [25].

3. Results and Discussion

3.1. Self-Propagating Combustion Characteristics and Kinetics

Figure 1 presents a typical combustion sequence recorded from the sample of Reaction (1) with
x = 0.5. It is evident that upon ignition a distinct combustion wave forms and propagates over the
starting reactant compact in a self-sustaining manner. Namely, the synthesis reaction proceeds in a
form of combustion wave and yields the final product progressively without requiring additional
heat. It took about t = 1.8 s for the combustion wave to arrive at the bottom of the sample. With an
optically superimposed scale on the left-hand side of each image, the flame-front propagation velocity
was determined.
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Figure 1. A time sequence of self-propagating combustion images recorded from a powder compact of
Reaction (1) with x = 0.5.

It is useful to note that the thermite reaction of Fe2O3 + 2Al (∆H = –852.3 kJ and Tad = 3622 K) is
much more exothermic than that of 1.5TiO2 + 2Al (∆H = –258.7 kJ and Tad = 1799 K) [26,27]. Therefore,
the reaction exothermicity of overall aluminothermic reduction decreases with the increase of x in
Reaction (1). It was found in this study that due most likely to insufficient reaction exothermicity,
combustion ceased to proceed in Reaction (1) with x > 1.0. On the contrary, violent combustion
accompanying massive melting of the sample occurred in Reaction (1) with x < 0.3, which made both
experimental measurement and product recovery difficult.

In Reaction (2), the increase of Fe and Al (i.e., the coefficient y) for the production of more Fe3Al
imposes a dilution effect on combustion, because the formation enthalpy of Fe3Al (∆Hf = –67 kJ/mol)
is much lower than those of TiB2 (∆Hf = –315.9 kJ/mol) and Al2O3 (∆Hf = –1675.7 kJ/mol) [1,27].
The combustibility limit of Reaction (2) was found at y = 1.6, beyond which no combustion can
be triggered.

For both combustion systems, formation of the Fe3Al–TiB2–Al2O3 composite proceeds in three
consecutive stages [26]. Reduction of Fe2O3 by Al to produce Fe and Al2O3 is believed to be the
initiation step, which is followed by aluminothermic reduction of TiO2. Then, the interactions of Fe
with Al and Ti with B respectively yield Fe3Al and TiB2.

Variations of the flame-front velocity of Reactions (1) and (2) are shown in Figure 2 with respect
to their corresponding stoichiometric coefficients x and y. As revealed in Figure 2, the combustion
front velocity of Reaction (1) first increases with x, approaches to a maximum of about 5.88 mm/s
at x = 0.6, and then decreases with a further increase in x. This is because the influence of the
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sample stoichiometry of Reaction (1) on combustion velocity is attributed to two competing factors.
With the increase of x, the amount of TiO2 increases but that of Fe2O3 deceases in the starting mixture,
thus resulting in a decline in reaction exothermicity of the overall aluminothermic reduction. On the
other hand, the content of TiB2 formed in the product increases as the coefficient x rises and TiB2 is
a highly exothermic phase with ∆Hf = –315.9 kJ/mol [27]. The observation in Figure 2 for Reaction
(1) implies that the latter concern governs when the sample stoichiometry varies from x = 0.3 to 0.6,
beyond which the former factor becomes dominant. As a result, the flame-front velocity dropped to
around 1.02 mm/s at x = 1.0.
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Figure 2. Effects of stoichiometric coefficients (x and y) on flame-front velocities of Reactions (1) and (2)
for combustion synthesis of Fe3Al–TiB2–Al2O3 composites.

Figure 2 also points out that the combustion wave speed of Reaction (2) decreases with increasing
y value. The increase of y in Reaction (2) is to enlarge the content of Fe3Al formed from metallic Fe and
Al without varying the composition of thermite reagents and the amount of TiB2. As mentioned above,
the formation enthalpy of Fe3Al is relatively low in comparison to that of TiB2 and the heat released
from the reduction of Fe2O3 and TiO2 by Al. Therefore, the increase of y from 1.0 to 1.6 reduced the
overall combustion exothermicity of Reaction (2) and led to deceleration of the combustion wave from
6.23 to 1.69 mm/s.

Typical combustion temperature profiles recorded from the powder compacts of Reactions (1)
and (2) with different stoichiometries are depicted in Figure 3. The abrupt rise in temperature signifies
a rapid arrival of the combustion wave and the peak value corresponds to the combustion front
temperature. After the passage of the combustion wave, an appreciable temperature drop is a
consequence of heat loss to the surroundings. Profiles #1, #2, and #3 in Figure 3 are associated
with Reaction (1) with x = 0.3, 0.6, and 0.8 and their peak temperatures are 1157, 1514, and 1277 ◦C,
respectively. This suggests that the variation of combustion front temperature of Reaction (1) with
TiB2 content is in a manner consistent with that of flame-front velocity. For Reaction (1), the highest
combustion front temperature of 1514 ◦C was detected from the sample of x = 0.6.
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Figure 3. Variations of combustion temperature with TiB2 and Fe3Al contents of Fe3Al–TiB2–Al2O3

composites synthesized by self-propagating high-temperature synthesis (SHS) involving reduction reactions.

Profiles #4 and #5 were measured from Reaction (2) with y = 1.4 and 1.6, respectively. It is evident
that the increase of Fe3Al lowers the reaction temperature, which is in agreement with its effect on
combustion wave velocity. For Reaction (2), the lowest combustion front temperature was around
1061 ◦C as the sample produced the maximum amount of Fe3Al (i.e., y = 1.6). The highest temperature,
reaching up to 1524 ◦C, was observed in the sample of y = 1.0.

The apparent activation energy (Ea) of the solid-state combustion reaction can be deduced by
realizing the dependence of flame-front velocity on combustion temperature [28]. Figure 4 depicts
a plot correlating ln(Vf/Tc)2 with 1/Tc from both Reactions (1) and (2). According to the slope of
a best-fitted straight line for the data, Ea = 86.8 kJ/mol was determined for in situ formation of
Fe3Al–TiB2–Al2O3 composites from the Fe2O3/TiO2/Al/Fe/B combustion reaction. It is useful to
note that the activation energy obtained in the present study is close to that of the Fe2O3–Al reaction
(Ea = 83.1 kJ/mol) [29]. This implies that aluminothermic reduction of Fe2O3 plays an important role
in leading and facilitating the reaction sequences of the Fe2O3/TiO2/Al/Fe/B combustion system.
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3.2. Phase Constituents and Properties of Synthesized Composites

Figure 5a,b displays the XRD patterns of the final products fabricated from Reaction (1) with
x = 0.5 and 0.8, respectively. The as-synthesized products composed of Fe3Al, TiB2, and Al2O3 were
identified [30]. Figure 5 reveals that with the increase of x the relative intensity of signature peaks of
TiB2 becomes stronger, which is indicative of an increase in TiB2 formed in the composite.
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The phase composition of SHS-derived products from Reaction (2) is presented in Figure 6a,b for
y = 1.0 and 1.5, respectively. Complete conversion from the reactants to products of Fe3Al, TiB2, and
Al2O3 was achieved. The characteristic peaks of Fe3Al in Figure 6b exhibit much higher intensity than
those in Figure 6a. This confirms that more Fe3Al was produced from the SHS process as Reaction (2)
contains additional metallic Fe and Al. In summary, the composition range of the TiB2/Al2O3-added
Fe3Al composites produced in this study can be described by yFe3Al + xTiB2 + Al2O3 with x = 0.3–1.0
and y = 1.0–1.6.
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The relative fraction of constituents was analyzed by the Rietveld refinement for two selected
SHS-derived products. The measured lattice parameters (a and c) of Fe3Al, TiB2, and Al2O3 are
reported in Table 1. For the composite of 1.25Fe3Al + 0.8TiB2 + Al2O3 synthesized from Reaction (1),
the Rietveld method indicates that the weight percentages are 61.88 wt % of Fe3Al, 3.72 wt % of TiB2,
and 24.40 wt % of Al2O3. The relative fractions of Fe3Al (65.98 wt %), TiB2 (9.56 wt %), and Al2O3

(24.46 wt %) are determined for the composite of 1.5Fe3Al + 0.6TiB2 + Al2O3 obtained from Reaction
(2). It is useful to note that the results of the Rietveld method for the phase composition are in good
agreement with those of Reactions (1) and (2).

Table 1. Lattice parameters (a and c) for the components in two selected composites.

Composites Components a (Å) c (Å)

Reaction (1) with
x = 0.8

Fe3Al 5.774 -
TiB2 3.027 3.230

Al2O3 4.764 13.002

Reaction (2) with
y = 1.5

Fe3Al 5.786 -
TiB2 3.024 3.226

Al2O3 4.768 13.005

The typical microstructure of a fracture surface of the SHS-produced Fe3Al–TiB2–Al2O3 composite
is displayed in Figure 7, which presents the product of Reaction (2) with y = 1.6. The microstructure
exhibits the agglomeration of micro-sized grains. The agglomerates have a dense and contiguous
morphology. For those gray agglomerates shown in Figure 7, the EDS analysis indicates their atomic
ratio to be Fe:Al = 75.43:24.57, which matches well with that of Fe3Al. It is believed that most of the
TiB2 grains are embedded in the agglomerates. The other distinct morphology is characterized by
bright alumina grains, whose atomic proportion determined by the EDS spectrum is Al:O = 37.34:62.66.
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The hardness of the TiB2/Al2O3-added Fe3Al composites synthesized from Reaction (1) is in the
range from 11.2 to 19.6 GPa, which increases with increasing TiB2 content from x = 0.3 to 1.0. Figure 8
shows that as the content of TiB2 increases, the fracture toughness of the TiB2/Al2O3-reinforced Fe3Al
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composite increases from 5.32 to 7.92 MPa·m1/2. This proves the strengthening effect of the ceramic
phases on Fe3Al.
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The SHS process involving aluminothermic reduction of oxide precursors was conducted to
prepare Fe3Al–TiB2–Al2O3 composites with a broad range of phase compositions. The starting
materials included elemental Fe, amorphous boron, and thermite reagents made up of Fe2O3, TiO2,
and Al. Aluminothermic reduction of Fe2O3 played an important role in thermally and chemically
activating the synthesis reaction in a self-sustaining combustion mode. Experimental results showed
that for the production of a higher content of TiB2 in the composites of 1.25Fe3Al + xTiB2 + Al2O3

with x = 0.3–1.0, there existed a maximum combustion wave velocity of 5.88 mm/s and a highest
reaction front temperature of 1514 ◦C at x = 0.6. This was caused by the fact that the reaction
exothermicity of the thermite mixture decreased but the formation enthalpy of TiB2 increased. On the
other hand, for the increase of Fe3Al in the product of yFe3Al + 0.6TiB2 + Al2O3 with y = 1.0–1.6,
the additional Fe and Al reduced the overall reaction exothermicity and decelerated the combustion
wave. Based upon the dependence of flame-front velocity on combustion temperature, the activation
energy (Ea) of 86.8 kJ/mol was determined for the Fe2O3/TiO2/Al/Fe/B combustion system to
produce Fe3Al–TiB2–Al2O3 composites.

The XRD analysis of the as-synthesized products indicated that complete conversion from the
reactants to Fe3Al–TiB2–Al2O3 composites was achieved. Two SHS systems capable of varying the
molar contents of TiB2 and Fe3Al in an effective manner were confirmed. Moreover, it was found that
the increase of TiB2 from x = 0.3 to 1.0 in the 1.25Fe3Al + xTiB2 + Al2O3 composites contributed to an
increase in fracture toughness from 5.32 to 7.92 MPa·m1/2.
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