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Abstract: Mg2FeH6 is regarded as potential hydrogen and thermochemical storage medium
due to its high volumetric hydrogen (150 kg/m3) and energy (0.49 kWh/L) densities. In this
work, the mechanism of formation of Mg2FeH6 under equilibrium conditions is thoroughly
investigated applying volumetric measurements, X-ray diffraction (XRD), X-ray absorption near edge
structure (XANES), and the combination of scanning transmission electron microscopy (STEM) with
energy-dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscopy
(HR-TEM). Starting from a 2Mg:Fe stoichiometric powder ratio, thorough characterizations of samples
taken at different states upon hydrogenation under equilibrium conditions confirm that the formation
mechanism of Mg2FeH6 occurs from elemental Mg and Fe by columnar nucleation of the complex
hydride at boundaries of the Fe seeds. The formation of MgH2 is enhanced by the presence of
Fe. However, MgH2 does not take part as intermediate for the formation of Mg2FeH6 and acts as
solid-solid diffusion barrier which hinders the complete formation of Mg2FeH6. This work provides
novel insight about the formation mechanism of Mg2FeH6.

Keywords: magnesium-iron complex hydride; equilibrium conditions; transmission electron microscopy;
X-ray spectroscopy; hydrogen-energy storage

1. Introduction

The Mg–Fe–H system has interesting characteristics from the technological standpoint. Mg
and Fe are cheap and broadly available metals. Under certain temperature and hydrogen pressure
conditions, Mg2FeH6 is formed from a 2Mg:Fe elemental stoichiometric mixture. This complex hydride
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has the highest hydrogen volumetric density (150 kg/m3) among complex hydrides, relatively high
hydrogen gravimetric density (5.5 wt % H2), high reaction enthalpy (~90 kJ/mol H2), and high
volumetric (0.49 kWh/L) and gravimetric (0.55 kWh/kg) energy densities [1,2]. Owing to these
characteristics, Mg2FeH6 has been investigated as thermochemical energy storage medium [1,3–7].
However, the synthesis of Mg2FeH6 is difficult due to the lack of a Mg2Fe intermetallic [8]. Bogdanović
et al. carried out a pioneering investigation via TEM-EDS observation about the formation mechanism
of the Mg–Fe complex hydride. It was proposed that elemental Mg and Fe are the precursors for
the formation of Mg2FeH6 under dynamic-cycling conditions. In addition, morphological analyses
suggested that the formation mechanism occurs by the insertion of newly formed Mg2FeH6 at the
phase boundary between Fe seeds and the growing Mg2FeH6 phase. This growth process provided a
characteristic vermicular form for the initially formed Mg2FeH6 particles, which was kept even after
hundreds of hydrogenation-dehydrogenation cycles [1]. Later investigations on the hydrogenation
mechanism of Mg–Fe–H system, carried out under dynamic conditions, showed that the formation of
Mg2FeH6 occurs via two consecutive reactions [9–12]. Mg2FeH6 was synthesized from stoichiometric
mixture of 2Mg:Fe powder by reactive mechanical milling in hydrogen atmosphere via the intermediate
formation of MgH2, undergoing the simultaneous formation of MgH2 and Mg2FeH6 [9]. Puszkiel et
al. [11] found by in situ XRD experiments under 50 bar H2 that MgH2 is first formed at 215 ◦C from
free Mg. Then, MgH2 reacts with Fe to form Mg2FeH6 at 350 ◦C. The complete formation of Mg2FeH6

complex hydride is constrained at low temperature, due to kinetic restrictions related to solid-solid
diffusion processes. The formation of MgH2 from 2Mg:Fe is kinetically favored at temperatures around
200 ◦C. At higher temperatures, the solid-solid diffusion processes are enhanced, hence, Mg2FeH6 is
formed from MgH2 and Fe. It is also noted that the formation of Mg2FeH6 is not totally accomplished,
since the solid–solid diffusion barriers between MgH2 and Fe are not totally overcome [2,10,11].
Danaie et al. [12] also investigated the formation mechanism of Mg2FeH6 under dynamic conditions
via STEM-EELS (scanning transmission electron microscopy-electron energy-loss spectroscopy) cooling
down the sample in nitrogen. They found that, during the initial stage of the hydrogenation, MgH2 is
formed because the presence of Fe enhances the kinetic behavior. Then, Mg2FeH6 starts to nucleate by
consuming the already-formed MgH2 with a columnar morphology located between MgH2 and Fe.
This proposed formation mechanism agrees well with previous published works [9–12]. Furthermore,
it was also pointed out that the columnar morphology coalesces when the material is kept at high
temperature (400 ◦C) for long time.

In most of the cases, the synthesis of the Mg2FeH6 via different procedures such as thermal
processes, mechanical milling, or their combinations, leads to yields between 25% and 90% and results
in a MgH2–Mg2FeH6 hydride mixture [1,3,9,13–39]. Studies on the thermodynamic properties of the
MgH2–Mg2FeH6 hydride mixture showed two different equilibrium pressures for the dehydrogenation
process: the higher one belongs to MgH2, while the lower one belongs to Mg2FeH6. However, upon
hydrogenation from 2Mg:Fe stoichiometric mixture, the MgH2–Mg2FeH6 hydride mixture presented
one equilibrium pressure [1,20,21].

Herein, the formation mechanism of Mg2FeH6 under equilibrium conditions is, for the first
time, investigated in detail to the best of our knowledge. For this purpose, pressure-composition
isotherm (PCI) measurements are carried out in a Sieverts-type apparatus. Samples taken under
equilibrium conditions at different hydrogen uptake stages are characterized by X-ray diffraction
(XRD), X-ray absorption near edge structure (XANES), and the combination of scanning transmission
electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) and high-resolution
transmission electron microscopy (HR-TEM). This work contributes to gaining more insight into the
physicochemical properties of the Mg–Fe–H system as a potential thermochemical storage medium.
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2. Materials and Methods

2.1. Preparation

2MgH2:Fe stoichiometric powder mixture (MgH2: Sigma Aldrich, purity >96.5% and Fe: Riedel-de
Haën, purity >99.5%) was milled for 2 h under Ar atmosphere at 400 rpm in a P6-Fritsch mill device.
A stainless steel (S.S.) milling chamber of 80 cm3 and S.S. balls as grinding medium, with a ball to
powder ratio of 40:1, were utilized.

2.2. Characterization

Hydrogenation and dehydrogenation pressure-composition isotherms (PCIs) were performed in
a Sieverts-type device (in-house made, S.C. de Bariloche, Argentina) modified with flow controllers.
The as-milled 2MgH2:Fe was first dehydrogenated in non-isothermal conditions with a heating ramp
of 10 ◦C/min under vacuum and then hydrogenation PCIs were measured with 2Mg:Fe as starting
material. Hydrogenation-dehydrogenation PCIs at 400 ◦C were measured for different hydrogen
capacities: 1 wt %, 2 wt %, 3 wt %, and complete PCI. Moreover, hydrogenation PCIs at 400 ◦C up to 1
wt %, 2 wt %, 3 wt % hydrogen capacities, and complete PCI, were measured and a sample at each
point was taken for characterization.

Crystalline phase identification and microstructural characterization was done by X-ray diffraction
(XRD) in a Philips PW 1710/01 (PANalytical, Worcestershire, UK) Instruments, with CuKα radiation,
λ = 1.5405 Å, graphite monochromator, 30 mA and 40 kV. The crystallite size was calculated with the
Scherrer equation [40] using the following peaks: MgH2 (2θ: 27.9◦, (110)), Fe (2θ: 44.6◦, (110)), Mg (2θ:
36.6◦, (101)), and Mg2FeH6 (2θ: 24.1◦, (111)).

X-ray absorption spectroscopy measurements (XAS) in the XANES (X-ray absorption near edge
structure) and EXAFS (extended X-ray absorption fine structure) regions of hydrogenated samples
under equilibrium conditions (1 wt %, 2 wt %, 3 wt %, and complete PCI) were carried out at the XAFS1
beamline of the Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, Brazil, with a ring energy
of 1.37 GeV, and a ring current of 250 mA [41]. The measurements were performed in transmission
mode using a Si(111) channel cut monochromator around the Fe K-edge (7112 eV) in the range of
energy from 6900 eV to 7900 eV at ambient temperature. The optimum amount of material for
the measurements was calculated by the program XAFSMAS (version 2012/04, ALBA synchrotron,
Barcelona, Spain) [42]. The samples were prepared by mixing them with boron nitride (25 mg, powder,
purity: 98%; Sigma-Aldrich, St. Louis, Missouri, MO, USA,) in a mortar, and then pressing into pellets
of 7 mm diameter inside a glove box. The pellets were put in a circular hole of an aluminum sample
holder and sealed with Kapton tape (50 µm in thickness) to prevent the oxidation/hydrolysis of the
samples. XAS data processing and fitting were performed by using the IFEFFIT software (version
1.2.11, University of Chicago, Chicago, IL, USA) package [43,44].

Scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy
(EDS) and high-resolution transmission electron microscopy (HR-TEM) observations were done with
a Tecnai F30 microscope (FEI Company, Hillsboro, OR, USA) with an information limit of 0.12 nm
and Schottky field emission gun operating at 300 kV. Samples with different hydrogenation degrees
(i.e., 1 wt %, 2 wt %, 3 wt %, and complete PCI) were prepared under equilibrium conditions at
400 ◦C. All the samples were prepared inside a glove box with controlled O2 and H2O atmosphere
by dispersing the powders on lazy carbon and C film-supported grids with Cu frames. In order to
avoid the short exposure time of the material and, at the time, introduce grids into the microscope
column, the dispersed powder on the grid was covered with a special polymeric film which does
not preclude the electron interactions with the sample. To identify the different Fe-rich zones, STEM
observations using high-angle annular dark-field (HAADF) contrast and EDS analyses were performed
first. Then, HR-TEM observations of the identified Fe zones were done. HR-TEM image processing
was done with the following programs: Digital Micrograph (version GMS 2, Gatan, Pleasanton,
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CA, USA), i-TEM (License no. A2382500, EMSIS GmbH, Münster, Germany), and JEMs (License no.
IEb59yBDflUMh, CIME-EPFL, Lausanne, Switzerland).

Thermodynamic calculations were performed to evaluate the feasibility of the different reaction
pathways for the formation mechanism of Mg2FeH6. These calculations were performed with the HSC
Chemistry software 9.6.1 (Chemistry Software, Houston, TX, USA) [45]. Thermodynamic properties
for Mg2FeH6 were added to the database for the calculations [46].

2.3. Handling

All handling was carried out in MBraun Unilab glove boxes (MBraun, Garching, Germany) with
an oxygen- and moisture-controlled argon atmosphere (concentrations of <5 ppm of O2 and H2O) to
prevent the oxidation of the samples.

3. Results

Figure 1 displays hydrogenation–dehydrogenation PCIs at 400 ◦C, and Figure 2 displays the XRD
of the materials before and after the PCIs. The as-milled 2MgH2:Fe (Figure 2 (a)) was dehydrogenated,
and then the 2Mg:Fe stoichiometric mixture was used as starting material for the PCIs measurements
(ESI—Figure S1: A First non-isothermal dehydrogenation and B XRD after dehydrogenation).
Complete PCI (Figure 1 (a)) leads to the formation of Mg2FeH6, MgH2, and remnant Fe (Figure 2 (e)).
The complete hydrogenation PCI (Figure 1 (a)) exhibits one plateau corresponding to the formation
of both Mg2FeH6 and MgH2. The complete dehydrogenation PCI (Figure 1 (b)) shows two distinct
plateaus belonging to the decomposition of MgH2 (higher equilibrium pressure) and Mg2FeH6 (lower
equilibrium pressure) [1,20,21]. Dehydrogenation PCIs at different hydrogen capacities are shown in
Figure 1 (c–e). For the dehydrogenation PCIs for different hydrogen capacities, hydrogenation PCIs
have been previously done for the corresponding hydrogen capacities (ESI—Figure S2: Hydrogenation
PCIs at 400 ◦C up to 1, 2, and 3 wt %). It is notable that the dehydrogenation PCIs from 1 wt % to
3 wt % (Figure 1 (c–e)) show two plateaus from the beginning of the hydrogenation process under
equilibrium conditions.

Reflections from Mg2FeH6 and MgH2, remnant Mg, and remnant Fe are observed in the
XRD analyses of the samples partially hydrogenated under equilibrium conditions (Figure 2 (c–e),
ESI—Figure S2). This result is in agreement with the two plateaus observed in the dehydrogenation
PCIs (Figure 1 (c–e)). The crystallite sizes of Fe and MgH2 after milling are 25 nm and 10 nm,
respectively (Figure 2 (a)). During the hydrogenation process, i.e., 1 wt %, 2 wt %, and 3 wt %, the
crystallite sizes of Fe and MgH2 increase and keep around 30 nm and 40 nm, respectively (Figure 2
(b–d)). The crystallite size of free Mg upon hydrogenation is about 45 nm. Moreover, the formed
Mg2FeH6 has a crystallite size of about 40 nm from 1 wt % to complete PCI (Figure 2 (b–e)).
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Figure 1. Pressure-composition isotherms (PCI) at 400 °C: (a) complete hydrogenation and (b) 
dehydrogenation, (c) dehydrogenation of a 1 wt % hydrogenated sample, (d) dehydrogenation of a 2 
wt % hydrogenated sample, (e) dehydrogenation of a 3 wt % hydrogenated sample. 

Figure 1. Pressure-composition isotherms (PCI) at 400 ◦C: (a) complete hydrogenation and
(b) dehydrogenation, (c) dehydrogenation of a 1 wt % hydrogenated sample, (d) dehydrogenation of a
2 wt % hydrogenated sample, (e) dehydrogenation of a 3 wt % hydrogenated sample.
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In order to quantify the obtained amount of Mg2FeH6 during the hydrogenation process in
equilibrium conditions, XANES measurements at the Fe K-edge were performed (ESI—Figure S3).
The as-milled 2MgH2:Fe shows a XANES profile (ESI—Figure S3b) very similar to that of the metallic
Fe (ESI—Figure S3a) with some slight differences. The other samples (ESI—Figure S3c–g) expose more
notorious differences in the XANES spectra.

Fourier transforms of the as-milled 2MgH2:Fe and metallic Fe XANES spectra (ESI—Figure
S4) show that all peaks in the metallic Fe are also present in as-milled 2MgH2:Fe. Comparison of
the Fourier transforms (FT) of the EXAFS oscillations of the as-milled 2MgH2:Fe and metallic Fe
(ESI—Figure S4) show that all peaks in the metallic Fe are also present in as-milled 2MgH2:Fe. It is
noticed that the amplitudes of the Fourier transform of the as-milled 2MgH2:Fe are reduced. In order
to quantitatively analyze these data, the main peaks have been isolated and fitted using standard
procedures. Theoretical standards were generated by the FEFF program [44]. As an ab initio calculation,
FEFF uses a list of atomic coordinates in a cluster and physical information about the system, such
as type of absorbing atom and excited core-level for its calculation. In our case, the list of atomic
coordinates has been simplified using ATOMS [47], which generates the required coordinates starting
from a crystallographic description of the system. In the fitting, the bond distances, coordination
numbers, Debye-Waller factors, and the parameter E0 for each atomic pair have been allowed to
vary independently. The reduction factor S0

2 has been obtained from a Fe foil with a value of 0.72.
The results obtained from the fit are shown in ESI—Table S1. The coordination numbers for the first
two Fe–Fe shells in bulk metallic Fe are 8 and 6. A reduction in both average coordination numbers of
the first two shells is found for the sample. This reduction can be a consequence of the nanometric
size of the iron particles. In effect, as EXAFS probes all absorb atoms in the sample, those Fe atoms
in the surface of a particle contribute with a lower coordination number that those in the bulk. The
average coordination number is lower as the fraction of surface atoms is higher, that is, as the particle
is smaller. Therefore, it is possible to ascribe the differences in the XANES spectra between metallic Fe
and as-milled 2MgH2:Fe (ESI—Figure S4) to the contribution of these surface atoms, which will also
show some slightly differences in their XANES spectra compared to atoms in the bulk. In consequence,
for analyses of the XANES spectra of the rest of the samples, the spectrum of the 2MgH2:Fe sample will
be used as that corresponding to nanometric metallic Fe particles. In the case of the XANES spectrum
of the as-milled 2MgH2:Fe after several thermal processes (ESI—Figure S3g), it is different from the
rest of the samples, and it is very similar to the one reported for Mg2FeH6 [48]. Results of the fitting of
the EXAFS spectrum of this sample are shown in ESI (Figure S5, Table S2). It can be observed that the
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first two shells surrounding Fe atoms are very similar to those in the hydride Mg2FeH6 in which Fe
atoms have 8 hydrogen atoms at 1.557 Å and 8 Mg atoms at 2.787 Å [13].

The XANES spectra of samples obtained at different stages of the hydrogenation PCI at 400 ◦C
(ESI—Figure S3c–f) have been analyzed by linear combination fitting (LCF) of the data with reference
compounds using ATHENA program (version 0.8.056, University of Chicago, Chicago, IL, USA) [43].
It is important to point out that two reference spectra are enough to reproduce all sample spectra:
nanometric metallic Fe particles (spectrum of the as-milled 2MgH2:Fe, ESI—Figure S3b) and Mg2FeH6

(spectrum of the as-milled 2MgH2:Fe after several thermal processes, ESI—Figure S3g). Figure 3 shows
the results of the LCF of all samples. It is found that after the absorption of 1 wt % of H2, 12% of
Mg2FeH6 is formed, and its quantity rises as the hydrogen capacity increases, i.e., 24% and 39% for
2 wt % H2, 3 wt % H2, respectively. The remnant Fe atoms remain as nanometric metallic particles.
When the PCI is completed, the percentage of Mg2FeH6 reaches a maximum of 44%. Furthermore,
there is an apparent broadening of the peaks produced by the decrease of the quantity of the metallic
Fe nanoparticles present in the sample with the increase of the H2 amount (ESI Figure S3). The XANES
spectra are the result of the convolution of the two Fe species present in the samples, i.e., Fe and
Mg2FeH6. This effect is clearly seen on Figure 3, where the linear combination fitting of the XANES
spectra is shown, as well as the proportion of each of the two components used for the fitting.
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Figure 3. Linear combination fitting of XANES spectra. Absorption PCI at 400 °C from 
dehydrogenated as-milled 2MgH2:Fe up to: (A) 1 wt % H2, (B) 2 wt % H2, (C) 3 wt % H2, (D) complete 
hydrogenation PCI. 

Calculations of the percentages of the hydride phases from the dehydrogenation PCIs (Figure 1 
(b–e)) have been also carried out. These calculations have been done taking into account the 
hydrogen capacities released in each dehydrogenation plateau, and the 2Mg:Fe stoichiometric 
mixture, as explained in a previous work [21]. The calculated relative amounts are shown in Table 1. 
In parentheses are shown the amounts of Mg2FeH6 obtained from the XANES analysis. Despite the 
fact that, in some cases, the relative amounts of Mg2FeH6 calculated from the PCIs are slightly higher 
than the ones obtained from XANES spectra fitting, both results are in good agreement.  

Materials after hydrogenation PCIs at 400 °C (Figure 1) at different stages were characterized by 
combined scanning transmission electron microscopy (STEM) with energy-dispersive X-ray 
spectroscopy (EDS) and high-resolution transmission electron microscopy (HR-TEM). Figure 4 

Figure 3. Linear combination fitting of XANES spectra. Absorption PCI at 400 ◦C from dehydrogenated
as-milled 2MgH2:Fe up to: (A) 1 wt % H2, (B) 2 wt % H2, (C) 3 wt % H2, (D) complete
hydrogenation PCI.

Calculations of the percentages of the hydride phases from the dehydrogenation PCIs (Figure 1
(b–e)) have been also carried out. These calculations have been done taking into account the
hydrogen capacities released in each dehydrogenation plateau, and the 2Mg:Fe stoichiometric mixture,
as explained in a previous work [21]. The calculated relative amounts are shown in Table 1. In
parentheses are shown the amounts of Mg2FeH6 obtained from the XANES analysis. Despite the fact
that, in some cases, the relative amounts of Mg2FeH6 calculated from the PCIs are slightly higher than
the ones obtained from XANES spectra fitting, both results are in good agreement.

Materials after hydrogenation PCIs at 400 ◦C (Figure 1) at different stages were characterized
by combined scanning transmission electron microscopy (STEM) with energy-dispersive X-ray
spectroscopy (EDS) and high-resolution transmission electron microscopy (HR-TEM). Figure 4 shows
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STEM observations and EDS measurements after 1 wt % and 3 wt % hydrogenation PCIs at 400
◦C. It is possible to observe that the bright regions belong to Fe-rich zones, and the dark regions
correspond to Mg-rich zones. In all the bright regions, there are considerable amounts of Mg. In
addition, bright particles present a kind of elongated and columnar shape, and are imbedded in dark
matrices composed of Mg-rich zones. The presence of Cu in the EDS spectra comes from the Cu frames
of the carbon supported grids used as sample holders.

Table 1. Relative amounts of phases calculated from PCIs for the different hydrogenation stage of
2Mg:Fe and starting 2Mg:Fe composition. The amounts of Mg2FeH6 obtained from the XANES analysis
are indicated in parentheses.

Hydrogenation State Amounts of Phases (wt %)

Mg Fe MgH2 Mg2FeH6

2Mg:Fe 46 54 - -
1 wt % 34 46 6 14 (12)
2 wt % 26 40 10 24 (24)
3 wt % 18 31 10 41 (39)

Complete PCI 4 28 22 46 (44)
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Figure 4. STEM-EDS results for samples after absorption PCI at 400 ◦C from dehydrogenated as-milled
2MgH2:Fe up to (A) 1 wt % H2, (B) 3 wt % H2.

Figure 5 shows STEM observations, EDS analyses, and HR-TEM images along with FFT analyses
and their simulation patterns for the different stages of the hydrogenation under equilibrium conditions
(Figure 1. PCI at 400 ◦C: 1 wt %, 2 wt %, and 3 wt %). Reduced region of the STEM images are shown
in Figure 4 for 1 wt % and 3 wt %, and additional EDS analyses are presented in Figure 5. HR-TEM
photos performed at the interfaces between the Fe-rich and Mg-rich regions evidence a common
feature (HR-TEM images: Figure 5A–C). At the Fe-rich zone (bright region in STEM, dark region
in HR-TEM), FFT analyses and structure simulations show Mg2FeH6 patterns and Mg + Mg2FeH6

overlapped patterns. At the Mg-rich zones (dark region in STEM, bright region in HR-TEM), FFT
analyses and structure simulations exhibit mostly MgH2 patterns and Mg + MgH2 overlapped patterns.
In the sample hydrogenated up to 3 wt %, the Fe-rich zone (Figure 5C HR-TEM2b) is surrounded by
a large number of MgH2, related with the hydrogenation stage near the saturation of the material.
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4. Discussion

In this work, from the beginning of the hydrogenation PCI (Figure 1a), the hydride phases
Mg2FeH6 and MgH2 are present. This fact can be observed in the dehydrogenation PCIs curves
(Figure 1 (c–e)), XRD analyses (Figure 2 (b–d)), and the phase amounts calculated from the PCIs and
XANES spectra fitting. Thus, the question arises whether the mechanism of formation of Mg2FeH6

occurs from elemental Mg and Fe, from MgH2 and Fe, or from mixed reactions.
At the beginning of PCI at 400 ◦C, about 14 wt % of Mg2FeH6 and a small amount of MgH2

of roughly 6 wt % (Figure 1 (c)) are formed (Table 1). TEM investigations (Figures 4 and 5 STEM)
show that, for the stage at 1 wt %, the Mg2FeH6 starts to nucleate in the Fe-rich zones in columnar
and elongated shapes, and sizes ranging 50 nm to 200 nm. The analyses of the diffraction patterns
(Figure 5A HR-TEM-FFT) at the interfaces evidence overlapped Mg and Mg2FeH6 in the Fe-rich zones.
In the surroundings of Fe-rich zones, STEM-EDS and FFT-simulation analysis indicate the presence
of Mg-rich zones with diffraction patterns belonging to Mg and MgH2. It is possible to infer that
the presence of Fe catalyzes the formation of MgH2 in agreement with a previous work [12]. As the
hydrogenation PCI proceeds, at 2 wt % and 3 wt % of hydrogen capacity (Figure 1 (d,e)), the amount
of Mg2FeH6 increases about twofold up to 24 wt % and 41 wt % (Table 1), respectively, while MgH2

just reaches 10 wt % for 2 and 3 wt % of hydrogen capacity. At theses stages, it is clear that MgH2 is
neither formed nor consumed. Moreover, TEM investigations (Figure 5B,C) also show overlapped
patterns of Mg2FeH6 and Mg. Interestingly, the elongated shapes made of Fe-rich particles is kept.
Moreover, the particle size of the Fe rich zone and the crystallite size of Mg2FeH6 and MgH2 remain
almost constant upon all the PCI hydrogenation process.

Finally, after complete PCI, the formation of Mg2FeH6 is not completely achieved. The amount of
formed Mg2FeH6 increases just about 5 wt %, while the amount of MgH2 notably increases again to
22 wt % (Table 1). MgH2 is formed around the Fe-rich zones, as shown for the sample at 3 wt % of
hydrogen capacity (Figure 5C HR-TEM2b).

Standard free energy calculations for the different routes of formation of Mg2FeH6 are shown as
follows:

2Mg(s) + Fe(s) + 3H2(g) →Mg2FeH6(s) ∆G◦ = −30.4 kJ/mol, (1)

2MgH2(s) + Fe(s) + H2(g) →Mg2FeH6(s) ∆G◦ = 42.5 kJ/mol, (2)

MgH2(s) + Mg(s) + Fe(s) + 2H2(g) →Mg2FeH6(s) ∆G◦ = 5.9 kJ/mol. (3)

The formation of Mg2FeH6 from elemental Mg and Fe is the most thermodynamically favorable
reaction. Ab initio calculations, based on density functional theory (DFT) about the formation
mechanism of Mg2FeH6, have also reported reaction (1) as the optimum route from the thermodynamic
point of view, regardless of any kinetic constraints [49].

Considering all the experimental evidence (Figures 1–5 and Table 1) and based on the calculations
of the standard free energy for the possible formation reactions of Mg2FeH6, it is possible to propose
a reaction mechanism for Mg2FeH6 formation under equilibrium conditions. Mg2FeH6 nucleates from
elemental Fe and Mg in a columnar form at the phase boundary between Fe seeds and the growing
Mg2FeH6 phase, in agreement with the mechanism in dynamic conditions proposed by Bogdanović
et al. [1]. Upon hydrogenation PCI, the formation of MgH2 is thermodynamically feasible, since the
equilibrium pressure at 400 ◦C for the Mg–H system is similar to the one for Mg–Fe–H system, and the
MgH2 formation is enhanced by the presence of Fe [11,12,20,21]. However, MgH2 does not take part as
intermediate for the formation of Mg2FeH6, based on the relative amounts of phases (Table 1) and TEM
investigations (Figure 5). At the end of the hydrogenation PCI, the partial formation of Mg2FeH6 can
be attributed to the presence of MgH2 around Fe-rich particles (Figures 4 and 5) acting as a solid–solid
diffusion barrier.
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5. Conclusions

The formation mechanism of Mg2FeH6 complex hydride under equilibrium conditions was
investigated by the volumetric technique (PCI measurements at 400 ◦C), and microstructural,
nanostructural, and chemical characterization techniques: XRD, STEM-EDS combined with HR-TEM
and XANES, respectively. Based on analyses of experimental results supported by standard free
energy calculations for the possible reaction pathway, the formation mechanism of Mg2FeH6 under
equilibrium conditions is proposed here. From the beginning of the hydrogenation PCI, Mg2FeH6 and
MgH2 are present. On the one hand, Mg2FeH6 nucleates from elemental Fe and Mg in a columnar
form at the phase boundary between Fe seeds and the growing Mg2FeH6 phase. On the other
hand, the formation of MgH2 is enhanced by the presence of Fe, but it does not take part as
intermediate in the formation of Mg2FeH6. However, at the end of the hydrogenation PCI, the partial
formation of Mg2FeH6 can be attributed to the presence of MgH2 around Fe-rich particles acting as a
solid-solid diffusion barrier. This investigation provided novel insight about the formation mechanism
of Mg2FeH6, useful for further improvement of this Mg-based complex hydride for its potential
application as a thermochemical storage medium.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4701/8/11/967/s1,
Figure S1. A First non-isothermal dehydrogenation for the as-milled 2MgH2–Fe at a heating ramp of 10 ◦C/min
and 20 kPa and B XRD after dehydrogenation, Figure S2. Hydrogenation PCIs at 400 ◦C for 2Mg:Fe (as-milled
2MgH2–Fe dehydrogenated as indicated in Figure S1) up to: A 1 wt %, B 2 wt % and C 3 wt % of hydrogen capacity,
Figure S3. XANES spectra at the Fe K-edge of (a) metallic Fe, (b) as-milled 2MgH2 + Fe, samples hydrogenated in
equilibrium conditions at 400 ◦C up to: (c) 1 wt % H2, (d) 2 wt % H2, (e) 3 wt % H2, (f) Complete PCI at 400 ◦C
and (g) Mg2FeH6 obtained after several thermal processes at high temperature and under high pressure from
as-milled 2MgH2+Fe, Figure S4. Comparison of the amplitude of the Fourier Transforms of the EXAFS oscillations
of metallic Fe (black) and as-milled 2MgH2 + Fe (red). Table S1. Results of the EXAFS fit for as-milled 2MgH2 +
Fe, Figure S5. Fitting of the Fourier Transform of the EXAFS signal of as-milled 2MgH2 + Fe after several thermal
processes (corresponding XANES spectrum Figure S3g). Black circles: experimental data. Solid line: fitting
function, Table S2. Results of the EXAFS fit for as-milled 2MgH2 + Fe after several thermal processes (XANES
spectrum Figure S2g).
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