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Abstract: A new interatomic potential for the pure tin (Sn) system is developed on the basis of the
second-nearest-neighbor modified embedded-atom-method formalism. The potential parameters
were optimized based on the force-matching method utilizing the density functional theory (DFT)
database of energies and forces of atomic configurations under various conditions. The developed
potential significantly improves the reproducibility of many fundamental physical properties
compared to previously reported modified embedded-atom method (MEAM) potentials, especially
properties of the β phase that is stable at the ambient condition. Subsequent free energy calculations
based on the quasiharmonic approximation and molecular-dynamics simulations verify that the
developed potential can be successfully applied to study the allotropic phase transformation between
α and β phases and diffusion phenomena of pure tin.

Keywords: tin alloy; modified embedded-atom method; molecular dynamics simulation; phase
transformation; diffusion

1. Introduction

The materials systems with tin (Sn) have received great attention owing to their importance in
many modern technologies. In the electronics industry, soldering is the most important technique
of connecting the substrate and electronic devices. Among various kinds of solders, Sn-Pb alloys
are the most popular and traditional solders. Recently, Sn-based lead-free solders such as Sn-Ag-Cu
alloys have replaced the traditional solders [1]. In the electrochemical industry, Sn-Li alloys are notable
materials due to their applications to electrodes [2]. Moreover, liquid Sn-Li alloys are currently being
considered as candidates for plasmafacing materials in tokamak fusion reactors [3,4].

For the understanding of detailed phenomena in Sn and its alloys, atomic scale simulations
are effective to complement experiments providing detailed insights into the atomic scale processes.
Among those simulations, density functional theory (DFT) calculation is a widely used method with
many advantages such as a straightforward selectivity of alloy components and the accuracy. However,
the DFT calculation is computationally demanding and cannot be applied in all applications. If the
material phenomena are related to a comparably large system which cannot be covered by the DFT
calculation, large-scale atomistic simulations such as molecular dynamics (MD) and Monte Carlo
(MC) are highly desirable. Because the predictive accuracy of such atomistic simulations is critically
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dependent on the accuracy of interatomic potentials, the availability of reliable interatomic potentials
of target systems is of crucial importance. In particular, a relevant description of pure Sn should
take precedence because it can be a basis for the development of interatomic potentials for concerned
Sn-based multi-component alloy systems.

Until now, the development of an accurate interatomic potential for pure Sn has been a difficult
task because of the complexity of the system due to the presence of allotropic phase transformation.
In the periodic table, Sn is located at the borderline between covalent and metallic bonding elements.
Above 286 K, Sn crystallizes into a body-centered tetragonal crystal structure (β-Sn) having a
characteristic of metallic bonding [5]. Below 286 K, Sn crystallizes into a diamond cubic structure
(α-Sn) having a characteristic of covalent bonding [5]. So far, several interatomic potentials for
pure Sn have been developed in previous works. There are available potentials based on pair
potential models [6–8], but the practical utilization of these potentials is greatly limited because
these models ignore many-body bonding characteristics of pure Sn. There is an available many-body
interatomic potential [9] based on embedded-atom method (EAM) model [10], but this potential cannot
predict the β-Sn phase as a stable phase at the ambient condition because target properties of this
potential are confined to phases at a high-pressure. Alternatively, there are available many-body
interatomic potentials based on the modified embedded-atom method (MEAM) model [11] by Ravelo
and Baskes [5], by Vella et al. [12], and by Etesami et al. [13]. It seems reasonable to apply the MEAM
model to the Sn system since this model was originally devised to well describe various types of atomic
bonds, including the metallic and covalent bonds, in a single formalism. However, these MEAM
potentials were developed mostly focusing on properties of liquid phase and showed deficiencies in
reproducing physical properties of solid phases, especially for properties of the β-Sn phase.

In the present study, we provide a new interatomic potential based on the second nearest-neighbor
modified embedded-atom method (2NN MEAM) model [14–16]. The 2NN MEAM is a model
that overcomes several shortcomings of the original MEAM model by partially considering 2NN
interactions of atoms. In addition, the present study considered a relevant method of the parameter
optimization to improve the reliability of the developed potential. In previous works for MEAM
potentials [5,12,13], potential parameters were optimized focusing on specific physical properties
obtained by experimental and density-functional theory information. In contrast, the present
optimization was performed based on the force-matching method proposed by Ercolessi and
Adams [17]. This method considers not a physical property itself, but forces and energies related to
various atomic configurations including configurations at finite temperatures expected from the DFT
calculation. It has been confirmed that this method can greatly improve the accuracy and transferability
of developed interatomic potentials [18–20].

The remainder of the present article is organized as follows. Section 2 describes detailed processes of
the DFT calculations and optimization of potential parameters. In Section 3, the accuracy and transferability
of the developed potential is presented with suitable examples. The conclusion is finally drawn in Section 4.

2. Methods

The optimization of the present interatomic potential was performed based on the force-matching
method which considers both the structural energy and the forces acting on each atom as a fitting
target. The overall procedure follows previous works [20,21] in which 2NN MEAM potentials for pure
Ni, Ti and Li were similarly determined based on the same method in a systematic manner. First,
a database of atomic energies and forces of various atomic configurations was established based on the
DFT calculation. Then, an optimum set of potential parameters was determined by minimizing errors
between the expectation by potential parameters and the DFT database.

2.1. Construction of a DFT Database

A series of DFT calculations were performed using Vienna Ab initio Simulation Package (VASP)
code [22–24] based on the projector augmented wave (PAW) method [25]. For the exchange-correlation
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functional, the Perdew-Burke-Ernzerhof generalized-gradient approximation (GGA) [26] was used.
A plane-wave kinetic-energy cutoff of 400 eV and the Methfessel-Paxton smearing method with a width
of 0.1 eV were used. All calculations were performed with a density of the k-point mesh equivalent
to a 21 × 21 × 21 mesh for the face-centered cubic (fcc) primitive unit cell, and the corresponding
similar density of the k-point mesh were employed for other unit cells and supercells. In the present
DFT calculation, atomic configurations resulting from various conditions were considered for the
construction of the DFT database to ensure the sufficient transferability of the developed interatomic
potential to various possible applications. Detailed information on cell structures and corresponding
k-point meshes is summarized in Table 1.

Table 1. Atomic configurations considered in the present density functional theory (DFT) calculations.
In the Stability column, “stable” indicates that the structure is reported in an equilibrium phase diagram.
Other phases are labeled as “hypothetical”. The Strain column indicates the strain applied to the
supercells, where H, O, and M denote hydrostatic, orthorhombic, and monoclinic strains, respectively.

Structure NSn atoms Nvacancies Stability Temp. (K) Strain (%) k-Point

diamond
cubic (α)

64 0 low T stable 0, 300 0, H (±5, ±10) 5 × 5 × 5
64 0 low T stable 0 O (±5, ±10), M (±4, ±8) 5 × 5 × 5
63 1 low T stable 0, 300 0, H (±5, ±10) 5 × 5 × 5
62 2 low T stable 0 0 5 × 5 × 5

body-centered
tetragonal

(β)

64 0 high T stable 0, 300 0, H (±5, ±10) 5 × 5 × 5
64 0 high T stable 0 O (±10), M (±7) 5 × 5 × 5
63 1 high T stable 0, 300 0, H (±5, ±10) 5 × 5 × 5
62 2 high T stable 0 0 5 × 5 × 5

fcc 108 0 hypothetical 0 0 4 × 4 × 4
bcc 128 0 hypothetical 0 0 4 × 4 × 4
hcp 96 0 hypothetical 0 0 4 × 4 × 5

liquid 64 0 stable 400, 500, 600 0 5 × 5 × 5

The equilibrium lattice constants and bulk modulus at 0 K were calculated by employing the
Birch-Murnaghan equation of state [27,28]. For the calculation of properties involved with defects,
positions of each atom were relaxed at a constant volume and cell shape. The vacancy migration energy
was calculated with a suitable saddle-point configuration utilizing the nudged elastic band (NEB)
method [29,30]. For the calculation of the surface energy, rectangular cells with a stacking of 12 Å to
13 Å thick slab and a vacuum region of 10 Å were employed without the relaxation of cell dimensions
parallel to free surfaces. The convergence criteria for energies and forces of all defect calculations were
10−6 eV/atom and 10−2 eV/Å, respectively. Phonon calculations were performed using the “Phonopy”
code [31,32] based on the direct force constant approach [33]. Supercells of 64 atoms were used for the
phonon calculation for α and β phases with the convergence criteria for energy and forces of 10−8 eV
and 10−4 eV/Å, respectively. To calculate the cohesive energy, a reference energy with a single atom
was obtained by considering the spin-polarized calculation.

To obtain a sufficient number of effective force data at finite temperatures, two-step DFT
calculations were conducted. First, ab initio MD simulations [22] were performed for a total of
2000 steps with a timestep of 1.5 fs using relatively low convergence parameters such as a single
k-point and a default value of the cutoff energy. To determine accurate energies and forces of each
configuration, well-converged calculations with a higher cutoff energy (400 eV) and denser k-point
mesh were then followed using randomly extracted configurations from ab initio MD simulations.

2.2. Optimization of Potential Parameters

For the development of a unary potential based on the 2NN MEAM formalism, an optimization
of 14 independent potential parameters is required. Four parameters [the cohesive energy (Ec), the
equilibrium nearest-neighbor distance (re), the bulk modulus (B) of the reference structure and the
adjustable parameter d] are involved with to the universal equation of state. Seven parameters [the
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decay lengths (β(0), β(1), β(2), and β(3)) and the weighting factors (t(1), t(2), and t(3))] are involved with
the electron density. The parameter A is required for the embedding function and two parameters
[Cmin and Cmax] are required for the many-body screening. Detailed explanations on these potential
parameters can be found in literature [14–16].

The target configurations in the DFT database consist of configurations of stable phases (α, β,
and liquid) and hypothetical phases (fcc, bcc, and hcp) at various temperatures. In particular, the
inclusion of configurations at finite temperatures is indispensable for the force-matching because these
configurations can provide effective atomic force data for the optimization. A total of 63 configurations
resulting from various temperatures and strain conditions as well as various defect configurations
were considered for the fitting. Detailed information on atomic configurations used for the fitting
process is listed in Table 1.

The optimization was performed by comparing energies of target configurations and forces
on each atom expected by a candidate set of potential parameters and those expected by the DFT
calculation. The optimization started with specifying a reference structure of the potential parameters,
a radial cutoff distance, and fitting weights of each configuration. An optimizer based on the genetic
algorithm then adjusted the candidate set of parameters to reduce the sum of energy errors of each
configuration and force errors of each atom. If the derived set of potential parameters does not
satisfactorily reproduce overall physical properties, another optimization was performed with a
different set of the reference structure, radial cutoff value, and fitting weights of configurations.
The trial reference structures were diamond cubic, fcc and bcc structures, and the trial radial cutoff
values were 4.5, 5.0, 5.5 and 6.0 Å. During the optimization process, we realized that the consideration
of similar weighting between configurations of α and β phases results in a general worsening of the
reproducibility of various physical properties. Considering the importance of the β phase stable at
ambient condition, the final optimization was performed using increased fitting weights for atomic
configurations of the β phase.

Figure 1 shows results of the final optimization represented by statistical correlations between the
calculated energies and forces from the developed potential and the DFT calculation. Each correlation
was obtained using atomic configurations expected by the DFT calculation without further atomic
relaxations. The resultant root mean square (RMS) errors of energies and forces are 0.044 eV/atom and
0.097 eV/Å, respectively. These values are significantly higher than the results of previous optimization
for pure Li [21]. It seems that this is because the handling of phases with different types of atomic
bonding (covalent and metallic) simultaneously is significantly more difficult than the handling of
phases with single type of atomic bonding (metallic) based on a single potential formalism.
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method (MEAM) and the DFT values.
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We finally confirmed that a reference structure of fcc provides the optimum result in reproducing
various physical properties of pure Sn. A cutoff value of 5.0 Å was confirmed to be large enough to
reproduce various physical properties with an acceptable computational efficiency. In the subsequent
section, all calculations based on the new MEAM potential were performed using this radial cutoff
distance. Table 2 lists the final set of potential parameters for pure Sn.

Table 2. Optimized 2NN MEAM potential parameter set for the pure Sn system. The following
properties are dimensionful: the cohesive energy Ec (eV/atom), the equilibrium nearest-neighbor
distance re (Å), and the bulk modulus B (1012 dyne/cm2). The reference structure is fcc Sn.

Ec re B A β(0) β(1) β(2) β(3) t(1) t(2) t(3) Cmin Cmax d

3.05 3.480 0.6088 1.05 5.50 5.10 4.50 4.30 1.30 3.60 −0.90 1.29 4.43 0.02

3. Results and Discussion

In this section, results of atomistic simulations performed by the developed potential are presented.
The results are compared to corresponding experiments and DFT calculations to evaluate the accuracy
and transferability of the developed potential. In addition, the performance of the developed potential
was compared with previous MEAM potentials by Ravelo and Baskes [5], by Vella et al. [12], and by
Etesami et al. [13]. We used the potential of Ravelo and Baskes [5] in a form adopted by Vella et al. [12].
For the clear comparisons between the present potential and the previous potentials, all physical
properties were recalculated in the same manner, whether or not some of properties were already
reported in previous studies [5,12,13]. All atomistic simulations were performed based on the LAMMPS
code [34]. If not specially designated as MD simulations, obtained properties represent results of
molecular statics simulations at 0 K using atomic configurations of at least 4000 atoms. All MD runs
were performed starting from initial configurations optimized by corresponding molecular statics
simulations at 0 K using a timestep of 0.002 ps. Nosé-Hoover thermostat and barostat [35,36] were
used for controlling temperature and pressure, respectively.

In Table 3, calculated bulk, elastic and defect properties of pure Sn at 0 K using the present potential
are compared with experimental data, DFT calculations and results using previous MEAM potentials.
The experimental cohesive energy, which is also in good agreement with the DFT expectation, is well
reproduced by the present potential. The ground state structure of pure Sn expected by the DFT
calculation is the α structure. The present potential well reproduces such tendency and the structural
energy differences between various stable and hypothetical solid phases as well. Among structural
energy differences, the difference between the low temperature stable α phase and the high temperature
stable β phase is important for the expectation of the allotropic transformation. The present potential
accurately reproduces this trend while previous potentials by Vella et al. [12] and by Etesami et al. [13]
show significantly higher energy differences. The structural parameters such as lattice constants of
the α phase and lattice constants and c/a ratio of the β phase are also well reproduced by the present
potential in closer agreement with experimental data.

In the elastic properties, all MEAM potentials generally present a difficulty in reproducing the
C44 of the β phase. Especially, previous potentials by Ravelo and Baskes [5] and by Etesami et al. [13]
indicate the deviation more than one order of magnitude. The present potential significantly improves
the reproducibility of the C44 and other elastic details as well. For example, it was reported that the β

phase lattice is stiffer in the c-direction compared to a- or b-direction (C33 > C11). The present potential
correctly reproduces this trend as well as the absolute values of each elastic constant.

The defect properties of the β phase such as the properties related to the vacancy and the free
surface are also examined and listed in Table 3. In the present study, the activation energy of vacancy
diffusion (Qvac) is defined as a sum of the vacancy formation energy (Evac

f ) and the vacancy migration
energy (Evac

m ) considering the reported substitutional diffusion mechanism of the β phase [37]. Based
on previous experimental study [38] and the present DFT calculation, the self-diffusivity of the β
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phase is anisotropic along crystal directions, and the activation energy of vacancy diffusion along the
c-direction (‖ c) is higher than that along the a- or b-direction (⊥c). The present potential successfully
reproduces this trend. In the calculation of the vacancy migration energy and resultant activation
energy of vacancy diffusion, we realized that the calculation along the a- or b-direction by previous
potentials indicates unphysical results such as the negative migration energy and the instability of the
saddle point position. These values are thus not presented in Table 3. The surface energies of the β

phase are also correctly reproduced only by the present potential while previous potentials show a
significant overestimation.

Table 3. Calculated bulk, elastic and defect properties of pure Sn using the present 2NN MEAM
potential, in comparison with experimental data, DFT data, and the calculation results using previous
MEAM potentials by Ravelo and Baskes [5], Vella et al. [12], and Etesami et al. [13]. The following
quantities are listed: the cohesive energy Ec (eV/atom), the lattice constant a (Å), the bulk modulus
B and the elastic constants C11, C12, C13, C33, C44 and C66 (1012 dyne/cm2), the structural energy
differences ∆E (eV/atom), the vacancy formation energy Evac

f (eV), the vacancy migration energy Evac
m

(eV), the activation energy of vacancy diffusion Qvac (eV), and the surface energies Esurf (erg/cm2) for
the orientations indicated by the superscript. For the Evac

m and Qvac, values considering diffusional
paths along the a- or b-direction (⊥c) and along the c-direction (‖ c) of the β phase are presented.
The DFT and MEAM calculations were performed at 0 K while the experimental data were obtained at
finite temperatures.

Phase Property Exp. DFT f MEAM g,h

[Ravelo]
MEAM g

[Vella]
MEAM g

[Etesami]
2NN MEAM
[This Work]

diamond
cubic (α)

Ec 3.140 a 3.154 3.140 3.220 3.209 3.135
a 6.483 b 6.658 6.483 6.304 6.430 6.581
B 0.426 c 0.358 0.422 0.442 0.436 0.406

C11 0.691 c - 0.704 0.649 0.819 0.504
C12 0.213 c - 0.281 0.339 0.244 0.357
C44 0.426 c - 0.367 0.426 0.949 0.105

∆Eα→ β - 0.041 0.055 0.105 0.118 0.033
∆Eα→ fcc - 0.065 0.060 0.160 0.129 0.052
∆Eα→ bcc - 0.075 0.060 0.144 0.129 0.053
∆Eα→ hcp - 0.063 0.059 0.160 0.128 0.050

body-centered
tetragonal (β)

Ec 3.10 d 3.113 3.085 3.115 3.091 3.102
a 5.831 b 5.938 5.920 5.682 5.914 5.859
c 3.184 b 3.224 3.235 3.334 3.237 3.206

c/a 0.546 b 0.543 0.546 0.587 0.547 0.547
B 0.570 c 0.479 0.645 0.656 0.647 0.571

C11 0.734 c - 1.093 1.233 1.329 0.897
C12 0.599 c - 0.625 0.343 0.469 0.467
C13 0.391 c - 0.244 0.540 0.166 0.369
C33 0.907 c - 1.396 0.592 1.571 0.937
C44 0.220 c - 0.007 0.042 0.012 0.079
C66 0.239 c - 0.225 0.215 0.281 0.106
Evac

f - 0.734 1.112 1.545 1.617 0.848
Evac

m (⊥c) - 0.082 - - - 0.235
Evac

m (‖ c) - 0.290 0.257 0.268 0.439 0.291
Qvac(⊥c) 1.089 e 0.816 - - - 1.083
Qvac(‖ c) 1.111 e 1.023 1.369 1.813 2.057 1.139

E(100)
surf

- 378 725 813 1375 345

E(001)
surf

- 359 889 792 1300 393
a Ref. [39]. b Ref. [40]. c Ref. [41]. d Ref. [42]. e Ref. [38]. f Present DFT calculation. g Present calculation using the
reported potential parameters. h The potential parameters adopted by Vella et al. [12] are used.

We further examined the transferability of the developed potential by comparing a group of
properties at finite temperatures. Table 4 lists the thermal properties of the β phase (the thermal
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expansion coefficient and the specific heat), in comparison with experimental data. These properties
were obtained based on the MD simulations using an isobaric-isothermal (NPT) ensemble at the target
temperature and zero pressure. For the thermal expansion coefficient of the β phase, the potential by
Ravelo and Baskes [5] shows a better agreement with the experiment than other potentials. Instead,
other potentials show a better reproducibility than the potential by Ravelo and Baskes [5] in the case of
the specific heat of the β phase.

Table 4. Calculated thermal properties of pure Sn using the present 2NN MEAM potential, in
comparison with experimental data and the calculation results using previous MEAM potentials
by Ravelo and Baskes [5], Vella et al. [12], and Etesami et al. [13]. The listed quantities correspond
to the thermal expansion coefficient ε (10−6/K), the heat capacity at constant pressure CP (J/mol K),
the melting temperature Tm (K), the enthalpy of melting ∆Hm (kJ/mol), and the volume change upon
melting ∆Vm/Vsolid (%).

Property Exp. MEAM d,e

[Ravelo]
MEAM d

[Vella]
MEAM d

[Etesami]
MEAM

[This Work]

ε (300 K) 23.5 a 23.0 20.3 19.3 18.6
CP (295 K) 26.5 b 27.2 26.6 26.5 26.1

Tm 505 c - 435 502 368
∆Hm 7.0 c - 4.2 4.1 3.1

∆Vm/Vsolid 2.3 c - 2.6 2.5 4.4
a Ref. [41]. b Ref. [43]. c Ref. [44]. d Present calculation using the reported potential parameters. e The potential
parameters adopted by Vella et al. [12] are used.

Figure 2 shows the temperature dependence of the atomic volume of pure Sn. Initially, the β

phase with 16,224 atoms was equilibrated at 5 K, and the temperature was then gradually increased
1000 K with a heating rate of 1.0 K/ps using the NPT ensemble at zero pressure. Each potential
indicates a discontinuous jump in the volume at a certain temperature. This jump indicates the
occurrence of the melting (β→ liquid). Because the heating simulation was performed without any
heterogeneous nucleation sites, the melting occurs at a temperature much higher than the equilibrium
melting temperature. Therefore, this temperature can be regarded as an overheated melting point.
The equilibrium melting temperature at zero pressure was further calculated using the interface
method [45,46] employing a simulation cell consisting of liquid and solid phases and listed in Table 4.
The table also lists the enthalpy change and the volume change upon melting which were obtained at
the calculated equilibrium melting temperature. For the previous potential by Ravelo and Baskes [5],
it was reported that the liquid part of the interface simulation is crystallized into a structure different
from the β phase [12], and thus the equilibrium melting point and resultant enthalpy and volume
changes are not presented. The developed potential shows discrepancies in the properties associated
with the melting while the potential by Etesami et al. [13] indicates the best agreement in the melting
point with the experiment. This can be interpreted by the fact that the potential [13] was developed
focusing mostly on the melting phenomenon without consideration to the reproducibility of many
other important properties.

As listed in Table 4, the present potential is somewhat deficient in describing properties related
to the melting compared to previous potentials. The present potential underestimates the enthalpy
of melting and overestimates the volume change upon melting compared to experimental values.
Considering that the present potential satisfactory describes physical properties of β phase, it is
necessary to further investigate the properties associated with the structure of the liquid phase.
Figure 3 shows the calculated radial distribution function of liquid structures at different temperatures.
Although the present potential shows a generally acceptable quality to reproduce the height and
position of the first peak, it shows a deficiency in reproducing characteristics of other peaks. We
attribute these deficiencies to the use of increased fitting weights of the β phase compared to other
phases during the fitting process.
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The discrete jumps represent the occurrence of the melting.
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Figure 3. Calculated radial distribution function of liquid Sn at (a) 573 K and (b) 1373 K using
the present 2NN MEAM potential, in comparison with experimental data (Ref. [7]) and the
calculation results using previous MEAM potentials by Ravelo and Baskes [5], Vella et al. [12],
and Etesami et al. [13].

We further examined the reproducibility of phonon properties and resultant properties at finite
temperature based on the harmonic approximation (HA) and quasiharmonic (QHA) approximation.
Figure 4 shows the phonon density of states (DOS) of α and β phases expected by the present and
previous potentials compared to the DFT expectation. As shown in Figure 4a, the phonon DOS of
the α phase is closely reproduced by the present potential. In contrast, previous potentials indicate a
significant overestimation of the phonon DOS at high frequencies compared to the DFT expectation.
A similar trend is also presented for the phonon DOS of the β phase as shown in Figure 4b. Moreover,
previous potentials cannot reproduce the stability of the β phase under perturbative forces. As shown
in the magnified figure of the phonon DOS of the β phase (Figure 4c), previous potentials indicate
dynamical instability (imaginary phonon frequencies) in contrast to expectations by the present
potential and DFT calculations. Even though this problem of previous potentials is expected to
interfere with various possible applications of previous potentials, the present potential is free from
this problem.
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Figure 4. Phonon density of states (DOS) of (a) α phase and (b) β phase, calculated based on the
harmonic approximation (HA). The results using the present 2NN MEAM potential are compared with
the present DFT results and the results using previous MEAM potentials by Ravelo and Baskes [5],
Vella et al. [12], and Etesami et al. [13]. (c) A magnified figure of Figure (b) is presented to clarify the
existence of imaginary phonon modes.

Therefore, only the present potential can be further utilized to expect the physical properties at
finite temperatures based on the QHA. One simple example is calculations of the thermal expansion
coefficient and the heat capacity as presented in Figure 5. The present potential exhibits an acceptable
quality comparable to the DFT calculation when reproducing such properties. Another important
example is the expectation of the allotropic phase transformation between α and β phases. Because the
present potential can accurately reproduce the phonon properties without suffering from the imaginary
phonon modes, a vibrational contribution on the free energy can be calculated based on the QHA.
The Gibbs free energy at the given temperature T and pressure P can be obtained from the Helmholtz
free energy F(T, V) at the given temperature and volume V through the transformation,

G(T, P) = min[F(T, V) + PV], (1)

where the right-hand side of this equation represents a value when the minimum value is found in
square brackets by varying the volume. In the present study, the F(T, V) was computed by a sum of
the DFT total energy EDFT(V) at the given volume, and the vibrational contribution to the free energy
Fvib(T, V) at the given temperature and volume.

F(T, V) = EDFT(V) + Fvib(T, V) (2)
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A detailed explanation on the determination of the free energy based on the phonon calculation is
given in Ref. [47].
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Figure 5. (a) Thermal expansion coefficient (ε) and (b) heat capacity (CP ) of β-Sn, calculated based
on the quasiharmonic approximation (QHA). The results using the present 2NN MEAM potential are
compared with those using the present DFT calculation and experimental data (Refs. [43,48]).

Figure 6 shows the calculated temperature dependence of Gibbs free energies of α and β phases
when the reference state is set to the β phase at 0 K. As stated, both DFT and the present MEAM
potential expect that the α phase is a ground state of pure Sn. The Gibbs free energy of each phase
decreases with increasing temperature due to the increasing contribution of the vibrational entropy.
Because the vibrational contribution is more significant in the β phase than in the α phase, the β phase
starts to become more stable than the α phase at a certain temperature. We define this temperature
as the phase transformation temperature between α and β phases. The calculated transformation
temperature by the present MEAM potential (460 ± 5 K) agrees well with that by the present DFT
calculation (470 ± 5 K) while these values are higher than experimental data (286 K) [5]. Although this
discrepancy seems to be caused by the limitation of the QHA, the present potential at least reproduces
the DFT expectation.
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Figure 6. Relative Gibbs free energies of α and β phases at various temperatures, calculated based on
the quasiharmonic approximation (QHA). The results using (a) the present 2NN MEAM and (b) the
present DFT calculation are illustrated. Each energy value was calculated with respect to the reference
state of the β phase at 0 K.
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As a final confirmation of the transferability of the developed potential, the self-diffusion of liquid
Sn was examined using the MD simulation. In the atomic scale, the MD simulation provides a time
dependency of the mean square displacement (MSD), and this is related to the bulk diffusivity based
on the following equation (Einstein relation),

D =

〈
R2(t)

〉
6t

, (3)

where D is the diffusivity,
〈

R2(t)
〉

is the MSD of atoms, and t is the time.
The self-diffusivity of liquid Sn was calculated using NPT ensemble MD runs starting with

the β phase of 16,224 atoms. First, the initial structure was melted by maintaining the cell at a
high temperature (2000 K) for a sufficient time (40 ps). The temperature was then changed to each
target temperature within a range of 600 and 2000 K, and the relaxation was performed for 40 ps.
The simulation cell was further maintained at the target temperature for a total simulation time of
2000 ps, and the time evolution of the MSD was counted at every 4 ps. We confirmed that the MSD of
atoms accumulated through these conditions shows a clear linear relationship with the time. Figure 7
shows resultant self-diffusivities of the liquid phase at various temperatures (600–2000 K) compared
with experimental data. Despite a deviation between experimental results, the present potential
successfully reproduces the general trend of an experimental result by Bruson et al. [49]. The calculated
self-diffusivities using the present potential are similar to those using the previous potential by
Vella et al. [12] even though the values are slightly underestimated at low temperatures. Compared
to the previous potentials by Ravelo and Baskes [5] and by Etesami et al. [13], the present potential
indicates significantly improved results, especially at high temperatures. It is interesting to note that the
self-diffusivities of the liquid phase are sufficiently reproduced despite the discrepancy of properties
related to the liquid structure. The result seems to emphasize the effectiveness of the force-matching
method to obtain a robust potential that demonstrates a good transferability to kinetic properties
such as the migration energy and the attempt frequency of diffusing atoms. However, it should be
noted that the transferability of the present potential to kinetic properties of low-coordinated atoms on
surfaces (surface diffusion) is not guaranteed because the present fitting was mostly performed by
using atomic configurations in the bulk state.
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Figure 7. Calculated self-diffusivity of liquid Sn using the present 2NN MEAM potential, in comparison
with experimental data (Refs. [49–52]) and the calculation results using previous MEAM potentials by
Ravelo and Baskes [5], Vella et al. [12], and Etesami et al. [13].

To summarize, we have shown that the present potential generally reproduces various physical
properties of pure Sn, even though there is a difference in the performance for each property.
The developed potential performs very well in describing structural, elastic and thermal properties of
the β phase, phonon properties of solid phases, and diffusion properties of solid and liquid phases. It is
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less suited to describing the melting behavior and the liquid structure compared to previous MEAM
potentials [5,12,13], which were developed to target specific physical properties of the liquid phase.
This fact should be kept in mind in future applications of the present potential. The LAMMPS files
implementing the developed potential can be obtained from an online repository [53].

4. Conclusions

We provide a new robust interatomic potential for pure Sn on the basis of the 2NN MEAM
model. The potential is developed based on the force-matching method utilizing the DFT database
of energies and forces of atomic configurations under various conditions. The developed potential
significantly improves the reproducibility of various physical properties compared to previously
reported MEAM potentials, especially for properties of the β phase. The present potential exhibits
superior transferability to the phonon properties and the properties related to diffusion phenomena.
As a possible example, the allotropic phase transformation between α and β phases is investigated
based on the QHA. The results indicate that the present potential can be successfully used for the
expectation of the transformation temperature at least at the level of the DFT expectation. The present
potential also successfully reproduces the self-diffusivity of liquid Sn. The developed potential can be a
suitable basis for implementing atomistic simulations of technically important Sn-based alloy systems.
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