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Abstract: Process-induced directional microstructure is identified as one of the key factors of
anisotropic mechanical properties. This directional property significantly affects surface contact
fatigue and corrosion of electron beam melting (EBM) built biomedical implants. In the current study,
material removal on EBM built titanium (Ti6Al4V) subjected to reciprocating motion of commercially
pure titanium spherical slider is investigated to identify the influence of the process-induced
layered structure and environments on wear damage. Specimens developed by two different build
orientations are mechanically stimulated using different sliding directions with nominally elastic
normal load in dry, passivating, and synovial environments. It was noticed that EBM orientation
significantly changes wear behavior in ambient environment. Wear resistance of mill-annealed
Ti6Al4V was improved in passivating environment. Implications to improve useful life of orthopedic
implants are discussed.
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1. Introduction

Titanium alloys are the most important advanced materials for additive manufacturing (AM)
technologies in medical and aerospace systems [1]. Especially, AM technology has been successfully
implemented to suit functional orthopedic implants with tailored mechanical properties [2]. Graded
surface structures fabricated by additive process can produce implant materials with similar cellular
structures and mechanical properties that improve the integrity of implant-bone cell interface [3].
Design freedom of AM enables to develop anatomic custom built joints for individual patients [4].
However, the anisotropic grain structure due to directional solidification of partially molten metal
would affect tribological behaviors of load bearing joint implants [5,6]. Repeated small scale sliding
contact (fretting fatigue) in corrosive physiological environment induces progressive damage on
modular interface of joint implants limiting their useful life [7,8]. This surface fatigue damage results
in formation of soluble debris that can migrate locally or systemically. Wear debris and metal corrosion
product may induce adverse effect such as inflammation and necrosis at surrounding soft tissue [9].
The modular total hip replacement (THR) consists of acetabular socket, femoral head and femoral
stem as shown in Figure 1. Femoral head and stem are connected by interlocking tapers which form a
crevice [10]. Titanium (Ti6Al4V) powder generally makes up the femoral stem through electron beam
melting (EBM) [11]. Ti6Al4V is the primary choice for the femoral stem material due to its superior
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mechanical properties and corrosion resistivity [12] and is used in the present experimental study.
Although it is well accepted that Ti6Al4V has a superior corrosion resistance due to the formation of
protective oxide layer during fretting damages, recently reported work on Ti6Al4V implants addressed
significant implant damages and failures by fatigue wear and corrosion [13]. Especially, investigations
on tribological responses of AM built Ti6Al4V joint implants have not been conducted to understand
influence of process-induced microstructure on fretting corrosion.
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Figure 1. Sample of modular total hip replacement (THR).

A typical EBM built Ti6Al4V microstructures are presented in Figure 2c,d. Large columnar grains
were developed in the direction of AM layer deposition. The present study investigates the impact of
anisotropic structure due to directional solidification on wear mechanisms in ambient, passivating
and synovial environments. Two groups of EBM built Ti6Al4V specimens were manufactured by two
different build orientations. Two faces, perpendicular to layers and parallel to layers, were subjected to
reciprocating motion of titanium sphere using an instrumented nanoindenter to apply known levels of
contact stress. The resultant wear volume was compared with wear of mill-annealed Ti6Al4V surface.
Wear damages were correlated with build directions and surrounding environments.
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2. Approach

In order to investigate the effects of AM process-induced surface anisotropy on surface damage
mechanisms, Ti6Al4V samples developed by two different build orientations are tested by micro
scale sliding contact. Fundamental mechanical properties including modulus of elasticity, hardness
and yield strength of each group of specimens were measured by instrumented nanoindentation
technique [14–17]. Micro scale grain morphology was observed and compared to understand the
influence of microstructures on mechanical and tribological characteristics. A sliding wear (linearly
reciprocating pin-on-flat) scheme in ambient, passivating, and synovial environments was employed
to investigate the effect from process-induced properties on the tribocorrosion of AM made Ti6Al4V
joints. Commercially pure (CP) grade-2 titanium spheres with 1 mm diameter were selected to simulate
metal-on-metal contact at modular interface of total hip joint replacement.

2.1. Materials Description

The materials used in this study are Ti6Al4V manufactured by standard EBM using Arcam Q10
(Mölndal, Sweden) with layer thickness of 50 µm and powder size of approximately 45~106 µm
and traditionally manufactured mill-annealed Ti6Al4V supplied by ATI Allvac Corp. (Monroe, NC,
USA). The chemical composition of the alloy provided by the manufacturers is presented in Table 1.
To investigate the process induced anisotropic properties of EBM manufactured Ti6Al4V, specimens
fabricated to a cube (15 × 15 × 15 mm3) were grouped in terms of layer orientations. As illustrated in
Figure 2a,b, square layers (15 × 15 mm2) are added along z- and x-directions to prepare EBM-Z and
EBM-X surfaces, respectively. Z-planes of each group of specimens were subjected to reciprocating
sliding contact. Mill-annealed Ti6Al4V samples were cut from 1-inch diameter cylinders into 5-mm
thick disks by electronic discharge machining to minimize residual stresses. Specimens cut into
required dimensions were mounted on phenolic disks to prepare the refined surface finish. In order to
perform nano- and micro-scale mechanical tests, the sample surfaces were polished to mirror-finished
following standard metallographic sample preparation methods with successive grit polishing to 4000
grit followed by 0.06 µm silica suspension on micro fiber cloth. The average roughness Ra (centerline
average) = 23.5 ± 1.4 nm was obtained over 200 µm length profiles. The progressive damage of native
oxide layer and plastic deformation of metal surface will be an important consideration in determining
the fretting corrosion mechanism.

Table 1. Chemical compositions of Ti6Al4V powder for electron beam melting.

Percentage Weight Composition (%)

Elements Aluminum
(Al)

Vanadium
(V)

Carbon
(C) Iron (Fe) Oxygen

(O)
Nitrogen

(N)
Hydrogen

(H)
Titanium

(Ti)

EBM 6 4 0.03 0.1 0.15 0.01 0.0003 Balance
Mill-annealed 6.37 4.04 0.032 0.21 0.17 0.028 n/a Balance

2.2. Mechanical Characterization

Nanoindentation tests are performed on mill-annealed, EBM-X and EBM-Z Ti6Al4V samples with
a nanomodule mechanical tester from Nanovea (Irvine, CA, USA). In order to illustrate early stage
of surface contact damage, small-scale indentation technique would be the better characterization
method to determine the near-surface properties. Indenter contact load changes were monitored
with indenter penetration depths. A series of nanoindentation tests results were mapped to represent
local mechanical properties and averaged to determine system properties on the finished surfaces.
Standard diamond Berkovich indenter is employed to determine elastic modulus and hardness [14,15].
A typical procedure of indenter motion was performed: Initial contact at 0.1 mN, increase indenter
load at the rate of 280 mN/min up to peak load of 140 mN, withdraw the tip at the same rate of
penetration, and finally complete separation of the tip from specimen surface. Unloading step of
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the indenter load-displacement was observed to evaluate the rate of load change with respect to
indenter depth. This rate is called indentation modulus that is directly related to elastic recovery of the
specimen surface.

In order to determine yield strength, 5-µm diameter cylindrical diamond indenter was
employed [16,17]. Indentation steps were performed in a similar manner: initial contact at 0.1 mN,
increase indenter load at the rate of 200 mN/min up to peak load of 100 mN, withdraw the tip at the
same rate of penetration, and finally complete separation. Due to the larger contact area of cylindrical
indenter tip, indentation rate and peak load were selected lower than Berkovich indentation test.
The correlation between indentation load and penetration depth during the loading step is used
to determine the yield point. Indenter load at the maximum slope of the load-depth response is
considered to initiate yielding of the surface. Indenter load at yield point and constant circular contact
area were used to determine local yield strength point. A total of nine sets of indentation tests were
repeated by using mapping feature of 3 × 3 arrays on the EBM-Z, EBM-X and mill-annealed samples.
Each series of mapped indentations covers an area of 100 × 100 µm2.

2.3. Microstructure

In order to understand the relation of process-induced anisotropy on EBM Ti6Al4V and its
resulting mechanical properties, microstructures and grain morphology of EBM Ti6Al4V were observed
and compared with those of mill-annealed Ti6Al4V. The samples are mirror finished and are prepared
for optical metallography by etching in a solution of 100 mL H2O, 6 mL HNO3, and 3 mL HF [18].
The etched samples on their Z-plane are observed in a Zeiss A/M optical microscope under dark and
bright light scopes. Further, EBM-X and EBM-Z are investigated by X-ray diffraction (XRD) and Energy
Dispersive Spectroscopy (EDS) to determine the phases present and the chemical composition of
individual phases. Crystallographic phase identification is obtained by XRD using a Bruker Prospector
CCD Diffractometer copper micro-source X-ray tube at room temperature (Bruker, Billerica, MA, USA).
XRD (Bruker, Billerica, MA, USA) are carried out in the range of 20–90◦ for a period of 2 h. EDS (Jeol,
Peabody, MA, USA) analysis in the form of horizontal line scan is conducted along a 10 µm line scan
from etched samples to determine the chemical composition and atomic weight percentages of the
elements present from the scanned area.

2.4. Wear Experiment

CP grade-2, 1 mm diameter titanium spheres were used to conduct the reciprocal sliding wear
test at the similar materials interface. Similar metal surface pair increases the adhesional friction, and
therefore, the greater shear load would induce adhesive wear under nominally elastic contact before
the significant plastic deformation-dominant abrasional wear is initiated. The titanium sphere was
attached to Nanovea nanomodule performing reciprocating motion at a constant speed of 100 µm/s for
30 min against Ti6Al4V sample surfaces to perform frictional interactions at the similar metal interface.
Wear tests with two different directions of sliding motion were repeated to inspect consequence of
sliding directions and EBM build orientations on wear response as shown in Figure 3. To investigate
transversely isotropic surface of EBM-Z specimens, two sliding directions were selected at 45◦ from
each other. First sliding direction was parallel to one edge, x-coordinate in Figure 3a, of the square
plane and the second group sliding tests were performed along an axis at 45◦ from x-coordinate. It
was expected for z-plane on EBM-X specimens to have anisotropic property as the columnar grains
present distinctive directional structure that is parallel to build orientation (x-coordinate). Two sliding
contact directions were selected along x- and y-coordinates, respectively. Wear tests on mill-annealed
Ti6Al4V surfaces were also performed along directions at every 30◦. In order to objectively compare
the wear response with respect to contact pressure, nominally elastic contact load was estimated based
on Hertzian contact theory. Materials properties evaluated from indentation tests and the geometry of
CP titanium spheres were used to determine real contact area and average contact load. Therefore,
the same level of contact stress were applied on each specimen surface during the course of sliding



Metals 2018, 8, 131 5 of 16

contact experiments. With known yield strength of the Ti6Al4V specimens, elastic normal contact load
was selected at 25% of yield pressure. The material properties of the CP grade-2 titanium spheres are
summarized in Table 2. Average half-contact radii evaluated from Hertzian contact model throughout
the test were found to be in the range from 4.9 to 6.2 µm for three specimens.

A total of 6 trials of wear experiments were performed in ambient at controlled humidity
of 27 ± 5% and temperature of 25 ± 3 ◦C. The same wear experiments were repeated 6 times
in passivating environment of phosphate buffered saline (PBS) solution and artificial synovial
environment. Hyaluronic acid (HA) at the concentration of 3 g/L and bovine serum albumin
(BSA) at the concentration of 19 g/L were dissolved in PBS solution [19]. A custom design bath
was manufactured from an ultra-high-molecular-weight-polyethylene cylinder to securely hold the
specimen and to be mounted on the tester stage. Prior to the wear test, actual roughness and curvature
were inspected to apply consistent contact pressure throughout experiments. Numbers of preliminary
tests were conducted to evaluate the wear of CP Ti-sphere sliders by the continuous sliding. Test period
(30 min) and nominal contact stress were determined based on minor change in radius of curvature on
the CP Ti-sphere tip.

During the course of sliding contact tests, friction (lateral) force and normal force were monitored
to evaluate changes in friction coefficients using the high resolution friction stage (Nanovea, CA, USA).
The progressive change of friction coefficients was correlated to the wear volume of each specimen.

Table 2. Mechanical properties of commercially pure (CP) grade-2 titanium spheres.

Modulus of Elasticity Poisson’s Ratio Percentage Weight Composition (%) of Elements

103 GPa 0.35 Carbon
0.08

Iron
0.3

Oxygen
0.25

Nitrogen
0.03

Hydrogen
0.015

Titanium
Balance
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Figure 3. Illustration of slider motions of fatigue wear test on (a) EBM-Z and (b) EBM-X samples.

For each test, an initial 250 µm × 250 µm optical scan at the randomly selected region was
recorded using Nanovea profilometer. The specimen was then moved under the CP Ti-spherical slider
for wear test. Relative positions between the profilometer sensor and slider were calibrated to deliver
the desired position of the specimen to be tested. 100 µm reciprocal sliding test was then performed at
the center of the scanned area. The slider was reciprocated at 1 Hz for 30 min at 25% of yield strength of
the specimen. After 30 min, the specimen was moved under the profilometer sensor to obtain the final
surface configuration in 250 µm × 250 µm area and recorded. Final surface data after sliding contact
test was subtracted from initial surface data to precisely quantify wear volume. A total of 6 wear tests
at contact loads corresponding to 25% of yield stress were conducted in three different environments
and the Ti-sphere wear was also monitored to determine average contact stress throughout the wear
tests. The optical profilometer was used to determine tip damage.
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3. Results

3.1. Microstructure

In order to correlate the tribological behavior to the build direction, microstructures of
mill-annealed, EBM-Z and EBM-X Ti6Al4V specimens were observed using scanning electron
microscope (SEM). The grain morphology of mill-annealed Ti6Al4V specimen illustrated a mixture
of equiaxed alpha grains and alpha/beta colonies as in Figure 2a that is a typical configure of
mill-annealed Ti6Al4V. The microstructure of EBM-X sample consists of large columnar grains parallel
to the build direction as shown in Figure 2d. In addition to the columnar grains, layered patterns
are clearly visible that are perpendicular to columnar grains. EBM-Z surfaces present equiaxed grain
morphology which are cross sections of the columnar grains (Figure 2c) [20,21]. These are typical
microstructures observed in the EBM built Ti6Al4V surfaces depending upon the build directions.
The high magnified micro image observations of EBM-X in Figure 4c shows the grains epitaxially
formed due to the rapid solidification of the small melt pool extended through many layers and high
thermal gradient in the build direction. The α-grain boundary was also found. On the other hand, the
microstructure of EBM-Z surface consists of relatively equiaxed grains, as shown in Figure 4b. This is
the typical morphology of prior β grains in cross-sectional planes perpendicular to the EBM layers [19].
In both cases, the microstructure morphology is similar and represents a typical Widmanstätten or
basket-weave morphology, reported in literature for Ti6Al4V alloys [22,23]. The microstructure of both
EBM-X and EBM-Z consists of alternating layers of acicular α phase separated by thin layers of retained
β phase. In order to confirm the existence of α and β phases, X-ray diffraction patterns were collected
from the z-planes of EBM-Z and EBM-X samples and were summarized in Figure 4d. As expected,
most of the XRD peaks originate from α phase. Generally β peaks are not clearly distinguished in
the diffraction patterns [21,24]. The average fractions of element concentration of α and β phases are
summarized in Table 3.
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Table 3. The average element concentration of α and β phases, including statistical standard deviation
(based on ten measurements).

Phases Ti Al V

α phase wt % 89.77 ± 0.74 6.04 ± 0.17 4.19 ± 0.82
at % 85.96 ± 0.64 10.26 ± 0.27 3.78 ± 0.74

β phase wt % 86.29 ± 1.63 5.27 ± 0.24 8.44 ± 1.86
at % 83.29 ± 1.35 9.04 ± 0.39 7.67 ± 1.71

3.2. Mechanical Properties

Depth-sensing nanoindentation technique was employed to characterize the mechanical
properties for EBM built Ti6Al4V parts. Using a standard Berkovich tip, a total of 9 indentation
tests were performed on the respective EBM-Z, EBM-X and mill-annealed sample surfaces.
The mill-annealed sample was set as a control group which provided the elastic modulus and
indentation hardness. Indentation stiffness is obtained from the slope of the unloading portion
of a load-displacement curve, which are used to calculate elastic moduli for each Ti6Al4V builds.
Indentation hardness was determined using the projected contact area that was approximated by
the indenter geometry and depth of indenter tip [25]. The averaged elastic moduli and indentation
hardness of each specimen represent individual mechanical property of the corresponding EBM
directions. Although the small contact test is hardly able to dictate the entire surface and overall
properties for large grained specimen, however, a large number of measurements using mapping
feature throughout the surface could present an averaged value on the large grained mill-annealed
surface. The large error-bar (standard deviation) of yield strengths of mill-annealed surface would
illustrate the variations of the measured yield strength over the variable grain structures. Figure 5
summarizes indentation test results. While Berkovich indentation test results present superior
mechanical properties on EBM built Ti6Al4V as elastic moduli and yield strengths are higher than
those of mill-annealed Ti6Al4V, indentation hardness of mill-annealed Ti6AL4V is superior to that of
EBM-Z and EBM-X. It is evident that the averaged value of yield strength for mill-annealed surface
is lower than those values for EBM-X and EBM-Z surfaces as shown in Figure 5c. It may be because
contact areas used to characterize hardness that is affected by microstructures and residual stress
developed during manufacturing process [26,27].
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Figure 5. Comparison of representative load-displacement curve from (a) Berkovich indentation,
(b) indentation hardness and elastic modulus, and (c) yield strength of mill-annealed, EBM-Z, and
EBM-X Ti6Al4V.

3.3. Wear of Ti6Al4V Surfaces

From nanoindenter-based micro scale sliding contact experiments, wear volume was obtained for
EBM built Ti6Al4V with two different build orientations in ambient and aqueous environments
as shown in Figures 6–8. The error bars represent standard errors resulted from five repeated
experiments and deviations in wear depth evaluations from digital image process. A significant effect
of manufacturing process on wear mechanism was found during dry sliding contact. Sliding contact
wear in ambient environment (Figure 6) indicates that annealed Ti6Al4V surface with 10 µm equiaxed-α
grains has less wear resistance. Wear volume on EBM-X with anisotropic grain morphology illustrates
more sensitive to sliding direction compared to EBM-Z with transversely isotropic microstructure.
Sliding motions parallel to layers (perpendicular to build direction) results in more than double of
the wear volume induced by sliding motions perpendicular to layers (parallel to build direction).
Reciprocal contact in PBS solution (Figure 7) indicates that the passivating condition (PBS; pH 7.4)
considerably improves wear resistance on mill-annealed Ti6Al4V surface; whereas the passivating
condition does not significantly influence wear response on EBM built Ti6Al4V. However, anisotropic
effect of sliding directions on EBM-X is not obvious in PBS. Simulated synovial fluid (Figure 8) reduces
wear damage on all specimens. Protein layer attached to the metal surface drastically improves
liquid film lubrication and decrease the surface fatigue response. In addition, wear rate in synovial
condition is mostly insensitive to the surface anisotropy, whereas dry wear is a strong function of
process-induced microstructures.
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4. Discussion

The experiments were designed to investigate the influence of directionally solidified structure
on wear resistance during surface fatigue contact, i.e., repeated frictional contact in nominally elastic
ranges. In dry condition, the volume of material removed is a strong function of microstructures
produced by additive process, resultant elastic moduli and yield strengths, and sliding directions. Fine
lamellar α-phase in the large β grains in EBM built specimens improved the yield strength that will
critically affect resistivity of sliding contact wear in ambient environment. This result implies that EBM
process-induced layered structure plays an important role in dry wear damage process. Interestingly,
while the sliding direction parallel to EBM layer on EBM-X specimen presents accelerated wear process,
the sliding direction perpendicular to EBM layer on EBM-X specimen results in suppressed wear in
ambient environment.

The elastic sliding contacts of titanium sphere in ambient environment would result in mild
oxidative wear and metal adhesion through the damaged oxide at this early stage of sliding contact.
The continuous repetition of break-reformation of oxide layer and development-failure of adhesive
junction is a prominent wear mechanism [28]. Microscopic image from SEM illustrates separated
layers of wear pile-ups in dry condition as shown in Figure 9a,b. The magnified image of wear pile-up
highlighted in Figure 9a illustrates the oxide wear debris and larger metal wear particles. Small
light particles in the outer layer of the pile-up surrounding wear trench are oxide debris and dark
layer is plastically deformed metal transferred by reciprocating motion of the slider. It may describe
the transition of wear mechanisms from mild progressive oxidative wear to large adhesive wear.
In addition to the combination of oxide damage-metal adhesion, small-scale plastic deformations
would be accumulated at the subsurface during repeated reciprocating sliding motions [29]. Therefore,
the greater wear volume of mill-annealed surface can be explained by the accumulated dislocations
due to greater ductility and less yield strength obtained from nanoindentation tests. As a result, the
titanium-titanium interface increases dry sliding coefficient of friction as the interfacial shear strength
increases as much as bulk shear strength of titanium surface. The friction coefficients obtained from
lateral force presented a similar result from dry sliding wear response. Especially, a large wear volume
on mill-annealed surface agreed to the greater friction coefficient, while EBM-X surface disturbed by
x-direction sliding contact agreed to the lowest friction coefficient as illustrated in Figure 10. However,
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friction coefficient of EBM-X surface disturbed by x-direction sliding drastically increased at the first
10 cycles of the sliding motions and decreased in the later 10 following cycles. It is a different from
dry sliding wear of other specimens as other surfaces gradually increase friction coefficients and
reached to a steady state fiction. However, EBM-X surface continuously increase friction coefficients
during x-direction sliding contact. Therefore, the increased shearing force on EBM-X surface during
x-direction sliding throughout the sliding cycles would accelerate accumulation of dislocations at the
subsurface and delamination wear would be followed [29,30]. Consequently, the results imply that the
wear mechanism of titanium-titanium interface in dry is critically dependent on EBM process-induced
layered structure and sliding directions.
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Figure 9. (a) Microscopic images of wear debris produced on EBM-X in dry condition; (b) magnified
image of the highlighted wear pile-up.

The wear dependence of layer orientations on EBM-X and EBM-Z parts observed in aqueous
conditions seems insignificant. The experimental result in PBS solution illustrates that the mill-annealed
surface has superior wear resistance as the wear volume and reduced friction coefficient were notably
reduced in passivating environment. It is evident that the dependence of sliding directions on wear
of EBM-X is insignificant in the aqueous environment (Figures 7 and 8). It is because the presence of
thin fluid film reduces the friction coefficient as in Figure 10c,d and assist rapid oxide film reformation.
In addition, the rapid solidifications during EBM process may develop residual stress field [31].
Elastic residual strains increase thermodynamic potential and ultimately accelerates electrochemical
reaction of the mechanically disturbed surfaces [32,33]. However, recrystallization and grain growth
during the final mechanical and thermal treatment through mill-annealing would reduce surface
residual stress [34]. Therefore, the fundamental wear mechanism on EBM-built parts in PBS would
be combined effect from electrochemical potential and mechanical disturbance. The microscopic
inspection of wear damage in PBS solution is shown in Figure 11b. As opposed to the result shown
in Figure 9a, wear pile-up was not observed on wear track in PBS and simulated synovial solution
(Figure 11b,c). Liquid mediated contact would reduce the shear strength at the slider-surface interface,
and therefore, adhesive wear would be lesser in aqueous environment. It was noticed that the wear
track width of EBM-Z produced by sliding contact in both liquids is larger than the wear trench in dry.
Oxide-wear debris and produced small metal wear particles were agglomerated with newly produced
wear debris and continuously plow the surface within the larger contact area. Due to increased contact
area, plastic deformation by sliding contact would be suppressed while fretting corrosion damage
will be the major surface damage mechanism [35,36]. Although the wear volume of mill-annealed
surface was drastically decreased, the wear volume of EBM built Ti6Al4V parts was measured to be
comparable to the wear volume produced during the dry sliding wear.
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Simulated synovial fluid drastically decreased the wear volume on all specimen surfaces as the
bovine serum albumin attached to the physisorbed hyaluronic acid layer on Ti6Al4V surface and
improved full liquid film lubrications [19,37]. As illustrated in Figure 10c, friction coefficients measured
in synovial fluid were reduced and almost the same for all specimen surface. This adsorbed protein
layer also protects the surface from electrochemical dissolutions of metal ions when the oxide layer
was damaged.
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5. Conclusions

Additive manufacturing process-based argument on wear damage mechanism is proposed to
explain how layer-by-layer process affect tribological response in different environments. The complex
dependence of wear on anisotropic microstructure and environment suggests that the wear mechanism
changes depending on electrochemical reactivity. In addition, the beneficial influences of chemical
environment on mill-annealed Ti6Al4V surface may be exploited as possible avenues to reduce wear
rate against fretting corrosion damage process. Also, experimental result presented that the passivating
environment significantly reduced the sensitivity of anisotropic wear response on EBM-built parts.
In classical literature in tribology, it is well accepted that the smaller grain morphology obtained
generally yield enhanced fatigue and wear resistance in metals [38,39]. The wear depths observed
on mill-annealed surface were typically greater than EBM surfaces in dry condition. In passivating
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environment, however, in our experiments, the wear mechanism illustrated that the wear depths on
EBM surfaces were greater than mill-annealed surface. In addition, the clear tribological anisotropy
(sliding direction sensitivity on wear) of EBM-X presented during dry sliding tests became insignificant
in PBS solutions. This may be caused by accelerated corrosion with established residual stress, causing
greater wear rate on EBM-built parts. Protein mediated lubrication drastically reduced surface wear
and electrochemical damage on all Ti6Al4V parts. Such observations imply that care to keep optimum
microstructure and corresponding tribological characteristics must be considered under allowable
working environments to warrant stable life-time.
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