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Abstract: The effects of the addition of 0.29 wt % Ce on the recrystallization behavior of an
Al–Cu–Li–0.13Zr (wt %) alloy during isothermal annealing were investigated. Ce addition
greatly improved inhibition of recrystallization in this alloy compared with that in the Ce-free
alloy. The texture of the Ce-containing alloy contained a large amount of β-fibers and fibrous
unrecrystallized grain microstructures distributed along the rolling direction in the overall annealing
process. The improved recrystallization resistance endowed by Ce addition can be attributed to the
large number of small Al8Cu4Ce species formed on the grain boundary. These fine particles with
high-temperature stability can exert a Zener pressure on the Al3Zr dispersoid-free grain boundary.
The yield strength of the Ce-containing alloy increased significantly, to 38 MPa, and the fracture
toughness improved by 56.28% compared with those of the Ce-free alloy. This work provides a
convenient and economical method for enhancing the overall performance of an Al–Cu–Li–Zr alloy
via recrystallization inhibition by Ce addition.
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1. Introduction

Al–Cu–Li-based alloys are of great interest as aerospace structural materials, which require a
combination of high strength, low density, high fracture toughness, and good corrosion resistance [1].
Inhibition of alloy recrystallization has been extensively used to improve the overall performances of
these Al alloys. An increase in the number of small grains and distribution of fiber-like unrecrystallized
microstructures via recrystallization inhibition greatly improves the strength and fracture toughness of
an Al alloy [2–5]. In the fabrication of high-performance Al–Cu–Li alloys, in particular, recrystallization
inhibition can be used to avoid intergranular fractures caused by lower Li segregation levels in
small-angle grain boundaries of unrecrystallized grains, and improve the alloy strength and fracture
toughness [6,7]. This greatly extends the scope of their applications.

Well-distributed nano-sized dispersoids can effectively retain their deformed structure through
pinning dislocation and sub-boundaries to inhibit recrystallization and grain growth [8]. Many
attempts have been made to inhibit recrystallization in Al alloys through precipitating L12-structured
nano-sized dispersoids of Al3Zr [9,10]. However, addition of Zr alone often gives a highly
inhomogeneous distribution of dispersoids [11]. Recently, joint addition of Zr and rare earth elements
(e.g., ScZr and ErZr) has been used to solve this problem [12], but this makes homogenization annealing
processes complicated.
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Normally the low solute supersaturation near dendrite boundaries results in the dispersoid-free
zones formed in Zr containing alloy, leading to dispersoid banding in rolled plates and a low pinning
pressure in the critical region of grain boundaries where recrystallization easily initiates [11]. Similar to
the opposite micro segregation patterns of Mn and Zr in Al, the joint addition of Ce and Zr is thought
to produce more uniform dispersion coverage [13]. The precipitation of Ce-containing phase along
dendrite boundaries easily occur and it is hardly dissolved in solid solution, due to its micro segregation
patterns [14,15], and the poor solid solubility of Ce in Al alloy (only 0.05 wt % at 650 ◦C) [16]. These fine
Ce-containing phases that contribute towards Zener pinning would have a potent effect in retarding
grain boundary migration [17], especially on an Al3Zr dispersoid-free grain boundary. Moreover, Ce
with medium-price and it seems an effective texture modifier in alloy [18]. However, the rare earth
element Ce has traditionally been used as a micro-alloying element in Al alloys to purify melts [19]
and refine dendritic structures [20,21]. Improved recrystallization resistance was only clearly observed
during annealing of the Mg–Zn–Zr–Ce alloy because of the Zener pinning effect of the Ce enrichment
phase [17]. Similar recrystallization inhibition has also been observed in Al alloys [22], therefore, we
investigated the effects of Ce addition on recrystallization inhibition in an Al–Cu–Li–Zr alloy.

In this study, the effects of Ce addition on inhibition of recrystallization in an Al–Cu–Li–Zr alloy
were investigated during isothermal annealing after high-strain rolling. Ce addition to an Al–Cu–Li–Zr
alloy greatly improved its recrystallization resistance during isothermal annealing. The observed
evolution of textures and microstructures, and the mechanical properties confirmed that Ce addition
inhibited recrystallization. Ce addition considerably improves the strength and fracture toughness of
Al–Cu–Li–Zr alloys, and this provides a convenient and economical method for enhancement of their
overall performance.

2. Materials and Methods

The composition of the experimental alloy is presented in Table 1. Master alloys of Al–Cu, Al–Zr,
Al–Ce, and pure Ag, Mg, Li, and the remainder Al were melted in a vacuum induction melting furnace
in a controlled Ar gas atmosphere, in a high-purity graphite crucible. Casting was performed under
Ar, using a Cu mold surrounded with cooling water [23]. The as-cast ingots were homogenized in two
stages, at 470 ◦C/8 h and 510 ◦C/16 h in a salt bath, followed by air cooling to room temperature. The
ingots were converted into plates of thickness 4.5 mm by hot rolling at 400–450 ◦C, under a total rolling
strain of 80.43%. The hot-rolled plates were held at 450 ◦C for 2 h and then cooled to room temperature
in the furnace. Finally, these plates were cold rolled by 55.55% to a thickness of approximately 2.0 mm.
The cold-rolled plates were annealed in a salt-bath furnace under various isothermal conditions, i.e.,
380 ◦C/0.5 h, 430 ◦C/0.5 h, 450 ◦C/1 h, 520 ◦C/0.5 h, 520 ◦C/1 h, and 520 ◦C/4 h. Samples for tensile
and fracture toughness tests were prepared by solution treatment at 520 ◦C for 1 h, water quenching,
and artificial aging at 180 ◦C for 22 h. Tensile tests were performed at a loading speed of 2 mm/min
with an Instron3369 machine (INSTRON, Boston, MA, USA). The fracture toughness (tear resistance)
was determined by the Kahn tear test; the relevant parameter was the unit initiation energy (UIE),
i.e., the energy dissipated before crack propagation [24]. The grain structure was observed by optical
microscopy under polarized light. The macro-textures and phases of the alloys were investigated by
X-ray diffraction (XRD; Rigaku D/max-2400, Ultima IV, Rigaku Corp., Tokyo, Japan). Automated
electron backscatter diffraction (EBSD) was performed with a FEI-Nova Nano SEM 450 scanning
electron microscope (FEI Company, Hillsboro, OR, USA) equipped with a field-emission gun and a
HKL-NordlysII EBSD detector (Oxford Instruments, Oxford, UK). The gathered data were analyzed
using TSL OIM Analysis 7 software (EDAX Inc., Mahwah, NJ, USA).

Table 1. Chemical composition of investigated alloys (wt %).

Alloys Li Cu Ag Mg Zr Ce

Ce-free alloy 1.29 4.62 0.41 0.39 0.14 -
Ce-containing alloy 1.31 4.63 0.38 0.40 0.13 0.29
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3. Results and Discussion

Figure 1 shows the recrystallization degree of the Al–Cu–Li–0.13Zr–0.29Ce alloy (Ce-containing
alloy). The degree is far lower than that for the Al–Cu–Li–0.14Zr alloy (Ce-free alloy) under the
same conditions, for all annealing processes. As shown in Figure 1a, little recrystallization of the
Ce-containing alloy can be observed along the rolling direction for annealing at temperatures below
520 ◦C. Clear recrystallization only occurs near the sample surface zone after annealing at 520 ◦C
for 1 h. There are still large areas of unrecrystallized grain structures in the middle area of the
sample, even for annealing times of up to 4 h (Figure 1a) In contrast to the case for the Ce-containing
alloy, unrecrystallized microstructures in the Ce-free alloy can only be observed for annealing at
380 ◦C for 0.5 h. Significant recrystallization occurs after annealing at 430 ◦C for 0.5 h, and further
recrystallization occurs after annealing at 450 ◦C for 1 h. Almost complete recrystallization can be
observed after annealing at 520 ◦C for 1 h, as shown in Figure 1b. Ce addition effectively improves the
recrystallization resistance of Al–Cu–Li–Zr alloys.
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Figure 1. Optical microstructures for the alloys under different annealing temperatures and time:
(a) Ce-containing alloy; (b) Ce-free alloy.

The evolutions of the macro-textures (grain orientations) of the Ce-containing and Ce-free
alloys were compared to clarify the process of recrystallization inhibition in Al–Cu–Li–Zr by Ce
addition under various isothermal annealing conditions (Figures 2 and 3). Figure 2a shows that
typical deformation microstructures such as β-fibers, and textures with the Cu orientation {112}<111>,
S orientation {123}<634>, and brass orientation {011}<211>, were clearly formed in the Ce-containing
alloy by high-strain rolling. Figures 2 and 3 show that in the Ce-containing alloy, the β-fiber texture
was first partly replaced by the Cubic texture {001}<100> at 520 ◦C, which is higher than that in the case
of the Ce-free alloy, i.e., about 430 ◦C. The unrecrystallized β-fiber rolling texture was always retained
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during isothermal annealing, as shown in Figure 2b–e. This indicates that Ce addition improved
inhibition of recrystallization.Metals 2018, 8, x FOR PEER REVIEW  4 of 15 
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Figure 2. Orientation distribution function (ODFs) representative sections of cold rolled Ce-containing
alloy under different annealing temperatures and times: (a) cold rolled; (b) 380 ◦C/0.5 h; (c) 430 ◦C/0.5 h;
(d) 520 ◦C/0.5 h; (e) 520 ◦C/4 h.
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Figure 3. ODFs representative sections of cold rolled Ce-free alloy under different annealing
temperatures and time: (a) cold rolled; (b) 380 ◦C/0.5 h; (c) 430 ◦C/0.5 h; (d) 520 ◦C/0.5 h;
(e) 520 ◦C/4 h.

Quantitative date for the unrecrystallized β-fiber and α-fiber textures are presented in Figure 4;
the data show the maximum intensities of the orientation distribution function (ODF) f (g). Figure 4
shows that the f (g) value for the as-rolled Ce-containing alloy was lower than that for the Ce-free
alloy. It can be assumed that particle-stimulated nucleation (PSN) of recrystallization occurred [25]
and more randomly oriented nuclei formed [26] during hot deformation because of the formation of
coarse Ce enrichment particles in the Ce-containing alloy [14]. The SEM images and XRD patterns
of the as-homogenized material clearly show the presence of a large number of coarse Al8Cu4Ce
particles in Ce-containing alloy, and only a few AlCu2Zr particles in Ce-free alloy (Figure 5). Obviously,
the number density of coarse particles in the Ce-containing alloy is larger than that in Ce-free alloy.
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Because of more coarse particles in the Ce-containing alloy, particle-stimulated nucleation (PSN) of
recrystallization occurs and more randomly oriented nuclei are formed during hot deformation. This
analysis is confirmed by the texture of the alloys after the hot rolling stage in Figure 6. The lower stored
energy after deformation through PSN recrystallization in the Ce-containing alloy, therefore, decreased
the recrystallization driving force of this alloy [27]. In addition, unlike the gradual decreases in the
α- and β-orientation lines of the Ce-free alloy, the intensities of the β-fiber texture at the positions of
brass and S orientations in the Ce-containing alloy continuously increased with increasing annealing
temperature up to an annealing time of 4 h at 520 ◦C. After annealing for 4 h, the orientation densities
of brass and S dropped, whereas the Cu {112}<111> and Goss{011}<100> textures increased, as shown
in Figure 4a,c. In general, the f (g) values for both α-fibers and β-fibers in the Ce-containing alloy
(Figure 4a,c) were much higher than those for the Ce-free alloy (Figure 4b,d) when the annealing
temperature reached 520 ◦C. The initial increase and subsequent decrease in the value of f (g) can be
explained as follows. Because of the strong inhibition of recrystallization achieved by Ce addition
during isothermal annealing after high-strain rolling (Figure 1), recovery only occurs via formation of
a large number of subgrains with the β rolling orientation. The intensities of the preferred nucleation
S and brass orientations increase significantly with annealing temperature [28]. When annealing
is extended to 4 h, recovery is associated with the accumulation of misorientations or annihilation
of dislocations, leading to the formation of movable high-angle sub-boundaries. The ‘overcritial’
sub-grains (given by the Gibbs Thomson effect) grow and become growing recrystallization grain [22],
with a corresponding decrease in the f (g) value. Because of the roles played by Ce enrichment particles
at different stages, improved recrystallization resistance of the Ce-containing alloy is achieved during
isothermal annealing.
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Grain orientation evolution in these alloys can be clearly observed by using EBSD, as shown in
Figures 7 and 8. A considerable amount of unrecrystallized deformed structures, which consisted of
subgrains with a high fraction of low-angle grain boundaries, clearly remained in the Ce-containing
alloy after annealing at 520 ◦C for 1 h. In contrast, a large amount of coarse equiaxial recrystallized
grains with a cubic texture was observed in the Ce-free alloy. The grain orientation distributions
in Figures 7 and 8 match those in Figure 1 well. Furthermore, the grain orientation evolution well
explains the extent of recrystallization during the annealing process, based on transformation of the
grain orientation from concentrated to more random during recrystallization. Figure 9 shows that
Ce-containing alloy had a lower content of large-angle grain boundaries after annealing at 450 and
520 ◦C for 1 h; this confirms a lower recrystallization degree in the Ce-containing alloy.
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Figure 7. Micro-textures of the experimental alloys annealed under different annealing temperatures
for 1 h. Ce-containing alloy: (a) 450 ◦C, (b) 520 ◦C; Ce-free alloy; (c) 450 ◦C, (d) 520 ◦C. The color of
each grain was coded by its crystal orientation based on [001] inverse pole figure.
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Figure 8. EBSD images of the experimental alloys annealed under different annealing temperatures for
1 h. Ce-containing alloy: (a) 450 ◦C; (b) 520 ◦C; Ce-free alloy: (c) 450 ◦C; (d) 520 ◦C.

The form and distribution of the Ce enrichment phases were investigated by XRD and SEM to
clarify the effects of Ce enrichment particles in Al–Cu–Li–Zr alloys on inhibition of recrystallization;
the results are shown in Figure 10. The SEM images and XRD patterns clearly show the presence
of Al7Cu4Li, and Al8Cu4Ce phases in the as-rolled Ce-containing alloy (Figure 8a,b). The improved
recrystallization resistance achieved by Ce addition to Al–Cu–Li–Zr alloy can be attributed to the
formation of these finer Al8Cu4Ce phases. These Al8Cu4Ce phases had been crushed from their
skeletal morphologies in the as-cast state into a smaller size by the large strain rolling [14]. Al8Cu4Ce
phases have high-temperature stability and hardly redissolve during high-temperature annealing [15],
as shown in Figure 10c. Only the fine Al8Cu4Ce particles with diameters smaller than 1 µm have
been counted, as shown in Figure 10c. The effective pinning provided by Ce-containing dispersoids is
mainly restricted in the Al3Zr dispersoid-free area. As a result, only the fine Al8Cu4Ce particles in
Al3Zr dispersoid-free area have been counted (Insider the box in Figure 10c). The estimation of the
Zener pressure by fine Al8Cu4Ce particles has been presented, as below [29].

Pz =
3γGB fv

D
(1)
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Figure 9. Grain boundary orientation angle distribution of the experimental alloys at different annealing
temperatures after 1 h holding. Ce-containing alloy: (a) 450 ◦C; (b) 520 ◦C; Ce-free alloy: (c) 450 ◦C; (d)
520 ◦C.

For Al alloy the γGB is 0.32 J/m2. The size (D) and the volume fraction ( fv) are 0.82 µm and
at least 6.75% respectively at present work. The estimate of the Zener pressure Pz which is at least
79.02 kJ/m3 exert on the grain boundary. So the denser distributions of these fine Ce-contining particles
near grain boundary apparently cause the strong recrystallization inhibition in Al3Zr dispersoid-free
grain boundary. The Al8Cu4Ce particles make a hole in the grain boundary (GB) and thus reduce
GB area, which impose a drag force preventing the GB to escape from the particle. In order to
move past the particle, a new boundary must be created, and this is energetically unfavorable [27].
These high-temperature-stable Al8Cu4Ce particles might exerting a Zener pressure on the boundary,
especially on a dispersoid-free grain boundary, which would retard their migration [30] and inhibit
recrystallization. Even the effect of Ce solute dragging on recrystallization at lower annealing
temperatures can be ignored because of its extreme lower solid solubility [31]. In addition, the few
ternary AlCuZr particles observed in the Ce-free alloy had little recrystallization-inhibiting abilities; this
can be attributed to the small quantity of particles and the precipitate position. First, a certain amount
of Zr trapped in these AlCuZr particles could decrease the effect of nano-sized Al3Zr particles on
inhibition of recrystallization, corresponding to the higher Zr content in the matrix of the Ce-containing
alloy (0.32 wt %) than that in the Ce-free alloy (0.13 wt %), as shown in Figure 8b,d. Secondly, few
AlCuZr particles for recrystallization inhibition were formed near dendrite boundaries because of
the low solute supersaturation in the Ce-free alloy, which contained a single dispersoid-forming
element, namely Zr [11]. The enhanced inhibition of recrystallization in Ce-containing alloys can,
therefore, mainly be attributed to the formation of a large number of small Al8Cu4Ce phases. Improved
recrystallization resistance by Ce was only observed during annealing of the Mg alloy [17]. Similar
with Mn and Zr which have the opposite microsegregation patterns in Al alloy [18], the joint addition
of Ce and Zr in present alloy also achieves uniform dispersion coverage. In contrast to the rod-like
shaped Al20Cu2Mn3 dispersoids [32], the spherical Al8Cu4Ce dispersoids (with much lower aspect
ratio) formed in the Al3Zr dispersoid-free bands by joint addition of Zr and Ce, can effectively to
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control texture, to pin grain and sub-grain migration and to inhibit recrystallization, enhancing fracture
toughness at present work [13].
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Figure 11 shows that the tensile strength and yield strength of the Ce-containing alloy were
higher than those of the Ce-free alloy, by 21 and 38 MPa, respectively, after solid-solution and aging
treatment. The average grain size (incl. sun-grain sizes) of the experimental alloy after solid solution
treatment at 520 ◦C for1 h is 5.32 µm in Ce-containing alloy and 31.23 µm in Ce-free alloy respectively,
as shown in Figure 7. The strength increment by grain refinement in two alloys can be achieved
through Hall-Peatch relationship [33]:

∆σH−P = k (dCe−containing − dCe−free) (2)

For Al alloy the k is 0.04 MPa × m1/2, so the strength increment in two alloys obtained by grain
refinement is 10.16 MPa. However, the yield strength of the Ce-containing alloy is higher than that
of the Ce-free alloy by 38 MPa in Figure 11. The results indicate that the differences in mechanical
properties are due to grain structure (26.74%) and the final precipitation behaviour (73.26%). Moreover,
the elongations to break of the two alloys were similar. The UIE value (fracture toughness) of the
Ce-containing alloy (31.21 N/mm) was higher than that of the Ce-free alloy (19.97 N/mm). The grain
size is one of the main factors that affect the fracture toughness and ductility of a material, therefore,
the grain properties of these two alloys after solid-solution and aging treatment are shown in the
three-dimensional optical micrographs in Figure 10. There are clearly many more small grains and



Metals 2018, 8, 1035 12 of 15

fiber-like unrecrystallized microstructures distributed along the rolling direction in the Ce-containing
alloy after solid-solution and aging treatment (Figure 12a). There are many coarse recrystallized grains
distributed in the Ce-free alloy (Figure 12b). The critical effective shear stress and energy of plastic
deformation, which are affected by the grain size, are key factors in crack initiation and propagation
during deformation of alloys [4,30]. These properties determine the overall performance (strength,
fracture toughness, etc.) of an alloy. The critical effective shear stress at fracture or crack nucleation
should be considered first because gliding dislocations can accumulate at grain boundaries during
continuous deformation and some cracks may be formed by piled-up dislocations. The crack initiation
resistance is improved by grain refinement in the Ce-containing alloy because the critical effective shear
stress at fracture increases with decreasing grain diameter [30]. Moreover, the fiber-like unrecrystallized
microstructures or smaller grain size in the Ce-containing alloy result in larger grain boundary areas.
The crack propagation paths are more tortuous, which results in higher crack propagation resistance
and higher energy of plastic deformation [4]. This analysis is consistent with the higher strength and
fracture toughness, and uniform elongation results for the Ce-containing alloy in Figure 11.
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4. Conclusions

Inhibition of recrystallization in an Al–Cu–Li–Zr alloy through Ce addition during isothermal
annealing after high-strain rolling was investigated. Improved recrystallization resistance was
confirmed by optical microscopy, and observation of texture and microstructures during isothermal
annealing. Considerable enhancement of the fracture toughness and tensile strength were achieved by
inhibiting recrystallization. The following conclusions can be drawn.

(1) The recrystallization degree of an Al–Cu–Li–0.13Zr–0.29Ce alloy is far lower than that of
an Al–Cu–Li–0.14Zr alloy under the same conditions, for all annealing processes. This reflects
the deformation/recrystallization texture transitions at higher annealing temperatures and longer
annealing times in the Al–Cu–Li–0.13Zr–0.29Ce alloy, in which much larger amounts of β-fibers and
fibrous unrecrystallized grain microstructures were distributed along the rolling direction in the overall
annealing process.

(2) The enhanced recrystallization resistance of the Al–Cu–Li–0.13Zr–0.29Ce alloy can be
attributed to the formation of a large number of small Al8Cu4Ce phases on dispersoid-free grain
boundaries. These high-temperature-stable particles might produce Zener pinning pressure on Zr
dispersoid-free grain boundaries, and retarded its migration.

(3) The Al–Cu–Li–0.13Zr–0.29Ce alloy had high tensile and yield strengths, i.e., 592 and 555 MPa,
respectively. The UIE value (fracture toughness) of this alloy (31.21 N/mm), was higher than that of
the Al–Cu–Li–0.14Zr alloy (19.97 N/mm). This is because of its finer grain size.
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