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Abstract: The fatigue performance of high-strength Al-Cu-Mg alloys is generally influenced by the
process of creep age formation when applied to acquire higher strength. The results show that creep
aging accelerates the precipitation process, leading to a more uniform precipitation of strengthening
phases in grains, as well as narrowed precipitation-free zones (PFZ). Compared with the artificially
aged alloy, the yield strength and hardness of the creep aged alloy increased, but the fatigue resistance
decreased. In the low stress intensity factor region (∆K ≤ 7 MPa·m1/2), the fatigue crack propagation
(FCP) rate was mainly affected by the characteristics of precipitates, and the fatigue resistance
noticeably decreased with the increased creep time. In a 4 h creep aged alloy, the microstructure was
dominated by Cu-Mg clusters and Guinier-Preston (GP) zones, while S” phases began to precipitate
in the matrix, showing better fatigue resistance. After aging for 24 h, the needle-shaped S’ phases
were largely precipitated and coarsened, which changed the mode of dislocation slip, reduced the
reversibility of slip, and accelerated the accumulation of fatigue damage. In stable and rapid crack
propagation regions, the influence of precipitates on the FCP rate was negligible.
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1. Introduction

A new aerospace high-strength Al-Cu-Mg alloy called AA2524, developed after the 2024 and
2124 aluminum alloys, exhibits excellent fatigue resistance [1–3]. Combined with creep age forming
(CAF) technology, currently, AA2524 primarily finds its application in the manufacturing of wing
coverings, fuselage panels, and other components [4,5], e.g., the upper wing skin of civil aircrafts such
as the Airbus A330/340/380 [6], the wing panels of military aircrafts such as the B-1B bomber, C-17,
and F-35 [7], as well as tank panels and melon petals in the American Saturn-5, Hercules-4, and Ariane-5
launch vehicles of the European Space Agency [4,8]. Creep age formation is a process that takes
advantage of the creep property of metals to synchronize the forming and aging treatments. The formed
products achieve excellent structural integrity and low residual stress [9–12]. Many scholars have
conducted substantial research on the mechanical properties and springback prediction of creep
aged materials. Zhan et al. [10] established a creep constitutive model and analyzed the relationship
between the change of stress and precipitates and the aging strengthening in the creep aging process.
Jeshvaghani et al. [13] asserted that for a 7075 aluminum alloy that has been creep aged at high and
low temperatures in sequence, the springback rate decreased, and the exfoliation corrosion resistance
was improved. Xu et al. [14] researched the creep aging behavior of AA2524 with the presence of
pre-strain. The results showed that the increase of pre-strain can reduce the average size of S phases
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in the creep aged alloy and increase its density and uniformity, leading to a shortened time for peak
aging and improved strength.

The current research on creep aged alloys focuses mainly on conventional mechanical
properties and less on the fatigue properties. Influenced by frequent takeoff, landing, and airflow,
creep aging-formed fuselage skin, wings, and other components are the most vulnerable to fatigue
failure [15]. The fatigue crack propagation (FCP) resistance of aerospace structural components is an
extremely important indicator. Yin [16] and Shou [17] et al. discussed the influence of grain size on the
crack growth rate of 2524 aluminum alloy. Yin suggested that within the range of low stress intensity
factor ∆K, the crack closure effect of the coarse grain samples was greater than that of the fine grain
samples, and the grain refinement degraded the fatigue resistance. Shou demonstrated that when
the grain size was between 50 and 100 µm, the crack growth rate was relatively low, and the crack
growth path became more zigzagged. Srivatsan et al. [18] studied the effect of test temperature on the
high-cycle fatigue and fracture properties of AA2524, indicating that the fatigue life decreased with
the increasing test temperature. Baptista et al. [19] introduced an enhanced two-parameter exponential
equation model to describe the subcritical FCP behavior of 2524-T3 aluminum alloy, which performed
better than other test models. However, the aforementioned studies focused on the materials without
thoroughly examining the impact of the creep age forming process.

Liu studied the fatigue behavior of creep aged AA2524 at 180 ◦C and suggested that the crack
growth resistance of the alloy was reduced after treatment [20]. On the contrary, the research of Wenke
Li [21] showed that the fatigue life of AA2524 was improved after creep aging. However, his research
only considered the fatigue performance of the alloy under high stress and single stress, thus the
results are not considered fully representative. Therefore, it is necessary to further study the effect of
microstructure evolution on the fatigue performance of the creep formed alloy.

This current study achieved initial results. In this paper, the influence of creep aging and artificial
aging on the microstructure, conventional mechanical properties, and FCP resistance of AA2524 is
discussed. The goals of the present work are to characterize and correlate the evolution of precipitates
and FCP resistance with creep age forming, and to provide a theoretical basis for AA2524 creep age
forming technology.

2. Material and Experiments

The experimental material was a 5-mm-thick plate of AA2524-T3 alloy (Southwest Aluminum
Group Co., Ltd., Chongqing, China), with chemical compositions (in wt.%) as follows: 4.26% Cu,
1.36% Mg, 0.57% Mn, 0.024% Zn, 0.01% Ti, 0.002% Cr, 0.089% Si, and a balance of Al. The CAF tests
were completed in a vacuum autoclave. This process is shown in Figure 1. The creep temperature
was set at 160 ◦C at a heating rate of 1.5 ◦C/min, and the creep aging times were 4 h, 9 h, and 24 h.
The artificial aging test was performed using the same aging times and temperature, but without
external stress applied, which is called stress-free aging (SFA).
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Figure 1. The process of creep age forming.

TEM observations were conducted on a Tecnai G220 (200 kV) transmission electron microscope
(United States FEI limited liability company, Hillsboro, OR, USA). TEM samples were mechanically
thinned to approximately 60~80 µm, then punched into 3-mm diameter discs and polished in an
MTP-1 twin-jet electro-polisher in a 30% HNO3 and 70% CH3OH mixed solution at −30 ◦C~−25 ◦C
with a voltage of 15 V.
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Tensile tests and FCP tests were performed on a MTS810-50 KN (MTS Systems Corporation,
Eden Prairie, MN, USA) electro-hydraulic servo fatigue machine. Tensile specimens were cut in the
rolling direction of the plate and tested in accordance with ASTM-E8M-2004 at room temperature,
with a strain rate of 2 mm/min, resulting in an average of three samples. The FCP rate tests were
conducted in ambient air at a room temperature of 18 ◦C–25 ◦C and a relative humidity of 40–60%
in accordance with ASTM-E647. The FCP specimens were of the compact tension (CT) geometry,
as shown in Figure 2. FCP tests were characterized for constant amplitude loading at a frequency of
10 Hz and a stress ratio of 0.5. Crack length was measured by using a crack opening displacement
(COD) gauge, as shown in Figure 3. The hardness tests were completed on a HVS-1000Z Vickers micro
digital hardness machine (Huayin Testing Instrument Co., Ltd., Yantai, China) with a holding pressure
of 3 KN for 15 s. The average of five test points per sample was taken as the hardness value.
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3. Results and Discussion

3.1. Microstructure

The microstructures of AA2524 after creep aging and artificial aging are shown in Figure 4.
The alloy contained rod-shaped Mn-rich phases (Figure 4b,d) and Al20Cu2Mn3 (T phases) [22–24] with
a size range of 0.2 µm~0.5 µm. These phases were formed during a homogenizing treatment and hot
rolling, and were not re-dissolved in the subsequent heat treatment.
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aged (SFA)-4h; (c) CAF-9h; (d) SFA-9h; (e) CAF-24h; (f) SFA-24h.

Precipitates were not observed in the TEM bright field images of the alloy that was creep aged
for 4 h (CAF-4h) (Figure 4a), but it was discovered that tiny S” phases began to appear in the selected
area electron diffraction (SAED) pattern in a <100>Al direction (Figure 5a). The S” phase is a precursor
of the S′ phase, and generally occurs in the early aging stage of the Al-Cu-Mg alloy. It is difficult to
observe the S” phases in the TEM bright field image [25] because they are only several nanometers in
size and there is an ambiguous interface with the matrix. As these S” phases appeared, a large
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number of dislocation loops and helical dislocation lines were observed in the grains (CAF-4h)
(Figure 4a). However, no obvious precipitate was observed in the alloy that was stress-free aged
for 4 h (SFA-4h) (Figure 4b), and there were no apparent diffraction spots or streaks in the SAED
pattern [26]. Therefore, it can be determined that the microstructures in the SFA-4h alloy were mainly
Cu-Mg clusters and Guinier-Preston (GP) regions.
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Large quantities of needle-shaped, fine transition phases—the densely distributed S’ phases—were
observed (Figure 4c) in the alloy that was creep aged for 9 h (CAF-9h), with sizes ranging from
150~250 nm. The precipitates in the alloy that was stress-free aged for 9 h (SFA-9h) were still not
evident in the bright field images (Figure 4d). After creep aging for 24 h (CAF-24h), the precipitates
continued to grow and thicken, reaching sizes of about 200~400 nm (Figure 4e), and the clearance
between precipitates widened significantly. From the SAED pattern in Figure 5c, it is inferred that
the main strengthening phase in grains occurs in the S’ phase. In the alloy that was stress-free aged
for 24 h (SFA-24h), precipitates with sizes of about 200 nm~300 nm occurred (Figure 4f), which were
smaller than those found in the CAF-24h alloy (Figure 4e). The precipitation behavior shows that
the presence of stress during creep aging promoted the precipitation. Some scholars contend that
a great deal of nucleation precipitates from the high-density dislocations that are caused by creep
stress. Then, these dislocations act as fast diffusion channels to aggregate the solute atoms toward
heterogeneous nucleation, thus promoting the growth of S′ phases [27].

Figure 6 shows the grain boundary feature of AA2524 samples that were creep aged and artificially
aged for 9 h and 24 h. There was no apparent precipitation-free zone (PFZ) at the grain boundary
(Figure 6a,c) in either the CAF-9h or SFA-9h alloys, and the precipitates at the grain boundary showed
discontinuous distribution. After aging for 24 h, a distinct PFZ (Figure 6d) with a width of about
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184 nm appeared at the grain boundary in the SFA-24h sample, while the PFZ (Figure 6b) in the
CAF-24h sample was 140 nm wide—narrower than that of the stress-free aged sample. From this, it can
be explained that creep stress generates a large number of dislocations in grains. These dislocations
promote the surrounding preferential precipitation, resulting in more uniform precipitation kinetics of
the strengthening phases in grains and grain boundaries, thus narrowing the PFZ.Metals 2018, 8, x FOR PEER REVIEW  6 of 12 
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3.2. Conventional Mechanical Properties

Figures 7 and 8 show the conventional mechanical properties for AA2524 under creep aging and
stress-free aging, respectively. As the aging time increased, the hardness of AA2524 first increased
and then decreased (Figure 7), clearly reflecting characteristics that occur at three aging stages: under
aging (4 h of aging), peak aging (9 h of aging), and over aging (24 h of aging). For the stress-free aged
alloy, the hardness decreased within the aging time of 0 h~4 h (Figure 7) and increased from 9 h to
24 h. However, the hardness changed slightly during the 4 h~9 h range of time, indicating an apparent
plateau region. The study done by Ringer et al. [28] on the low Cu/Mg ratio Al-Cu-Mg alloy confirmed
that the hardening curves of the Al-Cu-Mg alloy, at an aging temperature ranging from 100 ◦C to
240 ◦C and within an α-S phase region, displayed an obvious plateau region. Experimental results
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in the present paper are consistent with this conclusion. In contrast, there was no hardness plateau
region under creep aging. After aging for 9 h, the hardness of the CAF-9h alloy rapidly reached a peak
value of 159 HV, 16.9% higher than that of the SFA-9h alloy (136 HV). This indicates that creep aging
significantly accelerates the hardening rate and improves the hardness of the alloy.Metals 2018, 8, x FOR PEER REVIEW  7 of 12 
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After 4 h of aging, the yield strength (σ0.2) of AA2524 had significantly degraded compared to
AA2524-T3, the 0 h artificially aged alloy (Figure 8). With the increased aging time, the yield strength
of the alloy was on the rise. With the same aging time, the yield strength of the creep aged alloys was
higher than that of the artificially aged alloys. The yield strengths of the CAF-9h and CAF-24h alloys
were 13.7% and 7% higher than those of the SFA-9h and SFA-24h alloys, respectively. All of the alloys
were of superior plasticity, with an elongation (δ) above 15%. The variation trend of elongation was
opposite that of the change in yield strength. Elongation of the 4 h aged alloys reached its highest
point at 27%, followed by a downward trend. Compared with artificial aging, creep aging degraded
the elongation of the alloy. After aging for 9 h, the elongation of the CAF-9h alloy was 18.2% lower
than that of the artificially aged 9 h (AA-9h) alloy.

The changes in the mechanical properties of the alloy are closely related to its microstructure
characteristics [29]. According to the aforementioned TEM observations, the main strengthening
phases of AA2524 are the needle-shaped S (S′) phases, which can improve the strength and hardness
but reduce the plasticity. The sizes of precipitates in the CAF-9h alloy (Figure 4c) were larger than those
in the SFA-9h alloy (Figure 4d), and the effect of precipitation strengthening was more pronounced.
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Therefore, creep aged alloys boast higher tensile strength and hardness than stress-free aged alloys,
but lower elongation.

3.3. Fatigue Crack Growth Behavior

Figure 9 shows the FCP rate of AA2524 under different creep aging conditions. The fatigue crack
growth behavior can be divided into three stages. In the low stress region of ∆K≤ 7 MPa·m1/2, the FCP
rates of different creep aged specimens varied significantly, among which the FCP rate of the CAF-4h
specimen was the lowest. With the increased aging time, the FCP rate was accelerated, and the FCP rate
of the CAF-24h specimen was the highest. This difference was mainly related to the characteristics of
precipitates and dislocation slips in the alloy matrix. However, with the increase of the stress intensity
factor range ∆K, the FCP rates in the Paris region and the rapid fracture region tended to be consistent
under different aging treatments, indicating that the effect of precipitate features in the alloy matrix on
crack propagation resistance was no longer pronounced.
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The CAF-4h alloy mainly contained fine S” phases (Figure 4a), Cu-Mg clusters, and GP
zones. These coherent clusters promoted the planar slip of dislocations under cyclic loading,
which greatly increased the reversibility of dislocation slip, reduced the accumulation of fatigue
damage, and improved the fatigue resistance of the alloy. The precipitates in both the CAF-9h and
CAF-24h alloys were mainly needle-shaped S′ phases (Figure 4c,e), with larger sized S′ phases in the
CAF-24 h alloy. These needle-shaped coarse phases changed the dislocation slip mode from single slip
to cross slip, which degraded the reversibility of dislocation slip and accelerated the FCP rate. A PFZ
appeared in the grain boundary of the CAF-24h alloy (Figure 6b), leading to a decrease in the grain
boundary strength. These softer PFZs caused stress concentration around the grain boundary and
accelerated the FCP rate [30]. To summarize, PFZs and larger needle-shaped precipitates lead to the
highest FCP rate of the CAF-24h alloy.

In the stable crack growth stage—namely when ∆K = 7~16 MPa·m1/2—the Paris region
precipitates, with a higher ∆K level, showed a weakened effect on the FCP rate. Figure 9 displays that
the crack growth rate of the CAF-9h sample was slightly higher, but the difference in FCP rates under
these three conditions was much smaller than that of the low ∆K level. When ∆K ≥ 16 MPa·m1/2,
da/dN ≥ 10−3 mm/cycle, and the da/dN-∆K curves showed an apparent knee, this indicated that the
crack propagation had entered a rapid growth stage.
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Figure 10 shows a comparison between the FCP rates of creep aged and stress-free aged AA2524
for aging times of 4 h, 9 h, and 24 h. In Figure 10a, the FCP rates of 4 h aged alloys under two
different aging conditions were very close because both alloys contained Cu-Mg clusters and GP
zones (Figure 4a,b). Although fine S” phases could be found in the SAED pattern of the CAF-4h alloy,
these phases had little influence on the FCP rate of the alloy due to the S” phases remaining coherent
with the matrix. As seen in Figure 10b,c, after aging for 9 h and 24 h, the FCP rates of the creep aged
alloys were significantly higher in the low stress intensity factor region than those of the stress-free
aged alloys.Metals 2018, 8, x FOR PEER REVIEW  9 of 12 
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After 9 h of aging, needle-shaped S′ phases that were semi-coherent with the matrix (Figure 4c,d)
mainly precipitated. However, the presence of stress in the creep aging process promoted the
precipitation, so the sizes of the S′ phases in the CAF-9h alloy were larger. Under the cyclic
loading, dislocations could not cut through part of the coarse S′ phases and instead bypassed them,
thus reducing the reversibility of cyclic slip, accumulating a large plastic deformation at the crack tip,
and promoting crack propagation. In the region of ∆K ≤ 7.5 MPa·m1/2, the fatigue crack propagation
resistance of the CAF-9h alloy was lower than that of the SFA-9h alloy.

After 24 h of aging, the sizes of precipitates showed a similar rule (Figure 4e–f). In the low stress
region, the FCP rate of the SFA-24h alloy was lower than that of the CAF-24h alloy. However, the PFZ in
the grain boundaries of the SFA-24h alloy (Figure 6d) was wider than it was (Figure 6b) in the CAF-24h
alloy, which accelerated the FCP rate to some extent. Under the influence of both precipitates and PFZs,
the effect of microstructures on the FCP resistance disappeared in advance. Therefore, the da/dN-∆K
curves of the two alloys (SFA-24h and CAF-24h) were basically consistent when ∆K ≥ 7 MPa·m1/2.

In the lower stress region, we chose to analyze the corresponding fatigue fracture at
∆K = 6 MPa·m1/2, in which the crack was in the stable growth stage. Under the SEM, a large area of
regular and parallel fatigue striations could be observed, as shown in Figure 11. When encountering the
particles in the matrix, the striations would bypass the particles and continue to expand (Figure 11b,c),
as the crack propagation direction conveys with the dotted arrow in Figure 11. The width of fatigue
striations marked in Figure 11 shows the general rule that the width of fatigue striations increases with
the increasing creep time. The fatigue striation width of the creep aged specimen was larger than that
of the stress-free aged one when tested with the same aging time. The fatigue striation was caused
by the repeated sharpening of the crack tip during the cyclic loading. The fatigue striation width
corresponds to the length of a certain cyclic fatigue crack propagation, which can represent the fatigue
crack growth rate to some extent. That is, the larger the fatigue striation width, the higher the fatigue
crack growth rate. This conclusion is also consistent with the previous da/dN-∆K curve analysis.
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Figure 11. Fatigue striation morphology at fractures of different specimens when ∆K = 6 MPa·m1/2:
(a) CAF-4h; (b) CAF-9h; (c) CAF-24h; (d) SFA-4h; (e) SFA-9h; (f) SFA-24h.

It can be concluded that the FCP rate of AA2524 in the low stress region is mainly affected by the
precipitate features. With the increase of ∆K, precipitates gradually show a weakened effect on the
FCP rate, while PFZs in the grain boundaries accelerate the FCP of the alloy to some extent.

4. Conclusions

(1) Creep age forming generated a large quantity of dislocations in the grains of AA2524,
which provided nucleation locations for the heterogeneous nucleation of the second phase.
The resulting precipitates in the creep aged AA2524 were larger in number and size than those in
the stress-free aged AA2524 after the same aging time.

(2) The yield strength of AA2524 increased with increasing aging time. After the same aging time,
the yield strength of the creep aged alloy was higher, while the hardening curve of the stress-free
aged alloy had a plateau region for approximately 5 h. This indicates that creep aging can
significantly accelerate the age hardening process, with the alloy quickly reaching the peak
aging state.

(3) In the low stress intensity factor region, the crack growth behavior of AA2524 was mainly affected
by precipitates. The FCP rate was accelerated with an increased creep aging time. Creep aging
promoted the precipitation and growth of S” and S′ phases in the alloy. The needle-shaped coarse
S”(S′) phases altered dislocation slip mode in the alloy, reduced the reversibility of dislocation
slips, and degraded the crack propagation resistance. The FCP rate of the creep aged alloy was
higher than that of the stress-free aged alloy after the same aging time.

(4) In the stable crack propagation region, the FCP rates were generally consistent under different
aging treatments, and the effect of precipitate features in the alloy matrix on crack propagation
resistance was negligible.
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