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S1. Particle Size Distribution of the Ti6Al4V Powder. 

 

Figure S1. (a) Scanning Electron Microscopy (SEM) image of raw spherical powder particles; (b) particle size 
distribution of the powder particles. 

 
The size of the particles of the alloy powder ranged between 10 µm to 70 µm, as seen in Figure S1. 
Image J®, a free software, was used for the analysis of the particle size distribution. 
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S2. Microwave Sintering. 

  

  

Figure S2. (a) Schematic of microwave sintering equipment; (b) mechanism of heat transfer; (c) actual sintering equipment; and PID stands for Proportional Integral 

Derivative; (d) sintering cycles.  
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S3. Tensile Testing of Sintered Samples. 

 

Figure S3. (a) Loading of components for tensile testing; (b) sintered components post testing. 

S4. Micro-Computed Tomography of the Ti6Al4V Samples. 

 

 

Figure S4. (a) Schematic for the micro-Computed Tomography scanning arrangement; (b) picture of the micro-

Computed Tomography equipment. 
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S5. X-ray Diffractometry Analysis.  
The X-ray diffractometry (XRD) analysis was performed for the raw titanium alloy powder and the 
microwave sintered components. The peaks corresponding to the titanium oxide phase were formed 
during the microwave sintering process. All the sintering experiments were performed in the β–phase 
region (>853 °C). The XRD peaks confirm the formation of the β–phase in the sintered components. 
Furthermore, the peaks related to the presence of aluminum oxide and vanadium oxides were also 
confirmed in the XRD analysis. Figure S5 shows the XRD spectrum for the bare titanium alloy and the 
components sintered at St of 950 °C, 1150 °C, and 1350 °C, with a Hr of 10 °C/minute and Ht of 60 
minutes. It has been also confirmed from the peaks that the nitrides were also formed during the 
sintering. This presence of nitride phase may have occurred due to the presence of impurities present 
in the alumina board, which was used as the insulation material for the sintering of the titanium alloy 
inside the microwave furnace. The formation of titanium nitride phase due to the impurities and 
heating at the higher temperature was also confirmed in the literature [1] . The XRD analysis of the raw 
titanium alloy confirmed the presence of a TiO2 layer, formed over the powder particle surface. The 
presence of a oxygen deficient phase, such as Ti2O3 and Ti3O5, during the microwave sintering of the 
titanium was also confirmed in the literature [2].  The Joint committee on powder diffraction standards 
(JCPDS) database was used for identifying the peaks with the following JCPDS card numbers: JCPDS 
84 1750, 10 0063, 77 1392, 71 0290, 73 2294, 82 1137, 02 1159, 73 1570, 44 1294, 73 0959, 84 0319, 73 1774, 
01 072 1807, 01 073 1782.  

 

Figure S5. X-ray diffractometry analysis for the titanium alloy sintered at St —950 °C, 1150 °C, and 1350 °C, and 
Hr—10 °C/minute and Ht—60 minute, along with the raw titanium alloy powder. 
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