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Abstract: In the production of cold-rolled strip, the strip surface may suffer from various defects
which need to be detected and identified using an online inspection system. The system is equipped
with high-speed and high-resolution cameras to acquire images from the moving strip surface.
Features are then extracted from the images and are used as inputs of a pre-trained classifier to
identify the type of defect. New types of defect often appear in production. At this point the
pre-trained classifier needs to be quickly retrained and deployed in seconds to meet the requirement
of the online identification of all defects in the environment of a continuous production line. Therefore,
the method for extracting the image features and the training for the classification model should
be automated and fast enough, normally within seconds. This paper presents our findings in
investigating the computational and classification performance of various feature extraction methods
and classification models for the strip surface defect identification. The methods include Scale
Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF) and Local Binary Patterns
(LBP). The classifiers we have assessed include Back Propagation (BP) neural network, Support
Vector Machine (SVM) and Extreme Learning Machine (ELM). By comparing various combinations
of different feature extraction and classification methods, our experiments show that the hybrid
method of LBP for feature extraction and ELM for defect classification results in less training and
identification time with higher classification accuracy, which satisfied online real-time identification.

Keywords: machine learning; LBP; ELM; surface inspection; defect identification

1. Introduction

Cold rolled strip is a true all-round material in various products such as automobiles, electrical
appliances, ships etc. With the rapid development of the economy, the demand for cold rolled strip
increases year by year. In the production of cold rolled strip, various defects appear on the surface
of the rolled strip due to various reasons such as issues from manufacturing technology, equipment
etc. These defects not only affect the appearance of the products, but also degrade the performance of
the products. To eliminate these defects, they should be detected at the first instance with a surface
inspection system [1]. The detection system is machine vision-based, which has become the mainstream
of all identification methods. Feature extraction and classification are the key steps of the machine
vision method. The step “local feature extraction” has been widely used in machine vision for image
recognition [2], image retrieval [3], image registration [4], image classification [5], image mosaicking [6].
Defects are caused for different reasons and appear in different types. Useful features are extracted
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from the surface images for the detection and classification of the defects on the surface. The cause of
different types of defects can then be tracked and addressed.

New types of defects are often discovered in the production of cold rolled strip. To identify these
new defects, the production line is normally suspended and then the classification model is retrained
with added sample images for the new defect. If the re-training process takes a long time, the product
will be impacted. Therefore, a classification model with fast training and identification algorithms is
preferred. In the production line, workers change the rolls of a cold rolling mill when a coil of raw strip
steel is run out. If the model retraining can be finished within the time of roll change, the classification
model can be quickly adapted to the online real-time identification of new defects. This will avoid the
suspension of the production.

In this paper, we will explore various options for the image feature extraction and classification
and aim to find the best option for the fast identification of the defects with high classification accuracy
and high computing performance for the training of the classification model.

There are several popular feature extraction methods, including Scale Invariant Feature
Transform [7] (SIFT), Speeded Up Robust Feature [8] (SURF) and Local Binary Pattern [9] (LBP). Lowe
proposed efficient SIFT algorithm to speed up feature extraction. Based on SIFT, Bay proposed more
efficient SURF algorithm [8] to further speed up feature extraction. Ojala presented LBP algorithm [9],
which is a redefinition of the grayscale values of the original image and a simple combination of
histogram. Compared to SIFT and SURF, LBP has less computational complexity, leading to higher
computing performance in feature extraction.

Literature has reported several popular classification methods, including Back Propagation neural
networks [10] (BP), Support Vector Machine [11] (SVM) and Extreme Learning Machine [12] (ELM).
The algorithms of BP neural networks are complicated and slow in training. BP neural network
requires many iterations to compute weights [13] and it is easy for it to get stuck in a local minima.
The identification of complex surface defects of cold rolled strip is a problem of multi-class classification,
in which the classic SVM has some disadvantages [14]. ELM [15] (Extreme learning machine) is an
improved algorithm based on single hidden layer feedforward neural networks. The only artificial
parameter of ELM is the number of hidden layer nodes. Initial weights are randomly generated.
ELM is fully automatically implemented without iterative tuning, and it is extremely fast compared
to other traditional learning methods. Hence ELM is potentially a solution to satisfy the real-time
requirement in online defect identification of cold rolled strip. This paper is organized as follows:
Section 2 introduces the principle of LBP and ELM algorithms; Section 3 demonstrates the computing
performance of LBP and ELM with comparison among several hybrid methods for the surface defect
identification; Section 4 illustrates how the hybrid method of LBP and ELM can be adapted to identify
a new defect with an online surface inspection case study; the conclusions are drawn in Section 5.

2. Principle of LBP (Local Binary Pattern) and ELM (Extreme Learning Machine) Algorithms

2.1. LBP Algorithm

2.1.1. Principle of the LBP

Local binary pattern (LBP) is a type of visual descriptor used for classification in computer vision.
As shown in Figure 1, the LBP feature vector, in its simplest form, is created as follows:

(1) Compare each pixel in a cell with each of its 8 neighbors (on its top left, top right, right, bottom
right, bottom, bottom left, left in order) clockwise.

(2) If the value of the neighbor is larger than the value of the center pixel, write “0”, otherwise, write
“1”. This generates an 8-digit binary number (usually converted to decimal for convenience).

(3) Calculate the times of occurrence of each decimal number. Then a feature histogram is made
(x-axis is decimal number; y-axis is the times of each decimal number occurring). This histogram
can be seen as a 256-dimensional feature vector.
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2.1.2. Improved LBP

The original LBP operator has obvious limitation, namely its computation only covers a fixed
area. To adapt to the changes of scale, LBP operator should be improved to address the limitation.

The improvement includes three aspects: firstly, the square neighborhood is changed into a
circular one; secondly, its radius of the covered area is expanded from 1 to arbitrary size R [16]; thirdly,
the number of sample points is changed to variant P. The improved LBP operator is shown in Figure 2.
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The encoding process of the improved LBP is similar to that of the basic LBP. Take LBP1
8 as an example

shown in Figure 3. First, 8 neighborhood points are selected as a circle. Then the gray value of selected
points is calculated by bilinear interpolation. The procedures below are same as original LBP in
Figure 1.Metals 2018, 8, x FOR PEER REVIEW  4 of 18 

 

 

Figure 3. Encoding process of the improved LBP଼ଵ. 

2.1.3. LBP Uniform Pattern 

Set the number of sample points as P, then the maximum of LBP patterns is 2P. That is, the 
number of LBP patterns rises exponentially as P increases. When ܲ = 32, the maximum of LBP 
patterns reaches 2ଷଶ ≈ 4.3 × 10ଵ଴, which is incredibly huge for data processing. Such a huge number 
of patterns will result in long calculation time. Furthermore, huge pattern numbers lead to a sparse 
feature vector and histogram that is not suitable to describe the feature of defect. 

To solve these two problems, Ojala optimized the improved LBP operator and put forward the 
LBP uniform pattern [17]. This idea is motivated by the fact that some binary patterns occur more 
commonly in texture images than others [18]. The motivation for this idea is that some binary 
patterns are more common in texture images than the other. If the binary pattern contains up to two 
0-1 or 1-0 transitions, these common binary patterns are called uniform patterns. For instance, 
00000010 (2 transformations) is a uniform pattern, 0100100 (4 transformations) is not. Other 
uncommon binary patterns are called non-uniformed pattern if it contains more than 2 transitions. 
In LBP uniform pattern, the maximum of LBP patterns is ܲሺܲ − 1ሻ + 3, much smaller than 2P of the 
original LBP. In this paper, for ܲ = 8, the number of LBP patterns decreases from 256 to 59. 

In the LBP histogram calculation, the histogram has a separate bin for each uniform pattern, 
and all non-uniform patterns are assigned to a single bin. The length of the feature vector for one 
picture is reduced from 256 to 59 with a uniform pattern. 

2.2. ELM Algorithm 

2.2.1. The Theory of ELM 

ELM is a popular machine-learning algorithm in recent years. The theory of the ELM algorithm 
is briefly introduced as below [15]. The model of ELM neural network is shown in Figure 4. 

 
Figure 4. Model of ELM neural network. 

1 1 1

1 C 1

0 0 1

1 2 4

128 C 8

64 32 16

1 2 4

128 C 8

0 0 16

20 90 74

65 55 50

65 10 54

The value of 
LBP patterns is 

159

Figure 3. Encoding process of the improved LBP1
8.



Metals 2018, 8, 197 4 of 18

2.1.3. LBP Uniform Pattern

Set the number of sample points as P, then the maximum of LBP patterns is 2P. That is, the number
of LBP patterns rises exponentially as P increases. When P = 32, the maximum of LBP patterns reaches
232 ≈ 4.3× 1010, which is incredibly huge for data processing. Such a huge number of patterns will
result in long calculation time. Furthermore, huge pattern numbers lead to a sparse feature vector and
histogram that is not suitable to describe the feature of defect.

To solve these two problems, Ojala optimized the improved LBP operator and put forward the
LBP uniform pattern [17]. This idea is motivated by the fact that some binary patterns occur more
commonly in texture images than others [18]. The motivation for this idea is that some binary patterns
are more common in texture images than the other. If the binary pattern contains up to two 0-1 or
1-0 transitions, these common binary patterns are called uniform patterns. For instance, 00000010
(2 transformations) is a uniform pattern, 0100100 (4 transformations) is not. Other uncommon binary
patterns are called non-uniformed pattern if it contains more than 2 transitions. In LBP uniform pattern,
the maximum of LBP patterns is P(P− 1) + 3, much smaller than 2P of the original LBP. In this paper,
for P = 8, the number of LBP patterns decreases from 256 to 59.

In the LBP histogram calculation, the histogram has a separate bin for each uniform pattern,
and all non-uniform patterns are assigned to a single bin. The length of the feature vector for one
picture is reduced from 256 to 59 with a uniform pattern.

2.2. ELM Algorithm

2.2.1. The Theory of ELM

ELM is a popular machine-learning algorithm in recent years. The theory of the ELM algorithm is
briefly introduced as below [15]. The model of ELM neural network is shown in Figure 4.
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For N arbitrary distinct samples (Xi, ti), where

Xi = [Xi1, Xi2, . . . , Xin]
T ∈ Rn (1)

ti = [ti1, ti2, . . . , tim]
T ∈ Rm (2)

The ELM with L hidden-layer nodes is mathematically described as

L

∑
i=1

βig
(
Wi·Xj + bi

)
= oi, j = 1, 2, . . . , N (3)
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g(Xi) is activation function, using a common activation function such as sigmoid.
Wi = [Wi1, Wi2, . . . , Win]

T is the weight vector connecting the ith hidden node and the input nodes, βi
is the weight vector connecting the ith hidden node and the output node, bi is the bias parameter of
the ith hidden node. The computation of ELM is to minimize the error between actual output and the
ground truth of a training sample.

N

∑
j=1
‖oj − tj‖ = 0 (4)

i.e., there exist βi, Wi and bi, such that

L

∑
i=1

βig
(
Wi·Xj + bi

)
= ti, j = 1, 2, . . . , N (5)

The above N equations can be written compactly as Hβ = T, where

H(Wi, . . . , WL, bi, . . . , bL, Xi, . . . , XL) =

 g(W1·X1 + b1) · · · g(WL·X1 + bL)
...

. . .
...

g(W1·XN + b1) · · · g(WL·XN + bL)


N×L

(6)

β =

 βT
1
...

βT
L


L×N

(7)

T =

 TT
1
...

TT
L


N×M

(8)

Our goal is to find specific Ŵi, b̂i and β̂i, such that

‖H(Ŵi,b̂i)β̂i − T‖ = min
W,b,β
‖H(Wi, bi)βi − T‖ i = 1, 2, . . . , L (9)

which is equivalent to minimizing the cost function

E =
N

∑
j=1

(
L

∑
i=1

βig
(
Wi·Xj + bi

)
− tj

)2

(10)

Unlike the approximation theories of traditional functions, which require the adjustment of input
weights and hidden layer biases, input weights and hidden layer biases can be randomly assigned.
The input weights Wi and the hidden layer biases bi are in fact not tuned and the hidden layer output
matrix H can actually remain unchanged. The learning process is simply equivalent to finding a
solution β̂ of the linear system Hβ = T and the minimum norm least-squares solution of the above
linear system is

β̂ = H+T (11)

where H+ is the Moore–Penrose generalized inverse of matrix H, and the norm of the solution β

is smallest and unique. Thus, ELM omits the process of adjusting input weights and hidden layer
biases, only needs a generalized inverse, and this greatly improves the speed for training the ELM
neural network.
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2.2.2. The Classification Strategies of ELM

Maximum Strategy

Using an N-dimensional vector of sample features, a trained ELM can produce an output of an
M-dimensional vector, where M is the number of classes for the classification. In this work, the samples
of cold rolled strip are from 4 categories of defects. Therefore, the output of ELM is a four-dimensional
vector ti in response to each input sample (xi, ti). For example, a specific sample belongs to defect
I, its output vector ti is [1,−1,−1,−1]T . If it belongs to defect II, then ti is [−1, 1,−1,−1]T , and
so on. Each dimension of this vector varies between −1 and 1, which means that each element
of this vector represents the probability of each defect category. For instance, if the output ti is
[0.72,−0.92,−0.88,−0.58]T , the first element of the vector is the largest, thus the defect category is
I. The maximum strategy is most effective when all defect categories are known, and their training
samples are used in the training stage of ELM.

If the output ti is a vector such as [−0.72,−0.92,−0.88,−0.58]T , according to the maximum
strategy, the 4th element of the vector is the largest, thus the defect belongs to Category IV. However,
all elements of the output vector are negative. This means that this actual defect may belong to none of
any known categories. In this case, the maximum strategy is not applicable.

Real-Time Identification Strategy

In the production of cold rolled strip, from time to time, a new category of defect may be
observed. To monitor these new categories of defects, we proposed a real-time identification strategy
as described below.

The procedure for determining a new category of defect is described below:

(1) Set a threshold ε,
(2) Find Max

(
tj
)
,

(3) If Max
(
tj
)
≥ ε, the defect is to be classified into the jth known category, otherwise the defect

sample should be classified as “unknown”.

For instance, if we set ε = 0, and if an output vector is [−0.92,−0.82,−0.88, 0.91]T , thus
Max

(
tj
)
= 0.91. This satisfies Max

(
tj
)
≥ ε, so this defect belongs to Category IV (j = 4). For an output

vector such as [−0.72,−0.92,−0.88,−0.58]T , Max
(
tj
)
= −0.58, which does not satisfy Max

(
tj
)
≥ ε,

so the defect should be classified as “unknown”.

3. Experiment and Analysis of Defect Identification

In this section, we present our experimental results by comparing the performance of ELM and
other algorithms for surface defect identification of cold rolled strip.

3.1. General Design of the Experiment

The flowchart of the experiment for defect identification is shown in Figure 5. In the experiment,
all the samples are divided into training set and testing set. The training set includes 4 categories,
1348 samples in total. The same is true for the testing set, it includes 4 categories, and 1130 samples in
total. Specific distribution of samples is shown in Table 1. We used cross-validation method to train
the model by splitting the samples into m shares to train the model and using one share each time.
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Table 1. The number of training and testing samples.

Defect Type Number of Training Samples Number of Testing Samples

Scratch 296 216
Slag 178 100
Peel 362 302

No defect 512 512

3.2. Feature Extraction Using LBP

3.2.1. Image Processing with LBP Operator

There are various types of defects on the surface of cold rolled strip. Among these types of defects,
scratches, slags, and peels have significant negative impact on the quality of the strip; furthermore,
these defects are the most common ones occurred in the production process. Therefore, these three
defects are the main focus for defect identification.

As has been mentioned in Section 2, LBP algorithm can be used to characterize the texture of
images by comparing the grayscale between pixels. It is a linear method for removing light effect
by extracting local features. LBP algorithm does not change the position and number of pixels in an
image, therefore it does not change the size of the image.

Figure 6 shows some defect images including scratches, slags, peels, and an image with no defects.
Figure 7 shows the corresponding images after applying LBP for extracting features. As shown in these
two figures, LBP method clearly preserves the texture details of the original images, while removing
the effect of uneven lighting.
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3.2.2. Statistical Analysis and Dimension Reduction of LBP Images

This section presents the histogram of LBP patterns for different types of defects. Images with
256-level grayscales are used to show the distribution of LBP patterns, that is, the frequency of different
gray levels in a defect image. The LBP pattern is a one-dimensional vector containing 256 eigenvalues,
in which the kth eigenvalue represents the occurrence rate of the kth LBP pattern in the whole image.

Figure 8 shows the histogram of LBP patterns for the above three types of defects and the one
without defects. As shown in Figure 8, the histograms of LBP patterns for different defects are quite
different. Therefore, the LBP patterns for different defects can be used to train classification models for
defect identification.
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LBP uniform pattern described in Section 2 can be used for dimension reduction for the LBP
patterns. We used the LBP uniform pattern and reduced the dimension of LBP patterns from 256 to 59.

Figure 9 shows the 59-dimensional histogram of LBP patterns after the dimension reduction.
The dimension reduction has two advantages: (1) remove low frequency LBP especially noises, and
(2) reduce the computation in training classifiers for the defect identification and therefore reduce the
training time.
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3.2.3. A Comparison of Computing Performance among LBP and Other Feature Extraction Methods

Apart from LBP, the most common local feature-extraction descriptor is SIFT and SURF. SIFT can
improve the computing speed based on SURF. They both perform well on feature extraction, compared
with LBP. However, the computation complexity and cost of SIFT and SURF are high, so they are not
suitable for the real-time applications. The following table shows the comparison of computation time
among LBP, SIFT and SURF. As shown in Table 2, LBP performs the best in terms of computation cost.

Table 2. Comparison of average computation time among LBP, SIFT and SURF.

Method Sample Size (Pixels) (0.3 mm/Pixel) Dimensions Computation Time (ms)

LBP 128 × 128 256 15
LBP 128 × 128 59 (After dimension reduction) 15
SIFT 128 × 128 128 × number of features 72
SURF 128 × 128 64 × number of features 22

3.3. Model Training Using ELM

3.3.1. Optimization of the Number of Hidden-Nodes

The number of hidden nodes has great impact on the performance of computation and
classification of the defects. If the number is too large, it will cause an over-fitting problem that
reduces the generalization ability of ELM. If it is too small, it may lead to an under-fitting problem that
reduces the acquisition of all features of the training set.

We select the number of hidden nodes based on the following principle. (1) Refer to the empirical
number of the ELM method; (2) Compute the number in I-ELM method; and (3) Depend on the
accuracy of cross-validation test.

Figure 10 shows the accuracy of the cross-validation test with different hidden-nodes numbers.
When the node number is 50, the identification achieves the highest accuracy. Therefore, we select 50
as the hidden-node number.
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3.3.2. Comparison of Training Time between ELM and Other Models

ELM omits the process of adjusting input weights and hidden layer biases, this greatly saves the
training time. Table 3 shows the comparison of training time among ELM and other models. For more
accurate comparison of training time, we set 50 hidden nodes for BP neural network as well as linear
kernel for SVM. The comparison shows ELM takes much less time to train than the others.

Table 3. Comparison of training time among ELM and other models.

Learning Model Sample Size Feature Dimensions Parameters Training Time (ms)

BP 1348 256 50 hidden nodes 153,354
BP 1348 59 50 hidden nodes 41,017

SVM 1348 256 Linear Kernel 6338
SVM 1348 59 Linear Kernel 6137
ELM 1348 256 50 hidden nodes 2059
ELM 1348 59 50 hidden nodes 865

3.4. Defect Identification Using ELM

This section reports the classification results of various defects using ELM. We use a confusion
matrix to show the actual and classified defect classes.

3.4.1. Analysis on the Result of Defect Identification

We used 1130 sample defect images for testing the ELM classifier, including 216 images for scratch,
100 images for slag, 302 images for peel, 512 samples with no defects. After extracting features and
reducing dimensions for each sample image, we obtained a 256-dimensional and a 59-dimensional
feature vector for classification. The confusion matrices for the classification using a 59-dimensional
feature vector and 256-dimensional feature vector are shown in Tables 4 and 5, respectively.
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Table 4. Confusion matrix using ELM with 256-dimensional feature vectors.

Defect Type Scratch Slag Peel No Defect Correctly Classified Sample Number Classification Accuracy

Scratch 204 0 2 10 204 216 94.44%
Slag 5 85 6 4 85 100 85.00%
Peel 6 5 281 10 281 302 93.05%

No defect 0 3 4 505 505 512 98.63%
Total 215 93 293 529 1075 1130 95.13%

Table 5. Confusion matrix using ELM with 59-dimensional feature vectors.

Defect Type Scratch Slag Peel No Defect Correctly Classified Sample Number Classification Rate

Scratch 206 4 2 4 206 216 95.37%
Slag 1 89 6 4 89 100 89.00%
Peel 3 5 289 5 289 302 95.70%

No defect 0 0 0 512 512 512 100.00%
Total 210 98 297 525 1096 1130 96.99%

As shown in Tables 4 and 5, the classification accuracy for the defects of scratch and peel are
about 95%. This is because these two defect types have distinguishing features and many samples for
training. The classification accuracy for the defect of slag is about 89%, which is less than those for
other defect types. This is because the image features of these types of defect are less perceptible than
those for other defects. It is worth mentioning that all images with no defects are classified correctly
using either their 256-dimensional feature vectors or 59-dimensional feature vectors. This is because
the image features with no defects are distinct, and there are lots of sample images for training.

3.4.2. Comparison of the Performance of Computation and Classification among ELM and
Other Models

To compare the performance of ELM and other classification models, we have conducted
experiments and populated the experiment results in Table 6 to show both the computation and
classification performance. From Table 6, we can see that:

(1) BP neural network is not performing well in terms of classification accuracy when the training
dataset is small;

(2) The classification accuracy of SVM is high, however, it takes long time to identify the defects.
(3) LBP + ELM outperforms others, it can achieve higher classification accuracy with less training

time than other models in Table 6.

Table 6. Comparison of the computation and classification performance among ELM and
other methods.

Method Average Classification Accuracy Feature Dimensions Classification Time (ms Per Sample)

SURF + SVM 90.57% 64 × number of features 138
LBP + BP 69.71% 256 33
LBP + BP 82.45% 59 21

LBP + SVM 94.47% 256 47
LBP + SVM 95.01% 59 43
LBP + ELM 95.13% 256 17
LBP + ELM 96.99% 59 15

4. Experiment and Analysis of Online Monitoring with New Types of Defects

In the production of cold rolled strip, new types of defects often appear due to various types of
equipment malfunctions. In this case, the pre-trained defect classification model is no longer suitable
for identifying these new defect types. This will lead to misclassification of the defects and has negative
impact on the product quality. By accurately identifying the defect types, operators can take actions



Metals 2018, 8, 197 13 of 18

accordingly to mitigate the negative impact of the defects. Therefore, it is important to address the
problem of identifying new types of defects.

In this section, an online monitoring experiment has been carried out. ELM has been used for the
classification of new types of defects.

4.1. Design of the Experiment

The primary purpose of online monitoring is to improve identification reliability. That is, when
new types of defects appear, the classification model can quickly sense the defects and properly adjust
itself to identify them.

Figure 11 shows the flowchart of the defect identification process. First, we train ELM using
images of known defect types. Then ELM is used to identify the defect types of images captured from
the production line. This works well.
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If new types of defects are present, the images with new types of defects will be captured and
saved for manual classification. When the images with new defect types accumulate to a certain
number, they will be added to the training set. Then the training set is used to retrain the model.
As aforementioned, ELM can be trained in seconds and the re-trained model can be used for online
monitoring immediately.

4.2. Experiment Process

4.2.1. Training of ELM

ELM was initially trained with four typical defect types. These four defect types are shown in
Figure 12.
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Figure 12. Four defect types: scratches (a), slags (b), peels (c), no defects (d).

The number of training samples for each defect type is shown in Table 7. These four types of
defects are the most common and representative ones in the production of cold rolled strip. The number
of training samples in Table 7 is smaller than that in Section 3 (shown in Table 1). This is because the
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samples used in this experiment have more representative features than those in Table 1. Therefore,
even the training set is smaller in this experiment, high classification rate can also be achieved.

Table 7. The number of training samples for each defect type.

Defect Type Number of Training Samples

Scratch 160
Slag 80
Peel 200

No significant defect 300

For more accurate comparison of experimental results, we set the number of nodes in the hidden
layer to 50 which is the same as used in the experiment in Section 3.

4.2.2. Defect Identification Using ELM

After training ELM, it is used for the defect classification. The trained model will output a
4-dimensional vector corresponding to the four types of defects.

In Section 2.2, two classification strategies of ELM are proposed, that is maximum strategy and
real-time identification strategy. With the experiment in Section 3, the maximum strategy is used.
In that experiment, all testing samples belong to the four known types, so each image sample will
be classified into one of the four defect types. In this section, the real-time identification strategy is
used to address the problem coming with new defect types. With the real-time identification strategy,
a testing sample will be classified into one of four defect classes only when the corresponding one of
the four elements in the output vector is greater than or equal to the preset threshold ε.

To determine a proper value for the threshold, we have conducted cross-validation. All samples
in the training set are with known defect types. When plotting the curve of classification accuracy
against different threshold values, we observe that the classification accuracy drops significantly when
the threshold ε approaches the value of −0.1. As shown in Figure 13, the inflection point appears
when the threshold ε is equal to −0.1. Therefore, we use −0.1 as the value of the threshold ε in this
experiment. That is, if the maximum value of the elements in the output vector is less than −0.1,
this test sample should be classified as “unknown”.
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Figure 13. Classification accuracy changes with different threshold values.

Table 8 shows the confusion matrix obtained by using the trained ELM to classify the testing
dataset. As shown in the table, the average classification accuracy is about 92%, slightly less than
that shown in Section 3.4.1 (Table 5). This may be caused by the smaller sample size of training set.
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Another observation is that several samples are classified as unknown defect types due to the change
of classification strategy. The proportion of these samples is about 1.1%. This is still acceptable. When
the “unknown” types of defects appear more frequently, we have to re-train ELM, and this is described
in the following section.

Table 8. Confusion matrix with unknown defect type.

Defect Type Scratch Slag Peel No Defect Unknown Defect Total Classification Accuracy

Scratch 109 0 2 7 2 120 90.83%
Slag 6 49 3 1 1 60 81.67%
Peel 3 2 132 11 2 150 88.00%

No defect 0 0 1 218 1 220 99.09%
Total 118 51 138 237 6 550 92.36%

4.2.3. Re-Training ELM with New Types of Defects

With the new types of defects being detected, we have manually identified that the new defect
type is “pore”, as shown in Figure 14. Over time, more “unknown” types of defects are identified.
Table 9 shows the confusion matrix with the additional defects of “pores”.
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Figure 14. Pores defect.

Table 9. Confusion matrix with the addition of pores defect.

Defect Type Scratch Slag Peel No Defect Unknown Defect Total Classification Accuracy

Scratch 109 0 2 7 2 120 90.83%
Slag 6 49 3 1 1 60 81.67%
Peel 3 2 132 11 2 150 88.00%

No defect 0 0 1 218 1 220 99.09%
Pore 0 2 0 0 28 30 N/A
Total 118 53 138 237 34 580 87.59%

As shown in Table 9, the average classification accuracy drops to about 87.6%, lower than the
average accuracy of 92% shown in Table 5. This shows that a small number of samples of “unknown”
types of defects has little effect on average classification accuracy. However, when lots of unknown
defects are present, ELM should be re-trained with the “unknown” defect types added into the
training dataset.

Before adding the “unknown” types of defect samples into the training dataset, we need to
manually label them. The re-trained ELM can then be used to replace the old model for defect
classification. Table 10 shows the new confusion matrix using the retrained ELM. As shown in the
table, the proportion of unknown defects has significantly dropped when using the retrained ELM for
classification. We notice that the classification accuracy for the new defect type “pore” is not high. This
is because the number of training samples for this type of defect is not large enough. This means that
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the re-training of the classification model should happen only when sufficient number of unknown
types of defects appear.

Table 10. New confusion matrix using retrained ELM with new samples of “pore”.

Defect Type Scratch Slag Peel No Defect Pore Unknown Defect Total Classification Accuracy

Scratch 108 0 3 7 0 2 120 90.00%
Slag 5 49 3 1 1 1 60 81.67%
Peel 4 3 131 10 0 2 150 87.33%

No defect 0 0 2 216 0 2 220 98.18%
Pore 0 4 2 4 18 2 30 60.00%
Total 117 56 141 238 19 9 580 90.00%

To make the experiment more convincing, we add white spots as a new type of defect.
The confusion matrix obtained using the original or retrained ELM is shown in Tables 11 and 12,
respectively. As shown in these two tables, the experimental results are similar to that in
Tables 9 and 10.

Table 11. Confusion matrix with new samples of the defect type “white spot”.

Defect Type Scratch Slag Peel No Defect Pore Unknown Defect Total Classification Accuracy

Scratch 108 0 3 7 0 2 120 90.00%
Slag 5 49 3 1 1 1 60 81.67%
Peel 4 3 131 10 0 2 150 87.33%

No defect 0 0 2 216 0 2 220 98.18%
Pore 0 4 2 4 18 2 30 60.00%

White spot 0 0 1 2 0 22 25 N/A
Total 117 56 142 240 19 31 605 86.28%

Table 12. Confusion matrix obtained using the retrained ELM with new samples of “white spot”.

Defect Type Scratch Slag Peel No Defect Pore White Spot Unknown Defect Total Classification Accuracy

Scratch 106 0 4 6 0 2 2 120 88.33%
Slag 4 47 2 2 3 0 2 60 78.33%
Peel 2 3 133 11 0 0 1 150 88.67%

No defect 0 0 0 217 0 1 2 220 98.64%
Pores 0 5 3 2 18 1 1 30 60.00%

White spot 0 0 1 7 0 17 0 25 68.00%
Total 112 55 143 245 21 21 8 605 88.93%

5. Conclusions

To detect and identify various types of surface defects of cold rolled strip, we have developed an
online monitoring system. The system is capable of extracting features of the surface images acquired
from the cold rolling production line, and then using the features as input of the ELM classifier. In the
production environment, for yield and quality assurance, the model should be quick enough in feature
extraction and defect identification based on satisfactory classification accuracy. For potential new
defects, fast classifier re-training and satisfactory classification accuracy of re-trained classifier are
both necessary.

This paper has explored different feature extraction methods (SIFT, SURF, LBP) and various
classifiers (BP, SVM, ELM) to find the fastest combination method with satisfactory classification
accuracy. After getting the best combination method, this paper also explored its re-training time and
classification accuracy when dealing with new types of defects.

The conclusions from our study are as follows:

(1) LBP is faster in extracting features than traditional methods SIFT and SURF.
(2) ELM can be trained faster than traditional classification method BP and SVM for its

simple algorithm.
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(3) When dealing with known types of defects, the hybrid LBP + ELM method is more efficient than
other combination methods with less training time (865 ms on 1348 samples), classification time
(15 ms per sample), and higher classification accuracy (more than 96%).

(4) When dealing with new types of defects, in most cases of production line environment,
the samples of new types of defects will be less than training samples in experiment (1348), so the
retraining time will be less than 1 s. The retrained classifier also has satisfactory classification
accuracy (more than 86%).

On accounts of the satisfactory classification time, re-training time and classification accuracy on
major known pre-trained defects and minor new defects in production environment, the hybrid LBP
+ ELM method satisfy the demand of real-time online defect monitoring system for continuous cold
rolling process.
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