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Abstract: In this study, the microstructural evolution and mechanical properties of TiCuNiZr-based
bulk metallic glass (BMGs) composites were systematically investigated in order to optimize both the
strength and the ductility of BMGs. By tailoring the glass-forming compositions, TiCuNiZr-based
BMG composites with different volume fractions of B2 (Ti,Zr)(Cu,Ni) crystals precipitating in the
glassy matrix exhibit not only macroscopic ductility but also high strength as well as work-hardening,
which is due to the formation of multiple shear bands and martensitic transformation during
deformation. Optimized mechanical properties can be achieved when the crystalline volume fraction
is at least higher than 44 vol. %, which is attributed to the sizeable difference between Young’s moduli
of the B2 (Ti,Zr)(Cu,Ni) crystals and the glassy matrix, and the precipitation of Ti2Cu intermetallic
compounds at the B2 crystal boundaries. Our study provides a complementary understanding of
how to tailor mechanical properties of TiCu-based BMG composites.

Keywords: bulk metallic glasses; composites; martensitic transformation; shear bands; composites;
mechanical properties

1. Introduction

As a prominent class of metallic materials, bulk metallic glasses (BMGs) have attracted significant
attention due to their advantageous mechanical properties, including high strength, high hardness,
and excellent wear resistance [1–5]. However, highly localized shear bands tend to be activated
in the glassy matrix during deformation, leading to strain softening and the catastrophic failure of
BMGs [1–5]. In an attempt to circumvent these drawbacks, BMG composites have been explored by
introducing crystalline second phases into the glassy matrix [6,7]. Previous studies have focused on
the development of ex-situ fabricated BMG composites, but subsequently in-situ developed BMG
composites were found to be a more effective way to enhance the mechanical properties of BMGs [6–12],
especially when ductile crystals precipitate in the glassy matrix. Up until now, a variety of alloy
systems have been developed and a remarkable tensile ductility has been achieved for Ti-based and
Zr-based BMG composites with the formation of dendrites in the glassy matrix by introducing Be
as a micro-alloying element and adjusting the fabrication process [6,13–19]. However, these BMG
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composites usually suffer from strong strain softening due to the lack of pronounced work-hardening
during deformation. Even though the effect of strain softening can be reduced to some extent by
tailoring the glass-forming compositions and microstructures, the typically weak work-hardening of
ductile dendrites during deformation still cannot provide sufficient work-hardening [6,13–19].

Based on the concept of transformation-induced plasticity (TRIP), CuZr-based BMG composites
were developed by introducing the ductile, shape memory B2 CuZr phase into the glassy matrix [20–26].
Such BMG composites exhibit high strength and good plasticity together with obvious work-hardening
under compressive and tensile loading conditions [20–26]. In order to promote the further development
of such shape memory BMG composites, a lot of research has been devoted to applying this
concept to other glass-forming compositions [27–32]. Among them, Ti-based alloy systems are
good candidates because of their low density, superior glass-forming ability (GFA), good corrosion
resistance, and relatively high Young’s modulus [33–35]. So far, TiCu-based BMG composites have
been explored by introducing the B2 austenite phase into the glassy matrix, which indeed show
high strength and good ductility as well as work-hardening [27–29,36,37]. Kim et al. found that a
gradual, martensitic transformation occurs within bimodal-sized B2 crystals, inducing branching and
the multiplication of shear bands in the glassy matrix during deformation [27–29,36–38]. However,
in order to better understand the formation and deformation of TiCu-based BMG composites,
more studies are necessary to understand the reason for the absence of tensile ductility. Furthermore,
the effect of crystalline volume fractions on the mechanical properties of TiCu-based BMG composites
should also be investigated. In the present work, the microstructures and mechanical properties of
TiCuNiZr-based BMG composites with Hf, Si, and/or Sn micro-alloying additions are investigated
and their corresponding deformation mechanism is analyzed.

2. Materials and Methods

Ti45.5Cu37.5Ni7.5Zr2.5Hf3Si1Sn3 (T1), Ti46.5Cu37.5Ni7.5Zr2.5Si1Sn5 (T2), Ti43.5Cu37.5Ni7.5Zr2.5Hf3Si1Sn5

(T3), Ti42.5Cu37.5Ni7.5Zr2.5Hf5Sn5 (T4), and Ti41.5Cu37.5Ni9.5Zr2.5Hf3Si1Sn5 (T5) master alloys were
fabricated by arc-melting appropriate amounts of the constituting elements (>99.9% purity) under
a Ti-gettered argon atmosphere, respectively. The master alloys were remelted at least four times
before suction casting in order to guarantee chemical homogeneity. From these master alloys the
melt-spun ribbons were prepared by single-roller melt-spinning, using a custom-made melt spinner
at a wheel rotating speed of 31.4 m/s. In addition, rods with a diameter of 2 mm were prepared
by rapid solidification, using a custom-made suction-casting device under an argon atmosphere.
Thermal analysis on the ribbons and rods was executed by differential scanning calorimetry (DSC,
Perkin Elmer 8500, PerkinElmer Inc., Waltham, MA, USA) at heating and cooling rates of 20 K/min.
Both the distributions and morphologies of the crystals in the glassy matrix were investigated using an
optical microscope (OM, Zeiss Axiophot, Carl Zeiss (Shanghai) Co., Ltd., Shanghai, China). A phase
analysis of the ribbons and rods was carried out by X-ray diffraction (XRD, Rigaku D/max-rB,
Rigaku Corporation, Tokyo, Japan) in reflection geometry, a scanning electron microscopy (SEM,
Gemini 1530, Carl Zeiss (Shanghai) Co., Ltd., Shanghai, China) combined with an energy dispersive
X-ray spectroscopy (EDX), and a transmission electron microscopy (TEM, JEOL-2100, JEOL Ltd., Tokyo,
Japan). The samples for the TEM measurements were prepared by a focused ion beam system (FIB,
HELIOS NanoLab 600i, FEI Company, Hillsboro, OR, USA) set-up in a SEM. Room-temperature
compression tests were performed on specimens with a height-to-diameter ratio of about 2:1 using an
electronic universal testing machine (CMT 5305, MTS Systems (China) Co., Ltd., Shenzhen, China) at
an initial strain rate of 2.5× 10−4 s−1. The compression tests were repeated at least three times to assure
the reproducibility of the data. The surface and fracture morphologies of the samples after deformation
were investigated by SEM. Moreover, a nanoindentation (Anton Paar CSM-NHT2, Anton Paar GmbH,
Graz, Austria) device was adopted to obtain the elastic properties of the B2 crystals and the glassy
matrix. The maximum applied force was 50 mN while the loading rate was 100 mN/min. The holding
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time at the maximum applied force was 10 s. Furthermore, the T1 rods were annealed at 1073 K for
12 h and then quenched into water in order to obtain fully crystalline B2 samples.

3. Results and Discussion

3.1. Phase Formation and Microstructural Features of Melt-Spun Ribbons and As-Cast Rods

As shown in Figure 1a, the XRD patterns of the melt-spun T1, T2, T3, and T4 ribbons with a
thickness of about 40 ± 10 µm display broad diffraction maxima, representing a typical amorphous
feature. When the cooling rate decreases by increasing the sample dimension to a 2 mm diameter, some
B2 TiCu crystals precipitate in the glassy matrix (Figure 1b). The XRD patterns suggest that there is less
of an amorphous phase in the T1 and T2 specimens than in the T3 and T4 specimens. In order to confirm
the volume fraction of the amorphous phase, DSC measurements were conducted on the melt-spun
ribbons and the as-cast samples, respectively (Figure 1c,d). As shown in Figure 1c, the melt-spun
ribbons exhibit two or three crystallization events following the glass transition. The corresponding
glass transition temperature (Tg), as well as the onset temperature and the first peak temperature
of crystallization (i.e., Tx and Tp1) for the present ribbons and rods were measured and are listed in
Table 1. The Tg values are higher than 685 K, the values of Tx are higher than 740 K, and the values of
Trg (=Tx − Tg) are larger than 50 K, implying a relatively high thermal stability of the present metallic
glasses [39]. In agreement with the XRD patterns of the as-cast rods, the crystallization enthalpies of
the T1 and T2 specimens during heating are smaller than those of the T3 and T4 specimens, while
the glass transition events of the T1 and T2 rods become indistinct due to a pronounced partial
crystallization (Figure 1d). Based on the ratio of the crystallization enthalpies of the as-cast rods and
the fully amorphous ribbons, the crystalline volume fraction (fc1) can be approximately determined to
be 83.7 ± 5.8 vol. %, 86.9 ± 6.1 vol. %, 44.0 ± 7.9 vol. %, and 38.5 ± 8.6 vol. % for the as-cast T1, T2,
T3, and T4 rods, respectively. Hence, compared with the T1 and T2 rods, the T3 and T4 rods obviously
possess relatively larger volume fractions of the amorphous phase (Table 1).
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Table 1. Values of Tg, Tx, and ∆Trg for the melt-spun ribbons (recorded at 20 K/min heating rate) and
the corresponding volume fractions of crystals fc1 and fc2 of the as-cast rods as determined from DSC
measurements and optical microscopy, respectively.

Composition Tg (K) Tx (K) ∆Trg (K) fc1 (vol. %) fc2 (vol. %)

T1 689 ± 3 743 ± 1 54 ± 4 83.7 ± 5.8 85.5 ± 5.5
T2 693 ± 3 751 ± 1 58 ± 4 86.9 ± 6.1 70.0 ± 5.5
T3 692 ± 3 752 ± 1 60 ± 4 44.0 ± 7.9 37.7 ± 5.5
T4 687 ± 3 746 ± 1 59 ± 4 38.5 ± 8.6 37.4 ± 5.5

In order to further confirm the crystalline volume fraction and to illustrate both the distribution
and morphology of the B2 crystals in the glassy matrix, OM and SEM measurements were performed
on the rods (Figures 2 and 3), respectively. Based on the areas of the crystals in the glassy matrix,
the crystalline volume fraction (fc2 in Table 1) showed a similar tendency as the fc1 values determined
from calorimetry but exhibited small differences, which were most likely due to the slightly different
cooling rates from the top to the bottom of the copper mold-cast rods [40,41]. As shown in Figure 2,
the quasi-spherical crystals percolated with each other and only some crystals were isolated. It has
been demonstrated that the percolation threshold in Cu-Zr-Al BMG composites lies between 30 and
50 vol. %, while for Zr-based BMG composites the threshold value is around 35 vol. % [42,43]. In our
case, the critical fc for the microstructural transition in the TiCu-based BMG composites is of the same
order. As is well-known, it becomes easier for the amorphous phase to form at the surface of rods than
in its center due to the gradual decrease of the cooling rate from the surface to the center [40,41]. Hence,
when the applied cooling rate is a little lower than the critical cooling rate for full glass formation,
crystals preferentially precipitate in the center of the sample while the amorphous phase (Figure 2)
appears mostly at the surface of rods. Meanwhile, heterogeneous nucleation during solidification
occurs at preferential sites, i.e., impurities from mold walls or at already solidified particles [44].
Consequently, some crystals also can precipitate on the mold surfaces due to the lower free energy
barrier for nucleation even though the applied cooling rate is high enough to form fully amorphous
samples. Consistent with previous results [28,36,38,42], some fine and isolated B2 crystalline particles
were found in the glassy matrix beside the formation of a great amount of large, percolated crystals
(Figure 2). Such bimodal length-scale crystalline particles should have a beneficial influence on the
mechanical properties [28,36]. By magnifying the crystalline regions (Figure 3), a few precipitated
intermetallic compounds were also detected around the B2 crystal boundaries (see the arrow). The EDX
results show that some Zr, Ni, and other elements were dissolved in the B2 TiCu crystals, whose average
chemical composition was roughly determined to be Ti47.7Cu36.4Ni8.5Zr1.6Hf2.3 Si0.9Sn2.6 for the T1
specimen, as an example. Zhang et al. and Gargarella et al. reported that these precipitates are cubic
B2 (Ti,Zr)(Cu,Ni) crystals [29,45].

In an attempt to confirm the existence of B2 and other unknown intermetallic phases in
the glassy matrix, TEM measurements were performed on the as-cast T1 sample. As shown in
Figure 4a, two kinds of different microstructural regions are observed. In region 1 (Figure 4b),
some fine white intermetallic compounds (particles B) appear at the interface between particles A,
which agrees well with SEM measurements. Based on the corresponding selected area electron
diffraction (SAED) patterns (Figure 4c), the particles A are identified to be CsCl-type B2 crystals
along the zone axis

[
111

]
. The particles B can be indexed as tetragonal Ti2Cu (Figure 4d). In fact,

different intermetallic compounds were also found in TiCu-based BMG composites, which strongly
depend on the actual glass-forming compositions [27–29,36–38,46–49]. Zhang et al. and Chen et al.
found that minor Sn addition can inhibit the precipitation of Ti2Cu crystals, while some Cu2ZrTi and
Zr5Sn3 crystals also form with the addition of more Sn [46,47]. Gargarella et al. also reported Cu2ZrTi
intermetallic compounds together with a small amount of Ti5Si3 crystals [48], while the island-like
Ti2Cu intermetallic compounds precipitated within β-Ti dendrites [49]. Therefore, the thermal stability
of intermetallic compounds can be effectively changed by tailoring the glass-forming compositions
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and introducing different micro-alloying elements, leading to their precipitation in the glassy matrix.
Furthermore, as shown in Figure 4e, some nano-scale twins were found in region 2. The corresponding
SAED pattern (Figure 4f) further confirms the existence of twins (see the arrows), which can be
identified as B19′ martensitic crystals by considering previous observations [27–29,36,37]. Figure 4g
displays the distribution of the nano-scale twins, whose sizes are approximately between 20 and 80 nm.
In general, the formation of martensite in the as-cast samples is expected to be induced by the internal
stresses from quenching [50].
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Figure 4. (a) Transmission electron microscopy (TEM) image of the T1 sample; (b) local enlarged
image of region 1, selected area electron diffraction (SAED) patterns of particles; (c) particles A and
(d) particles B; (e,g) local enlarged images of region 2 and the corresponding (f) SAED pattern.

3.2. Mechanical Properties of the As-Cast Rods

Figure 5a displays the engineering stress-strain curves of the as-cast T1, T2, T3, and T4 rods
under compression. The values of the yield strength, the fracture strength, and the plastic strain of the
investigated samples are listed in Table 2. With increasing crystalline volume fraction, both the plastic
strain and the fracture strength gradually increase while the yield strength roughly decreases. When the
fc drops below 50 vol. %, the samples become brittle and only less than 3% plastic strain can be achieved
for the T3 and T4 samples. The fracture angle deviates significantly from 45◦ and is closer to 90◦.
Even though a few multiple shear bands were still observed (Figure 5b), the number of shear bands is
far less than the specimens with a fc above 50 vol. % while some obvious cracks can be observed (see the
dotted arrow). Meanwhile, many river-like patterns but only a few vein-like patterns were observed
on their facture surfaces (Figure 5c). In fact, by further optimizing the glass-forming compositions, the
GFA of TiCu-based BMG composites can be further enhanced in the Ti41.5Cu37.5Ni9.5Zr2.5Hf3Si1Sn5

(T5) sample, whose structural features and deformation behaviors are displayed in the Supplementary
materials (Figures S1 and S2). Only about 2 vol. % crystals uniformly distribute in the glassy matrix,
which is identified as the B2 TiCu phase (Figure S1a,b). However, the compressive plastic strain is
0.7 ± 0.3%, together with a relatively high yield and fracture strength (Figure S1c). Furthermore,
the fracture angle of the T5 samples also deviates significantly from 45◦ and is closer to 69◦, while its
corresponding fracture surface consists of smooth and vein pattern regions (Figure S2). Within the
smooth regions, nanometer-scale “dimple” structures, which are the typical fracture features of some
brittle Mg- and Fe-based BMGs, can be observed [51]. These brittle BMGs tend to fail in pieces or split
and sometimes the facture angles are gradually closer to 90◦ for some samples, whose deformation
is mainly governed by the crack-propagation. In our case, when the very limited fc of ductile B2
crystals cannot effectively inhibit the rapid propagation of cracks, this results in the limited ductility of
TiCu-based BMG composites.
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Table 2. The values of the yield strength, the fracture strength, and the plastic strain of the
investigated samples.

Composition Yield Strength (MPa) Fracture Strength (MPa) Plastic Strain (%)

T1 1915 ± 45 2590 ± 45 7.7 ± 1.0
T2 1890 ± 35 2456 ± 35 5.3 ± 0.9
T3 1974 ± 15 2311 ± 15 2.6 ± 0.5
T4 2127 ± 15 2364 ± 15 2.4 ± 0.5

Additionally, the samples with a high fc exhibit plastic strains larger than 5.0%, and fail in
a shear mode (T1 in Figure 5d). The fracture angles are smaller than the main shear angle of
45◦, i.e., 41 ± 2◦. Since the amorphous phase forms mostly at the surface, a large amount of
multiple shear bands can be observed (solid arrows in Figure 5d) as well as some cracks (dotted
circle). At the interface between the amorphous phase and the crystals (see region A in Figure 5d),
some martensitic crystals appear within the B2 crystals (dotted arrows in Figure 5e), implying the
occurrence of martensitic transformation during deformation. The fracture morphologies (Figure 5f)
show a number of vein-like and river-like patterns while some fine river-like patterns appear at the
interface between the amorphous phase and the crystals, implying that the “blocking effect” [52]
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originating from the crystals has a large influence on the fracture mode. Generally speaking, by
introducing ductile shape memory crystals into the glassy matrix, the ductility of BMG composites can
be improved [20–26]. During the early stage of deformation, martensitic transformation occurs within
B2 crystals in CuZr-based BMG composites [20–26]. With increasingly applied stress, martensitic
transformation becomes more prominent while a large amount of twins form easily within B2 crystals
with a relatively lower stacking fault energy [53]. Meanwhile, the shear bands can dissolve precipitates,
wrap around crystalline obstacles, or be blocked depending on the size and density of the precipitates,
leading to the multiplication of shear bands in the glassy matrix [54]. Recently, Hong et al. have also
observed such a deformation behavior in TiCu-based BMG composites [36]. Even though TiCu-based
BMG composites with a similar fc exhibit relatively higher yield strength than CuZr-based BMG
composites, their room-temperature ductility is not as good as expected. Until now, no tensile
ductility of TiCu-based BMG composites with precipitation of B2 crystals had been achieved in
contrast to Ti-based BMG composites with a precipitation of ductile α-Ti or β-Ti dendrites in the
glassy matrix [15,16,30–32,55]. Based on previous results [15,16,30–32,55], the tensile ductility of BMG
composites strongly depended on the crystalline volume fraction, size, and distribution of crystals as
well as on suitable glass-forming ability (GFA) [6,13–26]. Until now, several approaches were proposed
to describe transformation toughening in BMG composites [42,56,57], among which the yield strength
and fracture strain can be successfully described by a strength model considering both percolation
and an empirical, three-microstructural-element-body approach, respectively. Then the correlation
between yield strength/fracture strain and the fc, especially in CuZr-based BMG composites [42],
can be easily illustrated. For TiCu-based glass-forming alloys, both GFA and the formation of B2 TiCu
crystals can be effectively optimized by controlling their compositions and the casting process [20–26].
However, by collecting both the yield strength and the fracture stains of TiCu-based BMG composites
as well as the fully crystalline samples (Figure 6a), the strength model cannot well describe the fc
dependence of the yield strength and the fracture stain. Therefore, other factors except the volume
fraction and distribution of B2 crystals should be considered for fabricating ductile TiCu-based BMG
composites, namely, the precipitation of brittle intermetallic compounds and/or the thermal expansion
misfit around the interfaces.
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Figure 6. (a) The engineering stress-true strain curves under compression of shape memory B2 CuZr
crystalline samples for Cu47.5Zr47.5Al5 alloys and crystalline B2 (Ti,Zr)(Cu,Ni) specimens in the present
work, and (b) Young’s moduli of the dispersed particles and the matrix for TiCu-based, CuZr-based [42],
and Zr-based BMG composites (i.e., DH1, DH1A, and DH1B) [55].

As shown in Figure 6a, the yield strength of B2 (Ti,Zr)(Cu,Ni) crystalline samples is far
higher compared with B2 CuZr crystalline samples. During the elastic-plastic deformation stage,
the martensitic transformation initiates at a stress of about 545 MPa (dotted arrow in Figure 6a)
and further martensitic transformation occurs with increasing the applied stress to 1150 ± 20 MPa



Metals 2018, 8, 196 9 of 13

(dash-dotted arrow in Figure 6a). The high yield strength of B2 (Ti,Zr)(Cu,Ni) crystals is linked to
the precipitation of Ti2Cu intermetallic compounds at the B2 crystal boundaries. For CuZr-based
BMG composites, a few Cu10Zr7 and/or other intermetallic compounds also precipitate, which
usually exist within B2 CuZr crystals but not at their interfaces [58]. The precipitation of fine
intermetallic compounds around crystal boundaries can inhibit the rapid development of martensitic
transformation to some degree [59,60]. Hence, in our case, the Ti2Cu intermetallic compounds at the B2
crystal boundaries should play an important role on the mechanical properties. During deformation,
less elastic energy of the TiCu-based BMG composites can be effectively released compared with
CuZr-based BMG composites due to the inhibited martensitic transformation before the formation and
propagation of shear bands in the glassy matrix.

On the other hand, the elastic mismatch between the dispersed particles and the matrix
has a strong influence on the formation and propagation of shear bands and cracks [61].
Optimum toughness/ductility of the brittle composites can be achieved usually when the elastic
rigidity moduli of the dispersed particles is equal to or less than that of the matrix and the
interfacial bond strength is sufficient to allow a plastic deformation of the dispersed particles [61,62].
Murali et al. proposed that the normalized toughness of composites increases rapidly as the modulus
mismatch decreases, approaching a maximum value as the modulus mismatch becomes close to
zero [62]. Figure 6b displays Young’s moduli of the dispersed particles and the matrix for TiCu-based,
CuZr-based, and Zr-based BMG composites, respectively. It can be seen that the difference between B2
(Ti,Zr)(Cu,Ni) crystals and the glassy matrix is as large as approximately 30.8% while the difference of
particles and matrix for other based BMG composites is between 7.8% and 22.1% [42,55]. Therefore,
the modulus mismatch between B2 (Ti,Zr)(Cu,Ni) crystals and the glassy matrix in TiCu-based BMG
composites is higher compared with other ductile BMG composites, which induces large residual
stresses caused by thermal expansion misfit [63]. Therefore, even though the “blocking effect”
originating from B2 crystals can induce the multiplication of shear bands at the interface between
crystals and the glassy matrix, the subsequent shear banding instability may not be sufficiently
decreased due to the large residual stresses at the interfaces, as a result micro-cracks easily appear.
Meanwhile, the martensitic transformation cannot effectively continue to dissipate the elastic energy
stored in the sample-machine systems during deformation. As a result, the mechanical properties
of the present TiCu-based BMG composites are better than for TiCu-based BMGs but worse than for
CuZr-based BMG composites when fc is below 50 vol. %.

Therefore, in order to enhance the room-temperature ductility of TiCu-based BMG composites,
a higher volume fraction of B2 crystals should be introduced into the glassy matrix compared with
CuZr-based BMG composites. When the volume fraction of crystals in the glassy matrix is at least
higher than 44 vol. %, relatively good ductility can be achieved while the yield strength maintains a
higher value than 1800 MPa. In fact, when the crystalline volume fraction of CuZr-based and other
ductile BMG composites is higher than 50 vol. %, their corresponding yield strength is reduced. In our
case, the relatively high yield is due to the high yield strength of the B2 crystals and the precipitation
of Ti2Cu intermetallic compounds at the B2 crystal boundaries. During deformation, even though the
Ti2Cu intermetallic compounds restrain the development of martensitic transformation, a large amount
of B2 crystals reduces this harmful effect to some content and the Ti2Cu intermetallic compounds can
also provide a precipitation strengthening effect on the mechanical properties of TiCu-based BMG
composites, leading to relatively good mechanical properties.

4. Conclusions

In this work, TiCuNiZr-based BMG composites with micro-alloying elements and different
crystalline volume fractions were fabricated by rapid solidification. The microstructure of the present
composites is composed of B2 and glassy phases as well as a small amount of Ti2Cu intermetallic
compounds at the interface between B2 crystals and the glassy matrix. During deformation,
martensitic transformation occurs within the B2 crystals and multiplication of the shear bands
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can be induced, leading to not only macroscopic ductility but also high strength as well obvious
work-hardening of the present BMG composites. In contrast to CuZr-based and other based ductile
BMG composites, the difference between Young’s moduli of B2 (Ti,Zr)(Cu,Ni) crystals and the glassy
matrix is quite large, which induces a large elastic mismatch and increases the shear banding instability.
Besides, some Ti2Cu intermetallic compounds precipitating at the B2 crystal boundaries can inhibit
martensitic transformation and then go against the elastic energy dissipation during deformation,
which aggravates the shear banding instability. Hence, at least higher than 44 vol. % B2 crystals
should be introduced into the glassy matrix in order to achieve optimized mechanical properties of
TiCu-based BMG composites.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/8/3/196/s1,
Figure S1: (a) XRD pattern, (b) OM image, and (c) room temperature engineering stress-strain curves of the as-cast
T5 samples under compression; Figure S2: (a) the surface morphology and (b–d) the fracture morphology of the
as-cast T5 samples under compression.
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