
metals

Article

Effects of Cryogenic Treatment on the Microstructure
and Residual Stress of 7075 Aluminum Alloy

Lijun Wei 1, Dawei Wang 2, Haisheng Li 2, Di Xie 1, Fan Ye 1 ID , Ruokang Song 1, Gang Zheng 3

and Sujun Wu 1,*
1 School of Material Science and Engineering, Beihang University, Beijing 100083, China;

bhwlj@buaa.edu.cn (L.W.); xiedi90@gmail.com (D.X.); vanyeyeye@163.com (F.Y.);
songruokang@163.com (R.S.)

2 AVIC Chengdu Aircraft Industrial (Group) CO., LTD., Chengdu 610073, China;
wangdw132@163.com (D.W.); hsl3805@163.com (H.L.)

3 State Power Investment Corporation Research Institute, Beijing Future Science Park, South Area,
Changping District, Beijing 102209, China; zhenggang1@snptc.com.cn

* Correspondence: wusj@buaa.edu.cn; Tel.: +86-10-8231-6326; Fax: +86-10-8231-7108

Received: 7 March 2018; Accepted: 9 April 2018; Published: 16 April 2018
����������
�������

Abstract: The effect of cryogenic treatment (CT) on the microstructure, residual stress, and
dimensional stability of 7075 aluminum alloy under temperatures of 0 ◦C, −60 ◦C, −120 ◦C,
and −196 ◦C were studied, using optical microscopy (OM), scanning electron microscopy (SEM),
transmission electron microscopy (TEM), an X-ray diffractometer, and an X-ray stress tester.
The results indicated that CT can facilitate the dissolution of the coarse secondary phase into the
α(Al) matrix, promote uniform distribution of Mg, Cu, Zn elements, and increase the density of fine
secondary phases in the 7075 Al alloy. The CT can also induce the rotation of the α(Al) grain towards
(200), through the processes of recovery and recrystallization. It was found that the residual stress
was released, and a higher dimensional stability of the 7075 aluminum alloy was achieved, after CT.
Experimental results demonstrated that the optimum CT temperature for the 7075 aluminum alloy is
−120 ◦C.
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1. Introduction

Cryogenic treatment (CT) can significantly improve the microstructure and performance of
materials, as an additional process to traditional heat treatment. In past decades, the effect of CT on
steels has attracted tremendous attention, due to its important application potential. It is proposed
that in a tool steel, the retained austenite (RA) transformed into martensite after CT, indicating that CT
can reduce the amount of unstable RA and improve the structural stability of steel [1]. Similar research
were performed by Lal et al. in the effect of CT on the wear resistance for tool and die steels, indicating
that CT significantly improved tool life, due to the stabilization of carbides and microstructure [2].
According to research by Das et al., the effect of CT on secondary carbides and retained austenite
are the governing mechanisms for the improved wear resistance of tool steels by CT [3]. In addition,
CT could promote the precipitation of a high amount of secondary carbides, with a reduction in the
average particle size, and homogenization of particle size distribution [4,5].

Thus far, a considerable effort has been devoted to studying the effect of CT on aluminum alloy.
According to previous research, the residual stress could be caused by rapid cooling during the
quenching process, and the residual stress in the aluminum alloy would degrade the mechanical
properties of the alloy, causing premature failure [6,7]. In addition, residual stress can result in size
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change of a component [8]. In order to solve the problem of residual stress, various methods have been
developed. For example, Nickola et al. reported that residual stress could be reduced by cold working,
and Wu et al. found that electro-pulsing could be used to reduce residual stress [9,10]. However,
cryogenic treatment is considered an effective approach, particularly for aluminum alloy. For example,
the treatment combining CT and repaid heating can relieve about 71% of residual stress [11].
In addition, CT can improve the microstructure and mechanical performance of aluminum alloy [12–15].
As investigated by Volker et al., CT increased the fretting wear resistance and fretting fatigue life
of aluminum alloy, owing to the formation of nano-scaled GP-zones, and Li et al. demonstrated the
viability of this phase transformation by first-principles calculations [12,13]. It was proved that CT
promoted the re-dissolution or dispersed precipitation of the GP-zones in the welded joints of 2024 Al
alloy [13,15]. In addition, the mechanical properties of Al alloy can be successfully improved, and the
influence of mechanical properties is strongly affected, by the material state before CT [13,14,16]. In a
bibliographic review completed by Delprete and Baldissera [17], the microstructural influences of CT
on microstructure and mechanical properties were analyzed comprehensively. Generally, the research
of CT was performed by rapid cooling and heating, and few studies focused on CT with slow cooling.
For 7075Al alloy, solid solution treatment can result in high residual stress in the alloy, which can result
in degradation of its mechanical performance.

In present work, in order to optimize the mechanical performance of 7075 Al alloy,
the microstructure, residual stress, and dimensional stability of alloy after CT were systematically
investigated. The relaxation mechanism of residual stress at different temperatures is discussed.

2. Materials and Methods

The material used in this study was cold-rolled 7075Al plate, with a thickness of 3 mm, whose
chemical composition is listed in Table 1. The sample with dimensions 100 mm × 100 mm × 3 mm
for cryogenic treatment was prepared by wire-electrode cutting. Cryogenic treatment with different
parameters was applied to this plate.

Table 1. Chemical composition of 7075 alloy (wt. %).

Elements Zn Mg Cu Zr Fe Si Mn Cr Ti Other Total Al

Nominal 5.7–6.7 1.9–2.6 2.0–2.6 0.08–0.15 0.15 0.12 0.1 0.04 0.06 0.15 bal.
In this
study 6.2 2.1 2.2 0.11 0.14 0.13 0.1 0.03 0.05 0.15 bal.

The CT processes are shown in Table 2. All the aluminum alloy specimens were subjected
to solution treatment, at a temperature of 466 ◦C for 3600 seconds, then water-quenched to room
temperature. In order to confirm the effects of different CT temperatures on the microstructure and
residual stress of 7075Al, the samples were treated at different CT target temperatures of 0 ◦C, −60 ◦C,
−120 ◦C, and −196 ◦C. The CT procedures were as follows:

1. the water-quenched specimens were placed into the CT equipment and slowly cooled down from
room temperature to the target temperatures, with a cooling rate of 3 ◦C/min;

2. the specimens were held at target temperature for 2 h;
3. the specimens were taken out from the equipment and left in open air, until their temperatures

reached room temperature.

After CT, the specimens undertook two-stage aging at 107 ◦C for 6 h, and 163 ◦C for 18 h.
In addition, to clarify the effect of two CT process on 7075Al, the CT procedures were repeated,
as mentioned above, after the first CT process, and then two-stage aging was utilized to treat the
samples similarly.

After these treatments, observations under optical microscopy (OM) (DMLM, Leica, Buffalo Grove,
IL, USA), scanning electron microscopy (SEM) (JSM-6010, JOEL, Akishima, Japan), and transmission
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electron microscopy (TEM) (JEM2100F, JEOL, Akishima, Japan) were carried out, to analyze the
microstructure of the 7075 aluminum alloy. The characterization of the microstructure was carried
out at the rolling surface. The samples for OM and SEM were ground with abrasive paper and then
successively polished with 2.5, 1.5, and 0.5 µm diamond suspensions. The samples were etched using
a solution composed of 2.5% HNO3 + 1.5% HCl + 1.0% HF + 95% H2O before observation. TEM
foils were prepared by ion-beam thinning techniques, using a Gattan-691 precision ion polishing
system with liquid-nitrogen cooling. TEM observations of precipitates were performed on selected
samples, using a JEM2100F transmission electron microscope operating at 200 kV. An X-ray diffraction
(XRD) (D/max2200PC, Rigaku, Beijing China) was employed to obtain the XRD diffraction pattern,
operated at 40 kV with Cu Kα radiation and a scanning speed of 4◦/min. Residual stress was
measured by an X-ray stress tester (X-350A, ST Co.Ltd, Handan, China), operated at 28 Kv with Cr Kα
radiation. The XRD analysis was performed at room temperature, with theψ of 0◦, 24.2◦, 35.3◦, and 45◦.
The samples prepared for residual stress were polished before the solid solution treatment, and the
residual stress was measured at the center of the polished surface. The polishing was finished before
the quenching process. There were five parallel samples of residual stress for every heat treatment.
The dimensional stability was characterized by the rate of change of the annular opening size through
the circular opening method (Figure 1) [18]. The rate of change was determined by the formula
(∆L/L) × 100%, in which L is the original opening length, and ∆L is the incremental change in length
with aging time. The rate of change of every treatment was obtained through the average value of
three parallel samples. The circular rings for the circular opening samples were processed before the
quenching process, and sliced after the two-stage aging treatment.

Table 2. Heat treatment process of 7075 aluminum alloy.

Sample Solution Treatment Cryogenic Treatment Aging Treatment

A 466 ◦C × 1 h - 107 ◦C × 6 h + 163 ◦C × 18 h
B 466 ◦C × 1 h 0 ◦C × 2 h 107 ◦C × 6 h + 163 ◦C × 18 h
C 466 ◦C × 1 h −60 ◦C × 2 h 107 ◦C × 6 h + 163 ◦C × 18 h
D 466 ◦C × 1 h −120 ◦C × 2 h 107 ◦C × 6 h + 163 ◦C × 18 h
E 466 ◦C × 1 h −196 ◦C × 2 h 107 ◦C × 6 h + 163 ◦C × 18 h
F 466 ◦C × 1 h −60 ◦C × 2 h,Twice 107 ◦C × 6 h + 163 ◦C × 18 h
G 466 ◦C × 1 h −120 ◦C × 2 h,Twice 107 ◦C × 6 h + 163 ◦C × 18 h

Figure 1. Open ring sample: (a) two-dimensional schematic diagram, (b) ring sample photograph
(Φ1 = 50 ± 0.1 mm, Φ2 = 56 ± 0.1 mm, h = ±0.1 mm, L0′ = 5 ± 0.1 mm, L0 = 3 ± 0.1 mm).

3. Results and Discussion

3.1. Effect of Cryogenic Treatment (CT) on the Microstructure of 7075 Aluminum Alloy

Figure 2a shows the microstructure of sample A without CT. It can be seen that there is a high
prevalence of coarse secondary phases (apparent as dark areas) dispersed in the α(Al) matrix of
the alloy. Figure 3 shows the result of energy dispersive spectroscopy (EDS) analysis for the coarse
secondary phase, which indicates that the elements in the coarse secondary phase are Al, Cu, Zn, Mg,
and Fe. According to previous research by Xu et al., these coarse secondary phases were the eutectic
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compounds Al7Cu2Fe, CuMgAl2, and MgZn2, respectively [19]. These eutectic compounds consumed
a large number of alloying elements, which reduced the formation and precipitation of small particles
in the alloy during the aging process. Hence, alloy with a large amount of coarse secondary phases
may have relative low strength, and cracks may occur. This will cause the mechanical properties to
degrade. Thus, CT can be used to improve the performance of the alloy, due to the content reduction
of the coarse secondary phase. Figure 2b–e display the microstructures of samples B, C, D, and E,
respectively. The results indicated that the size and amount of the dark, coarse, secondary phase
decreased after CT, and that procedure D minimized the content of the coarse secondary phase.

Figure 2. Microstructure of 7075 alloy with different cryogenic treatment (CT): (a) 25 ◦C; (b) 0 ◦C;
(c) −60 ◦C; (d) −120 ◦C; (e) −196 ◦C; (f) −60 ◦C (twice); and (g) −120 ◦C (twice).
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Figure 3. Energy dispersive spectroscopy (EDS) analysis results of the coarse secondary phase.

It is most likely that the change in the density and size of the coarse secondary phase was
induced by the dissolution of alloy elements from the coarse secondary phase into the α(Al) matrix.
According to the research of Xu et al., the dislocation was induced by high stress, due to structural
shrinkage and the different expansion coefficients of the different phases during the process of CT [20].
There is an obvious distinction between the thermal expansion coefficients of the α(Al) matrix and
coarse precipitates. During CT, the α(Al) matrix around coarse precipitates undergoes severe plastic
deformation, caused by the discordant change of volume, and a significant increase in dislocation
density. Dislocations generate a different path for the diffusion of alloying elements. In addition,
the gradient of concentration between the coarse secondary phase and α(Al) matrix provides a driving
force for atomic migration. Therefore, CT can facilitate the dissolution of the coarse secondary phase
into the α(Al) matrix, through short-range diffusion under low temperature conditions. Figure 2f,g
shows the microstructures of samples F and G, which had undergone multiple cryogenic treatments
at –60 ◦C and −120 ◦C, respectively. Comparing Figure 2c,f and Figure 2d,g, there are no significant
variations in coarse precipitations after multiple cryogenic treatments.

To gain information on the presence of the secondary phase with high spatial resolution,
TEM analysis was performed, with the results shown in Figure 4. A large number of fine secondary
phase particles, which measure about 5 nm, are uniformly distributed in the grains of both samples,
both with and without CT. While the size of these fine secondary phase particles did not change with
CT, it is evident that the density of the particles increased significantly after CT. This is in contrast to
the coarse secondary phase, whose density decreasing after the CT process, as shown in Figure 2.

Figure 4. TEM image of the fine secondary phase particles in grain experienced after different CT
temperatures: (a) 25 ◦C and (b) −120 ◦C.

Figure 5a,b displays the distributions of fine particles adjacent to theα(Al) matrix grain boundaries,
for samples A and D, respectively. However, CT did not cause an obvious difference in grain boundary
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precipitates. According to the research of Feng et al., precipitate nucleation mostly occurred at the
dislocations, and was heterogeneous during the artificial aging process [21]. Ratchev et al. found that
the increasing dislocation density before artificial aging could enhance the heterogeneous nucleation
sites [22]. The CT process caused shrinkage under a low temperature-induced, local plastic deformation,
and increased dislocation density. In the subsequent artificial aging process, the density of precipitates
was increased by the higher number of nucleation points.

Figure 5. TEM image of precipitates adjacent to the grain boundary of the sample after different CTs:
(a) 25 ◦C and (b) −120 ◦C.

Figure 6 shows the X-ray diffraction pattern of the 7075 alloys before and after different heat
treatments. The characteristic peaks (shown in Figure 6) correspond to (111), (200), (220), and (311)
reflection planes of α(Al). It can be seen that no new peaks appeared after the treatment processes,
which indicates that no new phases were formed. Although the positions of the diffraction peaks
in the x-axis did not change after CT, the height (intensity) of the peaks did change. Taking the
diffraction peak intensity of the (200) plane as 100, the variations in relative diffraction peak intensity,
corresponding to the other planes, after different treatments, are presented in Table 3. The diffraction
peak (200) has obvious enhancement as the cryogenic temperature decreased, and reached a maximum
in sample D. Meanwhile, the relative intensities of the diffraction peaks (111), (220), and (311) decreased
as the cryogenic temperature decreased.

Figure 6. X-ray diffractometer (XRD) patterns of the 7075 alloys samples with CTs of 25 ◦C, 0 ◦C,
−60 ◦C, −120 ◦C, and −196 ◦C.
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Table 3. Relative diffraction peak intensity of the samples after CT.

Sample (111) (200) (220) (311)

A 57.37 100 53.69 22.2
B 78.91 100 50.35 20.3
C 19.04 100 40.49 16.2
D 22.68 100 30.84 5.54
E 40.14 100 54.79 8.89

The changes in diffraction peak intensities indicate that CT can induce grain rotation from other
orientations to (200). During the CT process, a large number of dislocations and sub-grains are activated,
due to the stress resulting from the volume shrinkage effect. Phase recovery and recrystallization
would occur during the warming-up process from the cryogenic temperature, which may induce grain
rotation to the orientation of (200).

3.2. Effect of Cryogenic Treatment (CT) on the Residual Stress and Dimensional Stability of 7075 Alloys

During the quenching process, the steep temperature gradient in the sample was induced by the
difference of cooling speed between the surface and center of the specimen. When the temperature of
the sample surface layer cooled down to room temperature, the temperature at the center is still high.
As the temperature of the center material decreased, its volume tended to reduce, while the surface
layer suppressed the shrinkage of the center. The volume difference was removed through the elastic
deformation of the surface layer and inner material. Under the elastic state, the volume shrinkage of
the surface layer was induced by shrinkage stress from the inner material, and resulted in pressure
between the grains of the surface layer. Therefore, the sample was distorted by compressive stress in
the surface layer. Meanwhile, residual tensile stress in the inner material was caused by tensile elastic
deformation, which was induced by tensile stress from the surface layer. The sample deformation
after the quenching process is shown in Figure 7. In summary, the residual stress is dependent on the
volume difference, i.e., the larger the volume difference, the higher the residual stress.

Figure 7. Deformation of sample after quenching process.

The residual stress ratio between the samples, with and without CT, is commonly used to measure
the effect of CT on the residual stress states of alloys. The residual stress ratios of the samples are
shown in Figure 8. It can be seen that the residual stress ratio decreased significantly after CT, and the
lowest residual stress ratio was obtained at the CT temperature of −120 ◦C. As the results showed,
the residual stress ratios of the samples after multiple (two) CT treatments were not obviously different
to those of the single CT samples.

The influencing mechanism of CT on the residual stress has not been fully explained so far. When
the sample is quenched to room temperature, the residual stress will be generated by compression
in the surface layer. During the CT process after quenching, the grains in the surface layer will
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contract due to the lower temperature, which will release the compressive stress, resulting in reduced
residual stress. Therefore, the residual stress decreases with decreased CT temperature. When the
CT temperature is very low, however, the difference in the deformation between the matrix and the
precipitates, due to the difference between their thermal expansion coefficients, will become more
significant. When warming up from the CT temperature to room temperature, greater residual stress
between the matrix and precipitates is generated. These two opposing effects of CT on residual stress
will result in a minimum residual stress value at a certain CT temperature. In this work, the temperature
corresponding to the minimum residual stress is −120 ◦C.

Figure 8. Residual stress ratio curves of 7075 alloy after different CT temperatures.

The residual stress release can cause dimensional variation in the Al alloys. In the present
work, the open ring method was applied to evaluate the dimensional stability of 7075 alloy.
The dimensional stability after different CT temperatures was measured by the dimensional variation
rate ((∆L/L) × 100), in which L is the original opening length, and the ∆L is the incremental change
in opening length with aging time. Figure 9 shows that the dimensional variation rate of samples
increased rapidly at the early stage, from week one to week five, and then leveled out. It can be seen
that the lowest dimensional variation rate (13.3%) was obtained in sample D (treated at −120 ◦C),
which corresponds to the low residual stress result in Figure 8. This indicates that the dimensional
variation rate and the residual stress have a similar variation tendency, which implies that CT can
improve the dimensional stability, through reducing residual stress.

Figure 9. Curve of 7075 aluminum alloy ring sample size changes vs. aging time.

As the most widely-used method to reduce the residual stresses of aluminum alloys, conventional
CT is performed by immersing quenched parts in liquid nitrogen at−196 ◦C, followed by rapid heating
in boiling water or high velocity steam. However, this technique is associated with some drawbacks,
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for instance, the high cost of consuming liquid nitrogen, and cracks or deformation, caused by uneven
cooling and heating during the cooling and heating processing, for the parts with a complex shape or
large size [11]. In this novel CT process, a good effect is obtained by CT performed under an optimal
CT temperature, with a slow cooling process. The difficulty of controlling the uniformity of cooling
and heating was solved by using slow cooling, and omitting rapid-heating processes. In addition,
the omission of rapid heating will simplify the CT process and equipment. In conclusion, this CT
process is more applicable and cheaper, compared with conventional CT. The improved CT process is
more practical for parts that require thin-walls, a cavity, and are large in size.

4. Conclusions

1. Cryogenic treatment (CT) can not only facilitate the dissolution of the coarse secondary phase
into the α(Al) matrix of the 7075 Al alloy, but also promotes the precipitation of fine secondary
phase particles.

2. XRD analysis indicates that CT can result in rotation of the α(Al) grains towards the preferred
(200) orientation, due to recovery and recrystallization during the following heating process from
the CT temperature to room temperature.

3. The residual stress of 7075 alloy can be significantly reduced by CT. The lowest residual stress
rate (about 30%) was obtained for the sample that was treated at −120 ◦C.

4. CT can improve the dimensional stability of the 7075 alloy through lowering the residual stress.
The optimal dimensional stability for 7075 alloy was obtained at a CT temperature of −120 ◦C.
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