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Abstract: The article presents the microstructure and properties of joints welded using the Hybrid
Laser Arc Welding (HLAW) method laser beam-Metal Active Gas (MAG). The joints were made
of 10-mm-thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP) and
characterised by a high yield point. In addition, the welding process involved the use of solid wire
GMn4Ni1.5CrMo having a diameter of 1.2 mm. Non-destructive tests involving the joints made it
possible to classify the joints as representing quality level B in accordance with the ISO 12932 standard.
Destructive tests of the joints revealed that the joints were characterised by tensile strength similar
to that of the base material. The hybrid welding (laser beam-MAG) of steel S700MC enabled the
obtainment of good plastic properties of welded joints. In each area of the welded joints, the toughness
values satisfied the criteria related to the minimum allowed toughness value. Tests involving the
use of a transmission electron microscope and performed in the weld area revealed the decay of
the precipitation hardening effect (i.e., the lack of precipitates having a size of several nm) and the
presence of coagulated titanium-niobium precipitates having a size of 100 nm, restricting the growth
of recrystallised austenite grains, as well as of spherical stable TiO precipitates (200 nm) responsible
for the nucleation of ferrite inside austenite grains (significantly improving the plastic properties
of joints). The tests demonstrated that it is possible to make welded joints satisfying quality-related
requirements referred to in ISO 15614-14.
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1. Introduction

The use of advanced technologies in metallurgical processing as well as a new look at the
significance and the role of alloying elements used in steels have enabled the fabrication of various
groups of steels characterised by vast ranges of mechanical and plastic properties [1]. The development
of new steel grades, particularly high-strength low alloys (HSLA) having ferritic, ferritic-pearlitic,
ferritic-bainitic, bainitic, or tempered martensitic structures, has made it possible to significantly reduce
the weight of structural elements and that of entire structures [2–4]. The reduction of thicknesses
of steels manufactured in thermo-mechanical control processes (TMCP) (dictated by the needs of
the automotive, ship-building, and petroleum industries) without compromising previously obtained
performance characteristics has made it possible to achieve significant savings resulting from lower
material processing and transport-related costs [5–11]. Advanced TMCP steels must satisfy not only
strength-related but also environmental and social criteria [12]. In the case of the arc welding and laser
welding of thermomechanically rolled steels, joints with insufficient impact strength are obtained, but
these deficiencies can be eliminated during the hybrid welding process [13–15]. During welding, the
material’s microstructure, which provides high strength and plastic properties and is achieved by
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thermo-mechanical rolling, is destroyed. In weld metal, the structure of cast metal with properties
are based on the used welding method (welding parameters) and additional material. Therefore, there is
a need for the assessment of the welding method and parameters’ impact on welded joints from steels,
which parameters are a result of TMCP properties, especially when unconventional heat sources,
such as a laser or laser-arc hybrids, are used [16–19].

The development of the above-named steels entails research works concerning various
technologies enabling the joining of such steels [20–22]. Increasingly often, metals and their alloys are
joined using highly efficient welding processes enabling the obtainment of high-quality welded joints
accompanied by high joining process efficiency and less labour. The above-presented approach has
resulted in the improvement of existing welding methods and, among other things, in the development
of hybrid welding (in the late 1990s). However, only recently has the hybrid welding process seen
growing popularity in, e.g., the shipbuilding or automotive industries, and it is gradually replacing
laser and arc welding.

The hybrid laser arc welding (HLAW) technology combines two conventional welding methods.
This process involves the simultaneous use of a heat source in the form of a laser radiation beam and
an electric arc. According to the PN-EN ISO 15614-14 standard, a welding process can be referred
to as hybrid where two coupled heat sources are used to form one common weld pool (Figure 1).
The combination of two independent welding methods into one hybrid process results in the synergic
effect of two heat sources. Consequently, the hybrid welding process is characterised by advantages
typical of both methods. In addition, the above-presented combination reduces or eliminates
limitations and disadvantages related to the use of only one heat source. Controversially, the beginning
of the development of the hybrid technology (combining two independent heat sources) in welding
engineering is seen by many as the announcement (in 1972) made by a group of engineers from the
Philips Research Laboratory, Eindhoven, Holland (led by W.G. Essers and A. C. Liefkens) concerning
the development of a new torch combining functions of plasma welding (PAW) and Gas Metal Arc
Welding (GMAW). Initial attempts involving the combination of the laser method with the arc process
were conducted at the Imperial College in London in the 1970s. A group of scientists supervised
by William Steen demonstrated unquestionable advantages resulting from the combination of a
plasma arc with a CO2 laser beam. The welding rate increased by 50–100%, whereas the penetration
depth increased by 20% when compared with that obtained using one heat source, i.e., a laser beam.
The process of hybrid welding can involve the use of two independent heat sources with two
independent technological heads. However, the foregoing requires precise positioning and the
use of a simple system enabling the synchronised activation of both heat sources. In addition, it is
possible to use special heads dedicated to the hybrid process that ensure the appropriate positioning
of the two heat sources. In the HLAW, method it is possible to use nearly any industrial laser,
yet the recent significant development of solid-state lasers (disc and fibre lasers) has made them the
most popular sources of laser radiation in the hybrid method. In addition, a plasma cloud formed
during the hybrid-welding process is more transparent for the electromagnetic wave emitted by
the above-named lasers (approximately 1 µm), nearly entirely regardless of the type of shielding
gas used in the arc method. Arc methods usually used in the HLAW method are those where the
electrode is simultaneously filler metal fed to the welding area in a continuous manner (Metal Inert
Gas (MIG), Metal Active Gas (MAG)). The filler metal makes it possible to adjust the chemical
composition of the weld through supplying appropriate alloying elements to the weld pool and
ensures the proper course of the welding process when a gap between joined elements is present
(in terms of laser welding, there should be no gap between elements to be joined). The laser beam
enables the obtainment of deep penetration using low linear energy, stabilises the arc, and improves
the thermal efficiency of the process. The electrode wire ensures the complete filling of the weld
groove gap and the formation of excess weld metal. The process of hybrid welding can be particularly
useful in large-size industrial-scale production, primarily because of a higher acceptable tolerance
when preparing the elements to be welded, the possibility of joining sheets in one run, and a lower
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accuracy when positioning the sheets to be joined [23–31]. HLAW is a relatively new welding process
which causes specific thermal conditions that result in a change of the crystallization mode and
precipitation type and size in a welded joint. The aforementioned conditions have a substantial
impact on the properties of thermo-mechanically rolled steel joints. Determination of HLAW welded
joints’ properties enables the application of contemporary, highly efficient welding technologies in an
industrial environment. Industrial demand for research in the field of joining contemporary steels with
recent welding processes was the basis for collaboration between the Silesian University of Technology
and the Welding Institute.

In this study, the welding of novel hot-rolled 700 MPa tensile strength Nb-Ti-V microalloyed
steels of 10 mm thickness was carried out by HLAW. The joint microstructure, hardness, strength,
and impact toughness were examined, and face and root bend and radiographic tests were performed.
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Figure 1. Schematic diagram of the hybrid welding process [26].

2. Experimental Section

The research-related tests aimed to identify the properties of butt hybrid welded (laser beam-MAG)
joints made of 10-mm-thick steel S700MC using a copper strip and solid wire GMn4Ni1.5CrMo having
a diameter of 1.2 mm. The chemical composition and the properties of the steel and weld deposit are
presented in Tables 1 and 2, whereas the steel microstructure is presented in Figure 2.

Table 1. The real chemical composition performed using Optical Emission Spectroscopy (OES) and the
mechanical properties of the original S700MC steel material.

Chemical Composition, wt %

C Si Mn P S Altot. Nb V Ti B Mo. Ce **

0.056 0.16 1.18 0.01 0.005 0.027 0.044 0.006 0.12 0.002 0.0150 0.33

Mechanical Properties

Tensile Strength Rm, MPa Yield Point Re, MPa Elongation A5, % Hardness HV Impact strength, J/cm2 (−20 ◦C)

822 768 19 280 135

* Total amount of Nb, V, and Ti should amount to a maximum of 0.22%. ** Ce: carbon equivalent.
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Table 2. Chemical composition and mechanical properties of filler metal GMn4Ni1.5CrMo.

Chemical Composition, wt %

C Mn Si Cr Ni Mo Ti

0.1 1.8 0.7 0.3 2.0 0.55 0.07

Mechanical Properties

Tensile Strength Rm, MPa Yield Point Re, MPa Elongation A5, % Impact Strength, J/cm2 (−40 ◦C)

900 810 18 55
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Figure 2. Microstructure of bainitic-ferritic steel S700MC with visible effects of plastic deformation.

The tests of thin foils performed using a transmission electron microscope revealed that the
hardening of steel S700MC was primarily caused by dispersive (Ti,Nb)(C,N)-type precipitates (a few
nm in size) formed in the steel ferrite during cooling (Figure 3). The growth of recrystallised austenite
grains in the steel was reduced by spherical (Nb,Ti)C and (Ti,Nb)(C,N) carbide precipitates having
diameters of between 10 and 50 nm (Figure 4).
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Figure 4. Dispersive precipitation of carbides (Ti,Nb)C in S700MC steel limiting the growth of
recrystallized austenite grains. (a) dispersive precipitation of carbides (Ti,Nb)C; (b) EDX spectrum;
(c) diffraction pattern; (d) diffraction pattern solution.
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2.1. Welding Process

The welded joints were made at Welding Institute in Gliwice using a robotic station (Figure 5).
The tests were performed using a TruLaser Robot (TRUMPF, Stuttgart, Germany) 5120 cell-equipped
with a TruDisk 12002 disc laser (TRUMPF, Stuttgart, Germany) having a power of 12,000 W (wavelength
λ = 1030 nm) and an EWM Phoenix 452 RC PULS (EWM AG, Mündersbach, Germany) synergic power
source. The hybrid welding head (laser beam-MAG) was fixed on the robot’s wrist. The focal length of
the laser optics collimator was f c = 200 mm, whereas the focal length of the focusing lens amounted
to f foc = 400 mm. The diameter of the optical fibre supplying energy from the laser to the robot was
dfiber = 0.4 mm. The above-presented arrangement of the optics made it possible to obtain a laser beam
focus diameter dfoc = 0.8 mm (Figure 6). The electrode extension was l = 18 mm. The shielding gas used
in the tests was mixture M21 (18% CO2 + 82% Ar), whereas the gas flow rate amounted to 18 dm3/min.
The filler metal was solid wire GMn4Ni1.5CrMo having a diameter of 1.2 mm. The welding process
was carried out in one pass. The electrode was inclined in relation to the welded surface at angle
α = 65◦, whereas the distance between the electrode tip and the laser beam was a = 2 mm (Figure 6).
The parameters used when making the joint (adjusted on the basis of preliminary tests [32,33]) are
presented in Table 3.
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Beam Power, W Welding Rate, m/min Wire Feeding Rate, m/min Welding Current, A Arc Voltage, V Width of the Gap, mm

5000 0.7 8 250 22 0.7

Shielding gas: C18 ferromix; filler metal wire: GMn4Ni1.5CrMo having a diameter of 1.2 mm; welding performed
using a copper strip: a rectangular groove; dimension of welded joints: 350 mm × 150 mm × 10 mm; fixing with
metalwork clamps; a copper washer on the side of the weld ridge; positioning of the laser beam in the axis of the
welding groove.
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2.2. Tests of Welded Joints

The test welded joint was subjected to the following non-destructive tests:

• visual tests performed on the basis of the requirements specified in the PN-EN ISO
17637:2011 standard;

• magnetic particle tests performed following the guidelines referred to in the PN-EN ISO 3059:2005,
PN-EN ISO 9934-2:2003, and PN-EN ISO 9934-3:2003 standards. The necessary contrast was
obtained using white contrast paint MR 72. The tests were performed using magnetic powder
suspension MR 76S (MR International, Fränkisch-Crumbach, Germany) and a yoke electromagnet;

• radiographic tests based on the PN-EN 1435 standard performed using a CERAM 235 X-ray
tube (Balteau NDT, Hermalle-sous-argenteau, Belgium) with the X-ray beam having a diameter
d = 2 mm, a voltage U = 180 kV, a current I = 3 mA, and intensifying screens OW of −0.15 mm.
The test results were recorded using an AGFA C5 photographic plate with an exposure time
t = 2.3 min and a focal length f = 700 mm. Images were assessed using a 13FEEN wire-type image
quality indicator.

Following the non-destructive tests, the welded joint was subjected to the following destructive tests:

• tensile tests performed in accordance with PN-EN ISO 6892-1:2010 using a ZWICK/ROELL Z
330RED (Zwick Roell, Ulm, Germany) testing machine and specimens sampled in accordance
with PN-EN ISO 4136:2011 (dimensions of the sample: 300 mm × 35 mm × 10 mm);

• a face bend test of the butt weld (FBB) and a root bend test of the butt weld (RBB) performed in
accordance with the PN-EN ISO 5173:2010 standard (dimensions of the sample: 300 mm × 20 mm
× 10 mm). The bend tests were performed using a ZWICK/ROELL Z 330RED testing machine
(Zwick Roell, Ulm, Germany) with an additional module enabling the performance of bend tests
involving the use of a bending mandrel having a diameter of 30 mm. The distance between the
rollers was set at 60 mm. To identify the position of the weld axis, the faces of the specimens were
etched using Adler’s reagent;

• impact strength tests performed in accordance with PN-EN ISO 148-1:2010 using specimens with
the V-notch and a ZWICK/ROELL RKP 450 impact testing machine (Zwick Roell, Ulm, Germany).
The tests were conducted at a temperature of −30 ◦C (due to industrial requirements). Because of
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the thickness of the plates being welded (10 mm) and the necessity of performing a preparatory
mechanical treatment, the specimens were reduced in cross-section to 7.5 mm. The samples were
extracted from the base metal, the heat-affected zone (HAZ), and the FL (fusion line), and the
specimens were etched using Nital;

• macroscopic metallographic tests performed using an Olympus SZX9 light stereoscopic
microscope (Olympus, Tokyo, Japan); the test specimens were etched using Adler’s reagent
(CHMES, Poznań, Poland);

• microscopic metallographic tests performed using a NIKON ECLIPSE MA100 light microscope
(Nikon, Tokyo, Japan); the test specimens were etched using Nital;

• hardness measurements performed using a Vickers 401MVD hardness testing machine
(Wilson Wolpert, Norwood, Massachusetts, USA) and a load of 1 kg;

• X-ray phase analysis performed using an X’Pert PRO diffractometer and an X’Celerator strip
detector (PANalytical, Almelo, The Netherlands);

• tests of thin foils performed using a Titan 80–300 kV (FEI) high-resolution scanning transmission
electron microscope (HR S/TEM, Thermo Fisher Scientific, Waltham, MA, USA) provided with
an XFEG electron gun with the Schottky field emission characterised by enhanced brightness.

Samples for destructive testing were prepared by machining.

3. Results and Discussion

The visual tests and the magnetic particle tests of the welded joint did not reveal surface-breaking
welding imperfections, such as cracks, porosity, incomplete fusion, or a lack of penetration (Figure 7).
The radiographic tests did not reveal the presence of internal welding imperfections. The welded
joint satisfied the requirements related to quality level B according to ISO 12932. The macroscopic
metallographic tests did not reveal the presence of welding imperfections in the weld and
HAZ (Figure 8). Excess penetration in the weld root was related to the shape and dimensions of
the copper strip used during welding.
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Figure 7. The face and the root of the hybrid welded joint (laser beam-MAG) in steel S700MC.

The microscopic metallographic tests revealed a bainitic-ferritic microstructure in the weld area.
The heat-affected zone (HAZ) was characterised by variably sized grains, which could be ascribed to a
significant heat input during the hybrid welding process (Figure 9). In addition, the microscopic tests
revealed the probability of nitride precipitates’ presence in the HAZ and in the base material; this is
evidenced by their distinctive sharp shape (Figure 10). HLAW welding is characterized by relatively
short cooling times t8/5, which leads to the formation of martensite in the HAZ. However, as it is
low-carbon martensite, it has no negative impact on plastic properties. In specific region of the HAZ
with an increase of distance to the fusion line, ferrite content is increasing in lieu of bainite.
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Figure 9. Microstructure of the hybrid welded joint (laser beam-MAG). (a) microstructure of the upper
part of the weld; (b) microstructure of the lower part of the weld; (c) microstructure of the upper part
of the fusion line; (d) microstructure of the lower part of the fusion line; (e) microstructure of the
coarse-grained part of the HAZ; (f) microstructure of the fine-grained part of the HAZ.
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Figure 10. Nitride precipitates in the hybrid welded joint (laser-MAG) made of S700MC steel.
(a) base material; (b) HAZ.

The analysis of the destructive test results of the hybrid butt welded joint (laser beam-MAG)
revealed that the test joint satisfied the requirements of the ISO 15614-14 standard (Table 4). The hybrid
welding process (laser beam-MAG) resulted in a slight decrease in tensile strength (to approximately
790 MPa) in relation to the hardness of the base material (820 MPa). The rupture took place in the HAZ
(an area of slight grain growth). The above-named decrease in tensile strength was connected with the
loss of properties obtained by steel S700MC through the thermo-mechanical control process. This is
mainly related to the increase in the proportion of ferrite in the structure and the grain growth in
this area. The bend test resulted in a bend angle of 180◦, both during bending on the face and root side,
which demonstrated the high plastic properties of the joint. The impact strength test performed at
a temperature of −30 ◦C revealed satisfactory toughness values in the weld, fusion line, and the
HAZ. In the weld area, the toughness amounted to 89 J/cm2. In the fusion line area, the toughness
decreased to approximately 50 J/cm2. In the HAZ, the toughness amounted to approximately 40 J/cm2,
(samples for impact tests were cut across the welded joint). The toughness of the base material
amounted to 50 J/cm2.
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Table 4. Strength and plastic properties of the hybrid weld joint (laser beam-MAG) made of
S700MC steel.

Tensile Strength * Bending *, Bend Angle, ◦ Impact Strength KCV **,
J/cm2 (Test Temperature −30 ◦C)

Rm, MPa Area of Rupture Face Root Weld FL HAZ

790 HAZ 180 180 89 51 42

FL: Fusion line; * average result of two measurements; ** average result of three measurements.

The hardness measurements concerning the hybrid welded joints made in steel S700MC revealed
that the lowest hardness was characteristic of the heat-affected zone and amounted to approximately
227 HV, whereas the highest hardness was that of the base material and amounted, on average,
to 280 HV. The difference between the hardness of the base material and that of the HAZ amounted
to approximately 20%. The hardness value in the upper part of the weld was similar to that of the
base material (280 H V1) and was higher than the value measured in the lower part of the weld
(by approximately 8%). The foregoing could be attributed to the fact that the upper part of the weld
contained more alloying elements, increasing the hardenability (nickel, chromium) supplied along
with the filler metal (Figure 11).
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measuring lines 2 mm from the top and bottom surface of the sheet).

The X-ray phase analysis revealed that the weld contained phase Feα and a slight amount of
phase Feγ (Figure 12). The presence of phase Feγ could be attributed to the presence of austenitic
alloying elements, e.g., Ni or C, in the weld deposit. The analysis of the total intensity of X-radiation
diffraction maxima from the lattice plane of phases Feα and Feγ of individual welded joints made it
possible to determine that the content of retained austenite was restricted within the range of 3–6%.

The microscopic observations revealed that carbonitride precipitates (of several µm in size) in
the weld area were dissolved entirely as a result of hybrid welding. The above-named observations
were additionally confirmed by observations performed using the transmission electron microscope.
The weld area was characterised by the decay of the precipitation hardening effect (lack of precipitates
of several nm in size) and the presence of coagulated titanium-niobium precipitates of up to
500 nm (Figure 13), preventing the growth of recrystallised austenite and, consequently, improving
the plastic properties of the weld. In addition, the weld area contained spherical and stable TiO
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precipitates (of 200 nm in size) responsible for the nucleation of ferrite inside austenite grains (Figure 14).
The presence of the above-named ferrite translated into the high mechanical and plastic properties of
the welded joints. This oxide is very stable even at high temperature and leads to ferrite formation
inside coarse-grained HAZ grains.Metals 2018, 8, 132 12 of 15 
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4. Conclusions

The tests of the hybrid welding (laser beam-MAG) of 10-mm-thick steel S700MC involving the
use of a filler metal having the form of solid wire GMn4Ni1.5CrMo (1.2 mm in diameter) revealed the
possibility of making welded joints satisfying the criteria formulated in the ISO 15614-14 standard.
The test joints were characterised by a lack of welding imperfections as regards the shape, geometry,
and discontinuity of the weld metal in the cross-section of the welded joint. The tensile strength
of the welded joints was similar to that of the base material, whereas the plastic properties of the
joints were satisfactory. The bend test performed both on the weld face and on the weld root side
enabled the obtainment of a bend angle of 180◦, whereas the toughness in the weld, fusion line, and in
HAZ satisfied the criteria of the minimum yield point in relation to welded joints. The fusion line
revealed a decrease in hardness, yet within a relatively narrow range and without compromising the
operational properties of the welded joints. The microscopic tests of the welded joints revealed that the
weld contained the typical bainitic-ferritic microstructure of dendritic nature. The heat-affected zone
contained areas of variously sized grains, which was triggered by the thermal cycle effect. The HAZ
and the base material revealed the presence of phases containing hardening microagents in the form
of significant titanium nitride precipitates (indicated by their shape and the considerable content
of titanium in the steel). The increase in the base material content in the weld was accompanied
by the increase in the concentration of hardening microagents in the weld. The longer the time
at which the material remained in the liquid state, the greater the amount of microagents which
could dissolve in the matrix and re-precipitate (during cooling) or remain in the solution. The high
temperature of the liquid metal pool could have resulted in the dissolution of even the most stable
TiN particles. The cooling process did not provide appropriate conditions enabling the controlled
re-precipitation of fine-dispersive carbides and carbonitrides (Ti,Nb) responsible for precipitation
hardening. The welds made using the hybrid welding method were characterised by higher toughness
resulting from the decay of the precipitation hardening effect (coagulation of precipitates) and the
presence of spherical TiO precipitates responsible for the nucleation of ferrite inside austenite grains and,
consequently, significantly improving the mechanical and plastic properties of the weld.
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27. Banasik, M.; Urbańczyk, M. Laser + MAG Hybrid Welding of Various Joints. Biul. Inst. Spaw. 2017.
[CrossRef]
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