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Abstract: In this study, lap joint experiments were conducted using galvanized high-strength steel,
SGAFH 590 FB 2.3 mmt, which was applied to automotive chassis components in the gas metal
arc welding (GMAW) process. Zinc residues were confirmed using a semi-quantitative energy
dispersive X-ray spectroscopy (EDS) analysis of the porosity in the weld. In addition, a tensile shear
test was performed to evaluate the weldability. Furthermore, the effect of porosity defects, such as
blowholes and pits generated in the weld, on the tensile shear strength was experimentally verified
by comparing the porosity at the weld section of the tensile test specimen with that measured through
radiographic testing.
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1. Introduction

Currently, many car makers are increasingly applying high-strength steels to meet weight
requirements to increase economic efficiency and productivity. In particular, in the gas metal arc
welding (GMAW) process, galvanized steel sheets are often applied to automotive chassis components
owing to their excellent corrosion resistance and formability [1–4]. However, when lap joint welding is
applied to galvanized steel sheets, high-pressure zinc fumes form, as the zinc coating is vaporized in
the lap joint. If the high-pressure zinc fumes are not completely discharged outside, they remain in the
molten pool and cause weld defects, such as blowholes and pits, inside and outside the weld [5–7].
These weld defects significantly reduce the durability and productivity of the weld [8,9].

Lee et al. investigated the correlation between porosity defects and fracture strength in the CO2

welding of galvanized steel sheets and characterized the defects generated under different welding
conditions [10]. Izutani et al. proposed guidelines to reduce porosity defects based on observations of
the porosity formation behavior in the lap joint welding of galvanized steel sheets [11]. Yu and Kim
analyzed the optimal conditions of the torch angle and aiming position for a lap joint weld during the
cold metal transfer (CMT) process of galvanized steel sheets applied to chassis components, where
they experimentally reduced the porosity in the weld [12].

As shown in these examples, many studies have analyzed the porosity formation mechanism and
attempted to reduce the porosity in the weld [13–16]. Recently, Kim et al. experimentally investigated
the effect of porosity on the fatigue behavior in the GMAW process [17]. To effectively discharge zinc
vapor in the GMAW process using zinc-coated steel sheets, Kam et al. investigated controlling the
porosity using gap-paste-based Ti particles between galvanized steel sheets [18]. However, few studies
have quantitatively analyzed the correlation between the porosity and the tensile shear strength (TSS)
of an actual weld and their effects on the GMAW process. In addition, no studies thus far have
analyzed the porous components formed on a weld to verify the remaining zinc.
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This study conducted lap joint experiments using the galvanized high-strength steel, SGAFH
590 FB 2.3 mmt, which is applied to chassis components in the GMAW process. Zinc residues were
examined by analyzing the composition of the porosity in the weld and the weldability was evaluated
through tensile shear tests. Furthermore, the porosity was measured by performing radiographic
testing (RT) to ascertain the effects of porosity defects, such as blowholes and pits generated in the
weld, on the tensile shear strength. Finally, the experimental results of the porosity at the welded
section of a tensile test specimen were compared with that measured through RT.

2. Experimental Procedure

2.1. Materials and Experimental Method

In this study, SGAFH 590 FB 2.3 mmt, which is applied to automotive chassis components, was
used. Table 1 lists the chemical composition and mechanical properties of the specimen.

Table 1. Chemical composition and mechanical properties of the specimen.

Materials Chemical Composition (wt.%) Mechanical Properties

SGAFH
590 FB

C Si Mn P S Fe YS
(MPa)

TS
(MPa)

EI
(%)

0.0817 0.136 1.440 0.013 0.002 Bal. 583 629 25

The welding experiment was performed in the short-circuit transfer mode using a 450A-class
constant voltage inverter DC-type welding machine (Fronius, Wels, Austria). Figure 1a shows the
welding jig used in this experiment. The welding test specimen used in the tensile shear test after
welding to assess the weldability were 180 mm wide and 150 mm long. Lap joint welding was applied
with fixed overlaps of 15 mm at a torch angle of 45◦, as shown in Figure 1b.
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Figure 1. Welding experimental setup. (a) Welding jig; (b) welding type.

Figure 2a shows the universal tensile tester with a maximum load of 30 tons, which was used to
evaluate the weldability. To measure the porosity ratio of the weld, RT was performed using an RT
testing machine (XAVIS Co., Ltd., Seongnam-Si, Korea), as shown in Figure 2b.
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Figure 2. Test equipment. (a) Universal tensile testing machine; (b) radiographic inspection testing
machine.

2.2. Welding Experiment Conditions

The welding experiments were performed with and without a gap in the specimen lap joint.
The reason for experimenting with a gap in the specimen lap joint was to attain a good weld by
providing space for discharging the zinc fumes generated from the zinc plating during arc welding,
thus minimizing the weld porosity. The wire feed rate (WFR) and the contact-tip-to-workpiece distance
(CTWD) were fixed at 3 m/min and 15 mm, respectively. The welding rate was 600 mm/min. For the
protective gas, an Ar/CO2 mixture gas at a ratio of 9:1 was used. For the welding wire, a ∅ 1.2 mm
solid wire for high-tension steel was used. To ensure reliability, the experiments were repeated three
times per condition. Table 2 lists the experimental conditions.

Table 2. Welding experimental conditions.

Welding Conditions

Gap (mm) 0, 0.5
CTWD (mm) 15

WFR (m/min) 3
Welding Speed

(mm/min) 600

Shielding Gas Ar (90%):CO2 (10%)

Table 3 lists the results of the experiments with and without the gap. In the absence of a gap,
pits formed throughout the surface of the weld, whereas in the presence of a gap, no pits formed on
the surface of the weld.

2.3. Weldability Assessment and Porosity Measurement

In this study, the tensile shear tests were performed to quantitatively assess the difference in the
tensile shear strengths between a weld with pores and a weld without pores. As shown in Figure 3a,
the specimens are processed in accordance with the specifications of the tensile test specimen no. 5 in
KS B 0801 (test pieces for tensile test for metallic materials) [19]. Furthermore, RT was performed to
measure the porosity ratio inside and outside the weld. As shown in Figure 3b, the tensile shear tests
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were performed with three tensile test specimens per condition to obtain reliable data and the porosity
ratio was measured for each tensile test specimen.

Table 3. Appearance of weld bead according to experimental conditions.

Run Current
(A)

Voltage
(V) Weld Bead Appearance Gap

(mm)

1 113 18
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To measure the porosity, assuming that several pores (d1–di) are generated in the entire weld
with a weld length L and a weld width W, as shown in Figure 4, the total weld area is determined by
multiplying L and W, as shown in Equation (1).

Weld Area (mm2) = L (mm) × W (mm) (1)
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Finally, the porosity ratio can be determined by dividing the total porosity area by the total weld
area, as shown in Figure 3.

Porosity (%) =
Total Porosity Area (mm2)

Weld Area (mm2)
× 100 (3)

3. Results and Discussion

3.1. Effect of Zinc Component on Porosity

Zinc fumes form when the zinc coating is vaporized at the weld lap joint during the arc welding of
a galvanized steel sheet using the lap joint method. If these zinc fumes are not completely discharged,
porosity defects, such as blowholes and pits, are generated both inside and outside the weld. In this
study, a semi-quantitative energy dispersive X-ray spectroscopy (EDS) (Thermo Fisher Scientific,
Waltham, MA, USA) analysis was performed to verify the existence of zinc residues in the porous
parts of an actual weld. Figure 5 shows the EDS analysis results, which verify the existence of zinc
residues in a welded section where pores are generated. Figure 5a shows an 80× enlarged image of
the welded cross section. Figure 5b shows a 300× enlarged image at point p0, where the region is
porous, as shown in Figure 5a. Figure 5c shows a 5000× enlarged image at point p1, where the region
is porous, as shown in Figure 5b. Consequently, 2.70, 4.30, and 5.02 wt% zinc was found to remain at
points p2, p3, and p4, as shown in Figure 5d–f, respectively. Thus, the EDS analysis results confirm
that zinc remained in the porous locations.

An elemental mapping and line scan analysis was performed to verify the existence of zinc
residues at the porous locations in the weld. Figure 6a shows the image of the plated layer of the
weld and the porous location. Figure 6b–f shows the elemental mapping analysis results. In Figure 6f,
the purple image indicates the zinc component. Zinc remain even at porous locations that are not in
the zinc coating.

In addition, Figure 7a–c shows the results of the EDS line scan analysis. Figure 7a shows the
results from two pores scanned horizontally in the line scan. Figure 7b,c shows the vertical line scan
analysis for pores 1 and 2 in Figure 7a. The results show that zinc remains in both pores.
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In addition, the existence of zinc residues was verified by performing a semi-quantitative EDS
analysis of porous and non-porous locations in the weld. Figure 8a shows a 100× enlarged image
of the welded section in which pores are observed. Figure 8b–d shows the semi-quantitative EDS
analyses of the zinc coating as well as porous and non-porous locations in the weld, respectively.
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The analysis results confirm that 48.30 wt% zinc remained in the zinc coating, 2.77 wt% remained
in the porous locations, and no zinc remained in the non-porous locations. These results confirm that
zinc remained because of the zinc fumes at the porous locations.

3.2. Weld Porosity and Tensile Shear Strength

Table 4 lists the results of the experiments conducted with no gap in the lap joint corresponding
to a welding rate of 600 mm/min and a WFR of 3 m/min. The weld bead surface of each tensile
test specimen, X-ray images, and weld fracture shapes under different conditions are compared.
The weld surface contains pits, and pores form inside the weld, even in the section where no pits are
generated, as observed in the X-ray image obtained through RT. This is due to the high-pressure zinc
fumes generated from the lap joint that were not discharged but remained inside the molten pool.
Moreover, the tensile shear test results confirm the formation of weld fractures under every condition.
This appears to be because of the decreased weld strength owing to the formation of pores inside and
outside the weld.

Table 4. Weld bead surface and fracture shape of each test specimen (gap: 0 mm).

Run Item
Tensile Test Specimens

1 2 3

1

Weld surface
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
  

Metals 2018, 8, x FOR PEER REVIEW  9 of 13 

 

The analysis results confirm that 48.30 wt% zinc remained in the zinc coating, 2.77 wt% remained 
in the porous locations, and no zinc remained in the non-porous locations. These results confirm that 
zinc remained because of the zinc fumes at the porous locations. 

3.2. Weld Porosity and Tensile Shear Strength 

Table 4 lists the results of the experiments conducted with no gap in the lap joint corresponding 
to a welding rate of 600 mm/min and a WFR of 3 m/min. The weld bead surface of each tensile test 
specimen, X-ray images, and weld fracture shapes under different conditions are compared. The weld 
surface contains pits, and pores form inside the weld, even in the section where no pits are generated, 
as observed in the X-ray image obtained through RT. This is due to the high-pressure zinc fumes 
generated from the lap joint that were not discharged but remained inside the molten pool. Moreover, 
the tensile shear test results confirm the formation of weld fractures under every condition. This 
appears to be because of the decreased weld strength owing to the formation of pores inside and 
outside the weld. 

Table 4. Weld bead surface and fracture shape of each test specimen (gap: 0 mm). 

Run Item Tensile test specimens 
1 2 3 

1 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Weld Fracture 
 

Weld Fracture 
 

Weld Fracture 

2 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Weld Fracture 
 

Weld Fracture 
 

Weld Fracture 

3 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Weld Fracture 
 

Weld Fracture 

 
Weld Fracture 

Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
  

Weld Fracture

Metals 2018, 8, x FOR PEER REVIEW  9 of 13 

 

The analysis results confirm that 48.30 wt% zinc remained in the zinc coating, 2.77 wt% remained 
in the porous locations, and no zinc remained in the non-porous locations. These results confirm that 
zinc remained because of the zinc fumes at the porous locations. 

3.2. Weld Porosity and Tensile Shear Strength 

Table 4 lists the results of the experiments conducted with no gap in the lap joint corresponding 
to a welding rate of 600 mm/min and a WFR of 3 m/min. The weld bead surface of each tensile test 
specimen, X-ray images, and weld fracture shapes under different conditions are compared. The weld 
surface contains pits, and pores form inside the weld, even in the section where no pits are generated, 
as observed in the X-ray image obtained through RT. This is due to the high-pressure zinc fumes 
generated from the lap joint that were not discharged but remained inside the molten pool. Moreover, 
the tensile shear test results confirm the formation of weld fractures under every condition. This 
appears to be because of the decreased weld strength owing to the formation of pores inside and 
outside the weld. 

Table 4. Weld bead surface and fracture shape of each test specimen (gap: 0 mm). 

Run Item Tensile test specimens 
1 2 3 

1 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Weld Fracture 
 

Weld Fracture 
 

Weld Fracture 

2 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Weld Fracture 
 

Weld Fracture 
 

Weld Fracture 

3 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Weld Fracture 
 

Weld Fracture 

 
Weld Fracture 

Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
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as observed in the X-ray image obtained through RT. This is due to the high-pressure zinc fumes 
generated from the lap joint that were not discharged but remained inside the molten pool. Moreover, 
the tensile shear test results confirm the formation of weld fractures under every condition. This 
appears to be because of the decreased weld strength owing to the formation of pores inside and 
outside the weld. 
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Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, 
obtained using Equations (1)–(3). The formation of pores is considered one of the causes of the 
decreased weld strength. As listed in Table 5, in every tensile test specimen in which pores are 
observed, a higher weld porosity ratio led to a lower TSS with respect to the allowable tensile shear 
strength. 
  

Weld Fracture

Table 5 lists the porosity and tensile shear strength values for each tensile test specimens, obtained
using Equations (1)–(3). The formation of pores is considered one of the causes of the decreased weld
strength. As listed in Table 5, in every tensile test specimen in which pores are observed, a higher weld
porosity ratio led to a lower TSS with respect to the allowable tensile shear strength.
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Table 5. Porosity and tensile shear strength (TSS) of each test specimens (gap: 0 mm).

Run Item
Tensile Test Specimen

1 2 3

1
Porosity ratio (%) 7.3 7.5 4.2

TSS (MPa) 312 434 391

2
Porosity ratio (%) 2.7 8.0 5.3

TSS (MPa) 463 267 337

3
Porosity ratio (%) 3.2 1.7 3.0

TSS (MPa) 346 438 345

Table 6 lists the experimental results obtained for a 0.5 mm gap in the lap joint under the same
conditions as those listed in Table 4. No pits are generated on the weld surfaces of the specimens.
Furthermore, the X-ray images from RT show that no pores formed inside the weld. No pores are
present because a gap was employed in the lap joint to allow the high-pressure zinc fumes generated
from the lap joint to escape, thus minimizing the occurrence of pores in the weld. Moreover, the tensile
shear test results show that the workpiece fractured under all conditions. This could be because good
welds were attained, with no pores inside or outside the weld.

Table 6. Weld bead surface and fracture shape of each test specimen (gap: 0.5 mm).

Run Item
Tensile Test Specimens

1 2 3

1

Weld surface
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
  

Metals 2018, 8, x FOR PEER REVIEW  10 of 13 

 

Table 5. Porosity and tensile shear strength (TSS) of each test specimens (gap: 0 mm). 

Run Item Tensile test specimen 
1 2 3 

1 Porosity ratio (%) 7.3 7.5 4.2 
TSS (MPa) 312 434 391 

2 
Porosity ratio (%) 2.7 8.0 5.3 

TSS (MPa) 463 267 337 

3 
Porosity ratio (%) 3.2 1.7 3.0 

TSS (MPa) 346 438 345 

Table 6 lists the experimental results obtained for a 0.5 mm gap in the lap joint under the same 
conditions as those listed in Table 4. No pits are generated on the weld surfaces of the specimens. 
Furthermore, the X-ray images from RT show that no pores formed inside the weld. No pores are 
present because a gap was employed in the lap joint to allow the high-pressure zinc fumes generated 
from the lap joint to escape, thus minimizing the occurrence of pores in the weld. Moreover, the 
tensile shear test results show that the workpiece fractured under all conditions. This could be 
because good welds were attained, with no pores inside or outside the weld. 

Table 6. Weld bead surface and fracture shape of each test specimen (gap: 0.5 mm). 

Run Item Tensile test specimens 
1 2 3 

1 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Base metal Fracture 
 

Base metal Fracture 
 

Base metal Fracture 

2 

Weld surface    

X-ray image 
   

Fracture shape  
and mode  

Base metal Fracture 
 

Base metal Fracture 
 

Base metal Fracture 

3 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Base metal Fracture 
 

Base metal Fracture 
 

Base metal Fracture 

Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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present because a gap was employed in the lap joint to allow the high-pressure zinc fumes generated 
from the lap joint to escape, thus minimizing the occurrence of pores in the weld. Moreover, the 
tensile shear test results show that the workpiece fractured under all conditions. This could be 
because good welds were attained, with no pores inside or outside the weld. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
  

Metals 2018, 8, x FOR PEER REVIEW  10 of 13 

 

Table 5. Porosity and tensile shear strength (TSS) of each test specimens (gap: 0 mm). 

Run Item Tensile test specimen 
1 2 3 

1 Porosity ratio (%) 7.3 7.5 4.2 
TSS (MPa) 312 434 391 

2 
Porosity ratio (%) 2.7 8.0 5.3 

TSS (MPa) 463 267 337 

3 
Porosity ratio (%) 3.2 1.7 3.0 

TSS (MPa) 346 438 345 

Table 6 lists the experimental results obtained for a 0.5 mm gap in the lap joint under the same 
conditions as those listed in Table 4. No pits are generated on the weld surfaces of the specimens. 
Furthermore, the X-ray images from RT show that no pores formed inside the weld. No pores are 
present because a gap was employed in the lap joint to allow the high-pressure zinc fumes generated 
from the lap joint to escape, thus minimizing the occurrence of pores in the weld. Moreover, the 
tensile shear test results show that the workpiece fractured under all conditions. This could be 
because good welds were attained, with no pores inside or outside the weld. 

Table 6. Weld bead surface and fracture shape of each test specimen (gap: 0.5 mm). 

Run Item Tensile test specimens 
1 2 3 

1 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Base metal Fracture 
 

Base metal Fracture 
 

Base metal Fracture 

2 

Weld surface    

X-ray image 
   

Fracture shape  
and mode  

Base metal Fracture 
 

Base metal Fracture 
 

Base metal Fracture 

3 

Weld surface 
   

X-ray image 
   

Fracture shape  
and mode  

Base metal Fracture 
 

Base metal Fracture 
 

Base metal Fracture 

Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7 lists the porosity and TSS values of each test specimen with no pores. The TSS of every 
test specimen is higher than the allowable tensile shear strength. 
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Table 7. Porosity and TSS of each test specimen (gap: 0.5 mm).

Run Item
Tensile Test Specimen

1 2 3

1
Porosity ratio (%) 0 0 0

TSS (MPa) 613 614 619

2
Porosity ratio (%) 0 0 0

TSS (MPa) 620 621 622

3
Porosity ratio (%) 0 0 0

TSS (MPa) 614 611 613

3.3. Correlation between the Porosity Ratio and Tensile Shear Strength

Figure 9 shows the correlation between the TSS and the porosity ratio in the weld with and
without the gap based on the experimental results listed in Tables 5 and 7. These results confirm that
the shear tensile shear strength decreases when pores are formed in the weld without a gap and when
there are no pores with the gap, the shear tensile shear strength becomes higher than the allowable
tensile shear strength value of 590 MPa. This suggests that weld porosity significantly affects the
weld strength.
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4. Conclusions

In this study, experiments were performed using SGAFH 590 FB 2.3 mmt, which was applied to
automotive chassis components in the GMAW process. Moreover, an EDS analysis was performed
to verify that weld porosity is due to zinc fumes that are not discharged outside (i.e., fumes that
remain inside the weld). The weldability was assessed through tensile shear tests and the porosity was
measured through RT to quantitatively assess the weld porosity. The following conclusions are drawn
from this study.

(1) The semi-quantitative EDS analysis of the porous locations helped confirm the existence of zinc
residues in general, but no zinc remained in the non-porous locations, which suggests that zinc
fumes affect the formation of pores.
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(2) A gap of 0.5 mm in the overlap of the lap joint method is an efficient way to discharge the zinc
fumes, thus preventing the formation of pores in the weld.

(3) The weld strength was experimentally demonstrated to decrease significantly when pores were
generated in the weld.
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