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Abstract: The agglomeration behavior of non-metallic inclusion is a critical phenomenon that needs
to be controlled as it has a direct relationship with the performance of produced steel. Although the
agglomerates can be potential points for serious defects in every grade of steel, they are likely to be
more serious in high-carbon steel due to the low ductility of these grades of steels as well as their
usage in severe conditions. Confocal scanning laser microscopes (CSLM) have been used by different
researchers to investigate the agglomeration behavior of non-metallic particles at the interface of
liquid steel and Ar gas, in situ. In recent decades, the agglomeration of Al2O3 particle in and on
the surface of low-carbon steel has been widely investigated. However, there are very few studies
focussing on non-Al2O3 inclusions which are included in a Ca-treated high-carbon steel. In this
study, the agglomeration behaviors of sulfide/sulfide and sulfide/oxide particles on the surface of
liquid high-carbon steel have been investigated in detail using CSLM. Agglomerations on the liquid
surface are governed by capillary forces similar to the Al2O3 particle but this study demonstrates that
agglomeration forces among non-Al2O3 particles on the surface of re-melted high-carbon samples are
lower than pure-Al2O3 on the surface of low-carbon steel. Despite this, they show similar or longer
acting lengths than pure-Al2O3.
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1. Introduction

The importance of producing steels with higher performance has increased drastically. Removing
the inclusions from liquid steel to its maximum extent is one of the most important ways of enhancing
wear resistance, ductility and longevity in the realisation of produced steels. Especially, when high
strength, hardness and wear resistance are required, non-metallic inclusions can be critical. Individual
sub-micron inclusions may not affect the performance of steel. However, the agglomerates of the
sub-micron inclusions will produce a larger-size inclusion which is a weak point for steel. In addition to
their effect on the final product, they may cause problems in production steps such as nozzle-clogging
in a continuous casting process, leading to higher production costs.

There is a strong attraction force between alumina inclusions which cause them to agglomerate
into a chain-like cluster. This behavior has been investigated intensively [1,2]. Recently, it was clarified
by Sasai et al. that the agglomeration force of alumina inclusions was not originated from a Van der
Waals force or capillary force but a cavity bridge force [3]. According to this research, when alumina
inclusions come close to each other, a cavity bridge tends to be formed between them. If the contact
angle between the oxide inclusion and liquid metal is less than 90◦, this means that due to wettability
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a cavity bridge will not be formed between the oxides. It has been indicated that bonding through
the cavity bridge may be the main reason for alumina inclusions strongly agglomerating in liquid
steel. Furthermore, Zheng et al. investigated the attractive forces between different shapes of alumina
inclusions based on the theory of spontaneous cavitation [4]. By calculating the rupture energy of a
cavity bridge, Zheng et al. [4] demonstrated that a faceted inclusion has the strongest attractive force,
which was reflected in a plate-like, dendritic and spherical shape. Also Fuchigami et al. [5] developed
an agglomeration model by combining a coagulation calculation and flow simulation of liquid steel,
where coagulation of alumina and slag-origin oxide inclusions were considered [5]. In this model,
agglomeration frequency Z (m−3·s−1) was estimated by:

Z = α × N (1)

where α is the agglomeration coefficient (-), and N is collision frequency between inclusions (m−3·s−1).
Arai et al. [6] re-estimated the agglomeration coefficient α by re-calculating it based on the results
reported by Nakaoka et al. [7] and Higashitani et al. [8], as slag-origin inclusion has a wide
size distribution.

The agglomeration of non-metallic inclusions can occur not only between pure-alumina but
also in other types of inclusions such as non-alumina oxides and sulfides. Additionally, a majority
of high-carbon steels, including sulfur-containing materials, are deoxidised by silicon to avoid the
generation of alumina-based inclusions such as an alumina cluster and spinel (MgO-Al2O3). Therefore,
oxide inclusions in these grades of steel are combination of SiO2, CaO and Al2O3. Therefore, it is
critically important to investigate the agglomeration behavior of non-alumina oxide and sulfide
inclusions in liquid steel. High-carbon steel is one of the most important high-performance steel
manufactures due to its high hardness and wear resistance, but there are very few studies focusing on
the agglomeration behavior of inclusions.

In order to derive useful information associated with agglomeration behavior, in situ observation
is one of the most suitable methods for this form of study. Yin et al. performed an in situ observation
of alumina agglomeration by using a confocal scanning laser microscope (CSLM) combined with an
infrared ray (IR) furnace [9,10]. Yin et al. [9,10] investigated the collision of alumina particles and
the formation of alumina clusters at the interface of low-carbon Al-killed liquid steel and inert gas
(Ar). The attraction force between two alumina particles on liquid surface was found to be in the
order of 10−16 N, which was close to the capillary force that originated from the difference of capillary
pressure between the inner and outer side of a particle pair [11]. Kang et al. [12] investigated on various
surfaces oxide particles such as spinel, calcium aluminate and SiO2-based particles in 0.4 wt % C
steel including 1 wt % Si and 5.3 wt % Cr by in situ observation with a CSLM. It was indicated by
Kang et al. that although attractive behavior between pure-alumina particles could be observed,
capillary forces between the other particles were too weak to be detected. Aneziris et al. [13,14] and
Schröder et al. [15] have also conducted in situ investigation on agglomeration behaviors between
various surface particles in stainless steel by putting Al2O3, spinel and MgO particles on top of steel
samples in a CSLM. Although Al2O3 showed strong attraction forces [13], MgO showed a much
weaker attraction force [15], and in the case of spinel there were no agglomerations [14]. To the authors’
best knowledge, there are no studies focusing on in situ observation of the agglomeration behavior of
sulfide particles, which have significant importance in production of high-carbon steel. Hence, in this
study, an in situ observations of surface agglomerates has been conducted using a CSLM, aiming to
provide new information about behaviour of non-Al2O3 surface agglomerates in high-carbon steel.

2. Experimental Procedure

2.1. Equipment for In Situ Observation

In situ observations were performed by an IR furnace SVF17-SP from the Yonekura Corporation
(Kanagawa, Japan), combined with laser microscopy with CSLM VL2000DX from the Lasertec
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Corporation (Yokohama, Japan), illustrated in Figure 1. The heat source, infrared rays, is radiated from
halogen lamp which is located at the bottom focal point in a gold-coated elliptic chamber. The sample
is positioned at the top focal point in the ellipsoidal mirror. For efficient control of the temperature,
the sample sits above the thermocouple. A laser beam with 408 nm wavelength, which is lower
than the thermal radiation spectrum emitted from the sample, was used for capturing images of
the liquid surface with 30 times per second frame rate and 1024 × 1024 pixel resolution. At the
beginning of the experiment, the chamber was evacuated by an oil-sealed rotary pump for more
than three minutes and filled with high-purity argon gas which contained less than 3.0 ppm H2O
and 2.0 ppm O2. Then, the argon pressure in the chamber was kept at approximately 7 kPa higher
than the outer atmospheric pressure for more than three minutes. These purging procedures were
repeated for four times per experiment to make the chamber oxygen free. During heating, the argon
gas was continuously flowing, and the chamber pressure was kept approximately 7 kPa higher than
the atmospheric pressure. To avoid the sample’s oxidation at high temperature, oxygen and H2O in
the argon gas were further removed from the flowing argon by a clean column and purifier which
reduced the H2O and O2 content to less than 1.0 ppm.
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Figure 1. Schematic diagram of the infrared ray (IR) furnace combined with a confocal scanning laser
microscope (CSLM).

2.2. Materials and Heating Pattern

Table 1 shows the chemical compositions of high-carbon steels measured with spark emission
spectrometry. Both grades of steel are Si-killed, which include Mn, S and approximately 10 ppm of Ca,
which was added as CaSi wire in a secondary refining process. The sample was cut out and grinded to
fit in a MgO crucible with 8.0 mm inner diameter and 3.5 mm depth.

Table 1. Chemical composition of samples measured with spark emission spectrometry.

Steel C
(wt %)

Si
(wt %)

Mn
(wt %)

P
(wt %)

S
(wt %)

Ni
(wt %)

Cr
(wt %)

Mo
(wt %)

Al
(wt %)

T.Ca
(ppm)

T.O
(ppm)

60C 0.58 0.26 0.74 0.014 0.022 0.07 0.20 0.02 0.004 8.8 30.9
95C 0.95 0.23 0.88 0.012 0.028 0.06 0.23 0.12 0.002 7.9 16.0
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In 60C steel, the sample was heated to 1400 ◦C at a heating rate of 200 ◦C/min and followed by
heating to 1510 ◦C at 60 ◦C/min where the solid and liquid phase coexist on the surface; in the final
stage it was heated to 1540 ◦C at a 30 ◦C/min heating rate where the whole steel phase melts down.
In 95C steel, samples were heated to 1360 ◦C at a 200 ◦C heating rate and then at 60 ◦C/min to 1485 ◦C,
followed by heating to 1515 ◦C at 30 ◦C/min. Heating profiles were designed to avoid overheating the
sample surface and achieve uniform temperature for uniform melting. After keeping the samples at
the final temperatures for less than 5 min in the furnace, samples were quenched with purified helium
gas which has higher thermal conductivity.

3. Results and Discussion

3.1. Chemical Compositions

On the surface of remelted 60C and 95C steel, many agglomerates which consist of a round-shaped
oxide phase and surrounding sulfide particles, were identified. No single oxide or single sulfide particle
was found because of agglomeration of the particles in the liquid steel or during solidification. Tables 2
and 3 summarize the average compositions of the oxide and sulfide phases identified on the surface of
the steels, derived by scanning electron microscipy—energy-dispersive X-ray spectroscopy (SEM-EDS)
analysis. Table 2 also presents the liquid fractions of each oxide phase calculated from average
compositions by using FactSage 7.0 with FToxid databases, indicating that most of the oxide particles
are in a semi-solid stage. Figure 2 shows representative morphologies of these agglomerates on the
surface of 60C and 95C steel quenched after five minutes’ remelting in the MgO crucible, observed by
SEM-EDS (Hitachi S-3400N SEM, Kantō, Japan, Bruker XFlash SDD-EDS, Billerica, MA, USA) at beam
energy of 20 kV. In the EDS mapping image in Figure 2b,d, the Si-detected and S-detected area indicate
oxide and sulfide phases, respectively. It can be observed from Figure 2 that in both 60C and 95C steel,
the oxide phases are surrounded by relatively small sulfide phases, which was caused by the surface
agglomeration phenomenon. Even though the average liquid fraction of the oxide phase in 95C steel is
low (5.7%) as presented in Table 2, the shape of surface oxide particle is round as shown in Figure 2.
It should be noted here that %Mg enhancement in the oxide phase from the MgO crucible was not
identified in any experimental condition.

Table 2. Compositions and liquid fractions of surface oxide particles in 60C and 95C steels measured
with quantitative energy-dispersive X-ray spectroscopy (EDS) analysis.

Steel Crucible
Holding

Time (min)
Holding

Temperature (◦C)
Average Composition Liquid Fraction

(wt %)CaO (wt %) SiO2 (wt %) Al2O3 (wt %)

60C MgO 5 1540 38.9 27.6 33.6 76.1
95C MgO 5 1515 56.8 30.8 12.4 5.7

Table 3. Compositions of surface sulfide particles in 60C and 95C steels measured with quantitative
EDS analysis.

Steel Crucible Holding Time (min) Holding Temperature (◦C)
Average Composition

CaS (wt %) MnS (wt %)

60C MgO 5 1540 49.6 50.4
95C MgO 5 1515 88.9 11.1
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Figure 2. Scanning electron microscope (SEM) image and EDS mapping (Si, S) of particles on the
surface of (a,b) 60C and (c,d) 95C steel quenched after 5 min remelting in the MgO crucible.

3.2. Morphologies in Confocal Scanning Laser Microscope (CSLM)

The morphologies of surface agglomerates have been investigated using in situ observation in
CSLM which has been summarized in Table 4. Table 4 shows the typical morphology of oxide, sulfide
and agglomerated particles on liquid 60C and 95C steel in the CSLM. As shown in these images,
while the oxide phases appear to be spherical and bigger than 5 µm diameter, the sulfide phases are
polygonal and relatively smaller (<3 µm). The morphologies of the agglomerates, illustrated in the
bottom line in Table 4, are exactly same as in the SEM-EDS analysis in Figure 2. The spherical shape of
oxide particles indicates the liquid percentage in these particles, as reported in Table 2.

Table 4. Morphology of oxide, sulfide and agglomerated particle on the surface of 60C and 95C liquid
steel. (All images are in the same magnification with each other).

Particle Type 60C Steel 95C Steel

Oxide particle
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3.3. Agglomeratrion Behaviors

The agglomeration behaviors of oxide and sulfide surface particles are presented in Figure 3.
As shown in Figure 3a, one spherical oxide particle can be identified, which has floated up when
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the steel fully melted. In Figure 3b,c, the oxide particle moves with the natural flow of liquid steel
and, at the same time, some sulfide particles are strongly attracted to the oxide. Subsequently, sulfide
particles start to collide with the oxide particle in Figure 3d. From Figure 3e,f, not only sulfide particles
but also agglomerated particles are observed being pulled toward the spherical oxide particle. In this
strong agglomeration phenomenon, while several particles came from a relatively distant area more
than 100 µm from the collision position, the spherical surface oxide particle has limited movability.
Therefore, it can be summarized that the round oxide has a considerably strong attraction force.
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Figure 3. Agglomeration behavior of oxide and sulfide particles on the surface of liquid 95C steel at
1515 ◦C ((a) 0 s; (b) 1.18 s; (c) 1.77 s; (d) 2.04 s; (e) 2.58 s; (f) 3.25 s).

A previous study by Yin et al. [10] reported that there is no attraction force between full-liquid
particles on the liquid steel surface, and attraction forces are effective between semi-liquid particles.
Also, a study by Kang et al. [12] proposed that due to the rise of liquid steel around the surface liquid
particle because of surface tension, there is no attraction force between full-liquid particles. The rise
of the liquid level is caused by high wettability between the liquid oxide and steel, which means the
contact angle is lower than 90◦. Therefore, the spherical oxide particle in Figure 3 is expected to be
a semi-liquid particle because the attraction force was identified from in situ investigation in CSLM.
This is consistent with the calculated liquid fraction presented in Table 2, where liquid fractions of the
oxide particles are less than 100%.

Step-by-step agglomeration phenomena among surface sulfide particles is demonstrated in
Figure 4. As illustrated in Figure 4a, there is a pair of sulfide particles indicated by a circle.
From Figure 4b,c, the surfaced particle pair is attracted toward each other and agglomerated.
Subsequently, another pair of sulfide particles also agglomerated in Figure 4d–f. As shown in Figure 4,
the distance between the agglomerates when agglomeration starts is approximately 10 µm, which is
much shorter than the agglomeration distance in Figure 3.
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Figure 4. Agglomeration behavior between sulfide particles at the surface of liquid 60C steel at 1540 ◦C
((a) 0 s; (b) 0.14 s; (c) 0.18 s; (d) 2.99 s; (e) 3.13 s; (f) 3.36 s).

Due to the limited number of oxide particles in the steels studied, the agglomeration behavior
between two oxide particles has not been investigated. Also, the semi-liquid oxide particle is likely to
be instantly surrounded by sulfide particles when it emerges on the surface because of the number
of sulfide particles. Agglomeration between oxide/oxide could occur only when two oxide particles
simultaneously emerge at surface close to each other.

3.4. Measurement of Attraction Force and Acting Length from CSLM Video File

To estimate the attraction force F between the surface particles, it is necessary to measure
acceleration a from a CSLM video file. An example of the transition of the surface agglomerate’s
location is presented in Figure 5. As shown in this graph, before the attraction force F starts working on
the surface particle, it floats along the natural flow of liquid steel. This natural flow can be recognized
clearly and visually in the CSLM video, because not only one particle but also a group of particles
follow the same direction. Once a surface particle comes close to another one and starts being attracted
toward it, the particle goes out of the flow and its velocity starts increasing gradually. This distance
between particles when the particles start deviating toward each other is called the acting length (L).
By considering the trajectory as a quadratic curve, a quadratic equation can be derived as presented in
Figure 5a,b.
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Figure 5. An example of (a) x-location and (b) y-location transition of surface agglomerates.
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Attraction force F (N) and acceleration a (m/s2) can be estimated by following the equations:

a =

√(
d2x
dt2

)2

+

(
d2y
dt2

)2

(2)

F = ma (3)

where m is mass of the surface particle (kg). In this estimation, acceleration a, of the attracted particle is
regarded as constant throughout the agglomerating behavior even though the host particle also moves
during agglomeration. Additionally, frictional resistance on the liquid surface is ignored. It should be
noted that these calculations can be considered to be an estimation of attraction force.

3.5. Type of Attraction Force

There are several types of attraction forces between non-metallic inclusions. Figure 6 summarized
three types of attraction force the Van der Waals force, the force due to the gas cavity and the capillary
force, which have been estimated by Zheng et al. [4]. The measured attraction force at the molten steel
surface is calculated by Equation (2) and also plotted in this graph. While the Van der Waals force
and the force due to the gas cavity are effective when two particles are very close, less than single
micrometers, the capillary force can be effective at a longer distance, around 100 µm. As shown in
Figure 6, current data in this study are located near the capillary force; therefore, it can be implied that
attraction force identified in the current study is a capillary force. Furthermore, it has been already
revealed by Yin et al. [9,10] that the dominant attraction force between particles on a liquid steel surface
is the capillary force.
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Figure 6. Measured attraction force and various types of force between alumina particles (plots are
attraction force measured from CSLM video. Lines are calculated values by Zheng et al. [4]).

3.6. Comparison with Other Materials

Figure 7 shows estimated attraction force F and acting length L between non-metallic surface
particles observed on 60C and 95C liquid surfaces in the CSLM in situ experiment. In Figure 7a,b,
F working on the smaller guest particle (particle 1) is measured and plotted against the larger host
particle 2’s radius (R2). In Figure 7c, the relationship between F and L is presented. In each graph of
Figure 7, the black dotted line shows the solid alumina pairs’ data derived by Shibata et al. in low
carbon Al-killed steel [16]. The blue dotted line shows data of semi-liquid oxide pairs derived by
Yin et al. in a high-carbon liquid steel (0.84%C) [10].
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Figure 7. Attraction force F and acting length L between non-metallic surface particles ((a) relation
between F and R2; (b) relation between L and R2; (c) relation between F and L; the table shows the
legend of graph (a–c)).

Figure 7a shows that a smaller size of either guest particle (R1) or host particle (R2) leads to
weaker attraction force, F. This can be explained by considering the mechanism of the capillary force,
where shallower depression between surface particles causes a weaker capillary force. In both 60C
and 95C steels, sizes of guest sulfide particles are smaller than other studies as highlighted in the
legend table in Figure 7, which can be the main reason why the attraction force, F, of 60C and 95C is
weaker than the others. Also, by comparing current results with the results of the smallest R1 (<5 µm)
of the Al2O3 particle derived by Shibata et al. [16], there are still slight gaps of the attraction force, F.
The main reason could be the average size of the surface agglomerates and differences in wettability.
Shibata’s data includes results of larger guest particles, more than 3 µm, but in this study the maximum
size of the investigated sulfide particles is 3 µm. Alternatively, the gap between attraction forces,
F, of this study and the previous study of the Al2O3 particle could also be caused by the difference
in wettability. The wettability of different particles is a function of various parameters such as the
surface tension of liquid steel and the roughness of the particle surface. Kawai et al. [17] mentioned
that carbon concentration and the temperature of the liquid steel will affect its surface tension. Also,
it was reported by Nakajima et al. [18] and Schröder et al. [13] that if the surface roughness of particles
increases, its wettability will increase which leads to a stronger attraction force. However, at this
moment further work is required to clarify which particle size, surface tension and roughness is most
dominant on the attraction force gap between this study and Shibata’s data.

In terms of acting length, L, the sulfide/sulfide pair shows a similar acting length with Al2O3 but
sulfide/oxide agglomerates show a higher acting length compare to other surface particles despite
having a weaker attraction force, F. The reason could be related to drag resistance. A floating object on
the surface of a liquid can accelerate toward another object when applied horizontal force exceeds the
static friction force of the object. In this study, the sizes of the guest particles are smaller compared to
other studies, hence static frictional forces are weaker and the required attraction force to accelerate
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toward another object is smaller. Therefore, sulfide guest particles in this study will start accelerating
toward host particle from farther away.

3.7. Agglomeration Behavior Caused by Capillary Force

When surface agglomeration occurs between semi-liquid and solid surface particles, the solid
particle is sometimes completely dissolved into the other semi-liquid particle instead of being
physically attached to it. This phenomenon has already been identified among oxide surface particles
by Yin et al. [10] and was also observed in sulfide/oxide agglomerates in this study. Figure 8 shows
an example of growth of semi-liquid agglomerates in 95C, which was observed at 1495 ◦C during
temperature being raised to the final value, 1515 ◦C. In these images, a chain-like agglomerate is
hooked at the interface between solid/liquid steel. In Figure 8a, a lot of relatively small surface
particles gathering at its tip can be observed. Subsequently, some of them are dissolved in the
semi-liquid phase, as shown in image (b)–(d). Finally, the semi-liquid phase leads to bigger particles in
image (e). This semi-liquid phase includes not only oxide but also sulfide particles; however, sulfide
phases are considered to be dissolved in the liquid oxide phase. Therefore, semi-liquid oxide surface
particles can become bigger and bigger.
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Figure 8. Growth of semi-liquid surface agglomerates in 95C steel at 1495 ◦C.

As discussed above, bigger surface particles cause a stronger capillary force and smaller particles
tend to be accelerated from farther away. It is highly important to note that the surface agglomeration
phenomenon is much more likely to occur under the condition where large sized and small sized
particles co-exist. Furthermore, as shown in Figure 9, the particle growth described above happens
more frequently, which may lead to a stronger capillary force. This process can be repeated numerous
times like a chain reaction. In summary, on the surface of high-carbon steel including solid sulfide
and semi-liquid oxide particles, these find it easier to agglomerate than in other materials. In recent
decades, a lot of manufacturing companies use Ar bubbling in a ladle in the secondary refining process.
Agglomeration behavior at the interface between the stirring gas and liquid steel may significantly
affect not only the performance of steel manufactures but also the capability for stable production
by causing nozzle-clogging in the continuous casting process. Therefore, it will be very important to
control the agglomeration behavior of high-carbon steel by conducting further research.
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4. Conclusions

In this study, the agglomeration behavior of non-Al2O3 particles on the surface of liquid
high-carbon steel has been investigated by re-melting specimens. The main findings include the
following:

1. The agglomeration behaviors of sulfide/sulfide particle pairs and sulfide/semi-liquid oxide pairs
on the surface of liquid high-carbon steels were observed in situ by using CSLM. Agglomerations
between oxide/oxide pairs were not detected because they were surrounded by sulfide particles
shortly after floating up to the surface.

2. Attraction forces between the surface particles were calculated from acceleration, estimated by
tracking the trajectories of each particle in CSLM video files. The acting length is defined as the
distance between particles when they start to accelerate.

3. Estimated attraction forces and identified acting length are quite close to the values of the capillary
phenomenon estimated in recent studies.

4. The attraction force of sulfide/sulfide and sulfide/semi-liquid oxide pairs on the surface of
high-carbon steel was revealed to be slightly weaker than that of the alumina particle pair on the
surface of low-carbon steel. Possible reasons could be the particle size and wettability, which is
affected by the temperature and carbon percentage in liquid steel and the surface roughness of
solid particle.

5. Semi-liquid oxide particles can grow through surface agglomeration, leading to further, stronger
capillary forces. It is indicated that agglomeration among non-metallic surface particles is more
likely to occur under conditions where small sulfide particles and large semi-liquid oxide particles
that are capable of growing co-exist with each other.
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