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Abstract: The phase transformation kinetics of a face-centered-cubic (FCC) Al0.25CoCrFeNi high-
entropy alloy during isochronal heating is investigated by thermal dilation experiment. The phase
transformed volume fraction is determined from the thermal expansion curve, and results show
that the phase transition is controlled by diffusion controlled nucleation-growth mechanism. The
kinetic parameters, activation energy and kinetic exponent are determined based on Kissinger–
Akahira–Sunose (KAS) and Johnson–Mehl–Avrami (JMA) method, respectively. The activation
energy and kinetic exponent determined are almost constant, indicating a stable and slow speed of
phase transition in the FCC Al0.25CoCrFeNi high-entropy alloy. During the main transformation
process, the kinetic exponent shows that the phase transition is diffusion controlled process without
nucleation during the transformation.
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1. Introduction

High-entropy alloys (HEAs) have attracted extensive attention as its unique designing philosophy
and excellent comprehensive properties such as high strength, high toughness and good corrosion
resistance [1–5]. Tuning the microstructure and improving the mechanical properties have been
one of the most interesting fields for many researchers. Heat treatment is widely used for many
kinds of materials in order to obtain ideal integrated properties effectively without macro appearance
destruction. Implementation of heat treatment to high-entropy alloys also achieved many successful
cases [6–11]. For example, Niu et al. [12] studied the tensile properties of Al0.5CoCrFeNi HEAs
annealed at 650 ◦C and found the alloy is highly strengthened by nanoprecipitations. Munitz et al. [8]
studied the effect of heat treatment on the microstructure and mechanical properties of AlCoCrFeNi
HEAs, and found that the formation of brittle σ phase heat treated at 850 ◦C caused micro-hardness
of the inter-dendrite region increasing dramatically and the dissolution of σ phase at 975 ◦C induced
alloy softening.

The heat treatment is solid state phase transformation which is usually described by
thermodynamics as well as kinetics [13]. Kinetics way of tailoring phases is significantly important
for HEAs to obtain outstanding integrated performance. AlxCoCrFeNi (0 ≤ x ≤1) HEAs are one of
the most commonly investigated alloys that owns very good properties and easily to be tunable by
changing the Al content, heat treatment and forging [14–23].

In our previous research, the phase transformation kinetics of Al0.5CoCrFeNi HEA was inspected
and reasonable heat treatment parameters were found [24]. Overall, kinetics analysis is absolutely
important for high-entropy alloys to realize tuning microstructure and properties. Yet the research in
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this filed is insufficient and further study is needed. In this paper, the phase transformation kinetics
of a face-centered-cubic (FCC) Al0.25CoCrFeNi high-entropy alloy is analyzed by thermal dilation
experiment to learn the phase transition mechanism.

2. Experimental Procedures

Al, Co, Cr, Fe, and Ni with high purities (≥99.95 wt. %) were used to prepare Al0.25CoCrFeNi
high-entropy alloy ingots by arc-melting under inert (argon) atmosphere. Each ingot was re-melted
at least four times so as to achieve homogeneity. The exact composition of the ingot checked by
energy dispersive X-ray spectrometry (EDS, JEOL, JSM-6390, Tokyo, Japan) analysis (the errors for
each element is less than ±5%) is Al5.7Co23.4Cr22.8Fe23.5Ni24.6.

After polishing and clean with ethanol, the ingots were casted into rods with dimension of φ 6
× 70 mm. The rods were machined into specimens with dimension of φ 6 × 25 mm. Then the rods
directly taken from the as-cast alloy are used for thermal dilation test by Netzsch®DIL-402C (Selb,
Germany). The tests were carried out under the protection of argon and the heating rates in this
paper are 4 K/min, 6 K/min, 8 K/min and 10 K/min, respectively. The microstructure and phases
were characterized by X-ray diffractometer (XRD, DX 2700, Dandong, China) and scanning electron
microscope (JEOL, JSM-6390, Tokyo, Japan), respectively.

3. Results

3.1. Thermal Expansion Curve

Figure 1a shows the thermal dilation curve of Al0.25CoCrFeNi HEA measured at heating
rate of 4 K/min and Figure 1b is the differential curve of Figure 1a. As is shown in Figure 1b,
two phase transition can be pointed from the differential curve. The starting temperatures for these
two phase transition are 760 K and 995 K, which are determined to be the FCC-L12 and FCC-B2 phase
transition [25], respectively. According to the thermal expansion curve, the first transition FCC-L12

shows a much larger thermal expansion behavior, which will be investigated in detail below.
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Figure 1. (a) The thermal dilation curve of Al0.25CoCrFeNi high-entropy alloy measured at 4 K/min
heating rate, and (b) the differential of the thermal dilation curve.

3.2. Determination of Phase Transformed Volume

The thermal dilation curves of Al0.25CoCrFeNi HEA measured at different heating rates are
presented in Figure 2a. All the curves exhibit the same variation tendency, indicating good repeatability
of the thermal dilation experiment. As to the FCC-L12 phase transition, the phase transformed volume
can be calculated by the lever rule method [26–28]. Taking the specimen measured at 4 K/min as
an example, specific lever rule method explanation is shown in Figure 2b. The lines AA’ and BB’
can be gained by extending the linear expansion stage before and after the phase transition. After
connecting the A’ and B’, the point intersection of A’B’ and the thermal dilation curve is C. Then,
the phase transition volume fraction at specific temperature can be calculated by Equation (1).
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f (x) =
yA′−yC

yA′ − yB′
(1)

where f is the phase transition volume fraction and yA′ , yB′ , yC are the Y-axis values of A′, B′ and C,
respectively. All the thermal dilation curves in Figure 2a are analyzed by the recommended lever rule
method and the result is shown in Figure 3.
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Figure 2. (a) The thermal dilation curves of Al0.25CoCrFeNi HEA measured at different heating rates
and (b) an example of calculating f by level ruler method. The red lines are used for determine the
starting (A) and ending (B) point of the phase transition, and the intersection (C) of the dashed line and
the thermal expansion curve is used for the calculation of f using Equation (1).
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alloy measured at different heating rates.

The phase transformed fraction (f ) as a function of temperature at different heating rates are
shown in Figure 3. At the starting period of phase transition (when f < 10%), the slope of the curves are
very small, illustrating the slowly phase transition rate. The slope of curves gets bigger gradually with
the continuous increasing of temperature which means the phase transition becomes faster. Overall,
the whole transition curves present a “S” shape, which is a proof that the FCC-L12 phase transition is
controlled by the nucleation-growth mechanism [27].

3.3. Calculation of Activation Energy

Activation energy (E) is a significant thermodynamic parameter for the evaluation of phase
transition barrier. The activation energy of FCC-L12 phase transition in Al0.25CoCrFeNi HEA would
change with the variation of local chemical composition at different stages of phase transition. So the
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apparent activation energy obtained by considering the activation energy at each stage of phase
transition is used to assess the transition process. There are many methods that can calculate the
activation energy during solid state phase transition, and the generalized Kissinger method (also called
Kissinger-Akahira-Sunose (KAS) method) [29] is a well-known one that is very efficient and accurate.
The method using the following equation:

ln
(

T2

Φ

)
= −C +

E
RT

(2)

where T is temperature at certain transformed volume, Φ is the heating rate, C is a constant and R is
the molar gas constant. Specific values of T and Φ can be gained from the phase transformed fraction
curves shown in Figure 3. Linear regression between ln(T2/Φ) and 1/T (1/T is replaced by 10,000/T
in order to simplify the calculation) is obtained by calculation of Equation (2) with the temperature
corresponding to different heating rates (4 K/min, 6 K/min, 8 K/min, 10 K/min) and using T at four
different transformed volume fraction: 0.2, 0.4, 0.6 and 0.8 (in fact, when f is close to 0 or 1, there
will be a large error for the calculation due to the error caused during determination of f ). The linear
regression results are exhibited in Figure 4 and the slope of each line represents the value of E/R
for the corresponding phase transformed fraction. The determined activation energies are shown in
Figure 5. There is a decreasing tendency of the activation energy with the increasing transformed
volume, however, the difference is quite small and the value is around 198 ± 1 kJ/mol.
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3.4. Calculation of Avrami Exponent

The kinetic exponent, also called Avrami exponent, can be used to speculate phase transition
mode. The kinetic exponent can be calculated from the classic Johnson-Mehl-Avrami (JMA) model [30],
which can be expressed as:

f = 1− exp(−Ktn) (3)

where n is the Avrami exponent, f is the phase transition volume fraction, K is a constant and t is
the time. Nevertheless, the JMA equation is only applicable for the isothermal phase transformation
process. In the case of continuous heating at constant heating rate, the time t can be express as:

t− t0 =
T − T0

Φ
(4)

where T0 and t are the starting temperature and time of phase transition. Then the JMA equation
can be extended to non-isothermal condition. By incorporating of Equations (3) and (4), after some
mathematic treatment, the kinetic exponent can be obtained by the following equation [31]:

n = − ln(− ln(1− f ))
E

RT
(5)

Then the kinetic exponent n can be determined from the slope of the ln(−ln(1 − f )) vs. 1/T curve.
For a real phase transformation, the Avrami exponent n will change with the transformed volume
fraction and the so-called local Avrami exponent are always used to determine the changing kinetic
exponet at different transformed volume fraction [31]:

n = −∂ ln(− ln(1− f ))
∂ E

RT
(6)

Taking the sample measured at 4 K/min as an example, the result of Avrami exponent vs. phase
transformation volume fraction is presented in Figure 6. Except for the large value of exponent at
the quite early and late stage of phase transition, the kinetic exponent, n, during the majority phase
transition process lies in the range 1.5~1 with a small decreasing trend.
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Figure 6. The local Avrami exponent (blue circle) as a function of phase transformed fraction of
Al0.25CoCrFeNi high-entropy alloy that heated at 4 K/min. The green zone represents the range of n
from 1~1.5.

4. Discussion

The Al0.25CoCrFeNi high-entropy alloy is a typical FCC single solid solution alloy. When the
as-cast sample was homogenized (1150 ◦C-24 h), there is a slight difference for the transformation
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kinetics, and transformation rate for the homogenized sample is a little bit smaller. As for non-
isothermal phase transition process, the phase transition kinetics will be not obviously affected by
the homogenization process, especially for Al0.25CoFrFeNi HEA with simple FCC structure. There
exists order-disorder phase transition among FCC phase, and the ordered phase is L12 phase (ordered
FCC phase). Figure 7 is the XRD pattern of the alloy that processed just after the finished temperature
of the phase transition and as-cast sample. Except a small shift of the lattice parameter, only FCC
phase is detected. There is no other new phase formed, and the only phase transition could be the
order-disorder phase transition. Many researchers are focus on the phase transition of this alloy. Riva
et al. using PXRD to investigate FCC-structured HEAs [32]. By in-situ TEM heating study, Rao et al. [6]
found that nano-sized secondary phase precipitated after annealing at 500 ◦C for Al0.3CoCrFeNi
high-entropy alloy, which are not characterized due to the small size of the crystal. By thermal
dynamic calculation, they found the phase transition of FCC-L12 and FCC-σ could be occurred at
this temperature zone and they speculated the secondary phase is σ phase, which is different from
the results of Banerjee [25]. In order to clarify the phase transition product, we have checked the
microstructure of the sample before and after the phase transition, as shown in Figure 8. It can be seen
that, there are precipitates (dark points) with very small size. During heating, the ordered L12 phase
precipitates from the FCC matrix phase as we can found the decreased of the phase from Figure 8b,d.
The ordered L12 precipitates are always coherent with the FCC matrices. The FCC-L12 transition at the
studied phase transformation range is an efficient strengthen method to let the FCC HEAs have a good
balance between strength and ductility. Thus many researchers are trying to develop the methods that
to let the matrix to form the L12 precipitates as much as possible [33].
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Figure 7. The XRD pattern of as cast and heat treated (HT) Al0.25CoCrFeNi high-entropy alloy. The heat
treatment procedure is firstly heated to 650 ◦C at the heating rate of 10 K/min, holding for 1 min and
quenched in water.
We can determine the phase transition product from the kinetic parameters. According to the

determined kinetic parameters: the activation energy which is rather stable and almost constant
during the whole transformation indicating the phase transition is progressed at a constant barrier,
and the local environment of the grain nucleation process is very stable. The activation energy
determined for FCC Al0.25CoCrFeNi high-entropy alloy is stable with the transformed volume fraction
(198 ± 1 kJ/mol). There are just few results about the kinetic analysis of HEAs, e.g., Al0.5CoCrFeNi [24],
and the activation energy for this alloy is quite different, as the value for the latter will strongly varies
with the transformed volume (144–284 kJ/mol). The difference is due to the phase transition type is
different, for the latter is FCC-BCC transition while in this study the transition is order-disorder
transition. Compared with other metallic materials, actually, there is no specific difference for
the absolute value of the activation energy. However, as determined in the paper, the activation
energy for this alloy is consistent with transition due to the order-disorder transition which are
different from the most phase transformations where activation energy is not constant. What is more,
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the calculated kinetic exponent is slight decrease from 1.5 to 1, indicating the whole phase transition
process is growth controlled and there is no need for the nucleation process. The order-disorder phase
transition is a typical short range diffusion or interface controlled thermal activated growth. During
the order-disorder phase transition process, there is no need for the formation of new nuclei, that is to
say all the nuclei exist before the transformation process. The above determined kinetic parameters are
consistent with the phase transition characteristics of order-disorder phase transition.
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Figure 8. The SEM images of as cast (a,b) and heat treated (HT) (c,d) Al0.25CoCrFeNi high-entropy
alloy. The heat treatment procedure is firstly heated to 650 ◦C at the heating rate of 10 K/min, holding
for 1 min and quenched in water.

5. Conclusions

The thermal expansion experiment of Al0.25CoCrFeNi high-entropy alloy was carried out at
different heating rates and the FCC-L12 phase transition kinetics was studied. Based on the framework
above, the following conclusions are reached:

(1) The FCC-L12 phase transformed fraction as a function of temperature can be determined from
the thermal expansion curves using lever rule method.

(2) The activation energies calculated by KAS formulation at different phase transformed volume
are 198 ± 1 kJ/mol, indicating the thermodynamic barrier for the phase transition are independent of
the phase transformation process.

(3) The determined kinetic exponent, n, shows a decreasing trend from 1.5 to 1 during whole
phase transformation process, indicating the phase transition is growth controlled without nucleation
process which is the characteristics of order-disorder phase transition.
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