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Abstract: An approach is proposed to enhance the mechanical properties and work-hardening (WH)
ability of low-alloy steels. Using asymmetric hot rolling (AHR) and subsequent direct quenching
(DQ) prior to the quenching and partitioning (Q&P) process, an ultrafine-grained Q&P steel with
excellent combination of tensile strength of ~1000 MPa and total elongation of ~35% was obtained,
which exhibited high WH exponent at higher strain induced by the higher volume fraction and higher
stability of film-like retained austenite located between the martensite laths.
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1. Introduction

Quenching and partitioning (Q&P) steel has been the focus in recent years to obtain excellent
a combination of strength and plasticity [1–3]. Mechanical properties of Q&P steel are related
to the work-hardening (WH) rate induced by austenite-to-martensite transformation during
deformation [3–6]. The quantity and stability of the retained austenite (RA) in Q&P steels plays
an important role, which depends not only on the chemical composition and heat treatment, but also
on the original microstructure prior to the Q&P process. Ultrafine-grained (UFG) structure and using
martensite as the prior microstructure prior to Q&P process has been considered [4,7–10]. However,
in the UFG Q&P steel, the ductility is deteriorated and the work-hardening ability during plastic
deformation is not increased [11–13]. Thus, it is relevant to develop novel methods to ensure excellent
mechanical properties and work-hardening ability in UFG Q&P steel.

Asymmetric rolling is a new, easy, and inexpensive plastic deformation technique, and it is
suitable for producing large structural components with UFG [14,15]. Asymmetric hot rolling (AHR)
is especially useful, because it can increase shear strain when the hot-rolled steel plates are relatively
thick and friction is high during AHR [16,17]. The traditional process of cold-rolled Q&P steels consists
of conventional hot rolling (CHR), cold rolling and Q&P heat treatment [1–3,6]. Recently, a few
studies indicated superior stability of film-like RA, which can be obtained using martensite as the
prior microstructure prior to Q&P process [4,7]. However, the martensite prior microstructure heat
treatment mainly focused on hot-rolling off-line quenching. Compared with this quenching, the direct
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quenching (DQ) after AHR is relatively simpler and energy-efficient. Simultaneously, cold rolling of
martensite requires significantly less strain to obtain UFG for low-alloy steels [11,18].

The study described here focuses on a novel approach by combining AHR, followed by DQ
and Q&P process, to significantly enhance the mechanical properties and work-hardening ability
of low-alloy steel using deformed martensite as the prior microstructure of the Q&P process.
The product of tensile strength and total elongation (PSE) of the low-alloy UFG Q&P steel was
greater than 35.8 GPa%, approaching PSE ≥ 30 GPa% in 3rd generation high-alloy automotive
steels [19–21]. Additionally, the effect of volume fraction, grain size, morphology, and location
of RA on work-hardening behaviors is explored.

2. Experimental

The composition of the experimental steel was Fe-0.2C-1.5Mn-1.3Si-0.2Al (wt.%). A 50 kg ingot
was cast after melting in a vacuum induction furnace, which was hot forged to slabs with width
of 100 mm and thickness of 30 mm. To design an appropriate AHR and Q&P process, the critical
temperatures of Ac1, Ac3, Ms and Mf measured by dilatometry were 740 ◦C, 900 ◦C, 360 ◦C and 280 ◦C,
respectively. To obtain different hot-rolled microstructures, the specimens were divided into three
groups, referred as CHR-Q&P steel, AHR-Q&P steel and AHR-DQ-Q&P steel, respectively. The three
groups of steels were all soaked at 1200 ◦C for 2 h and then hot rolled to sheets with thickness of
3 mm after nine pass rollings with start and finish temperatures of 1150 ◦C and 910 ◦C, respectively.
Subsequently, these CHR-Q&P and AHR-Q&P sheets were air cooled and AHR-DQ-Q&P sheets were
directly quenched to room temperature after hot finish rolling. Next all sheets were cold rolled to
strips with thickness of 1.0 mm after pickling in 10% hydrochloric acid. The Q&P heat treatments of all
cold-rolled strips were identical and were conducted in salt bath, which were intercritically austenitized
at 820 ◦C for 5 min, and then immediately quenched to 260 ◦C for 5 s, followed by holding at 400 ◦C
for duration of 200 s and air cooled to room temperature. AHR was carried out using a Φ400-mm
two-roll reversible rolling mill (Φ400, Shenyang, China). The velocity ratio of 1.1 was achieved via
different circumferential velocities of two working rolls with same diameters but different rotational
speed. Tensile tests were performed on specimens of a gauge width of 12.5 mm and a gauge length of
50 mm using a SANSCMT-5000 (MTS, Eden prairie, MN, USA) tensile machine at a constant crosshead
speed of 2 mm·min−1 at room temperature. Of which, the Tensile specimens were machined from
the heat-treated sheets with the tensile axis parallel to the prior rolling direction. The microstructures
were studied by optical microscope (OM, OLYMPUS-GSX500, OLYMPUS, Tokyo, Japan), scanning
electron microscopy (SEM, Supra, SSX-550, Shimadzu, Tokyo, Japan) and transmission electron
microscope (TEM, TECNAI G2-20, operated at 200 kV, FEI, Hillsboro, OR, USA). The volume fraction
of retained austenite (f RA) was measured by X-ray diffraction using Cu-Kα radiation. Integrated
intensities of diffraction peak (200)α, (211)α, (200)γ, (220)γ and (311)γ were calculated, and the f RA

was calculated based on direct comparison method [22,23]. The work-hardening behavior was studied
using instantaneous work-hardening exponent, n = (ε/σ)·(dσ/dε), which was deduced from Hollomon
equation [24]. Additional interrupted tensile tests at different strain corresponding to typical n value
were carried out to estimate the extent of strain-induced transformation of austenite to martensite
using XRD (Rigaku, D/Max2250/PC, Rigaku Corporation, Tokyo, Japan) studies.

3. Results and Discussion

The resulting microstructure of samples is shown in Figure 1. After hot rolling and air cooling,
the CHR-Q&P steel and AHR-Q&P steel both showed a typical ferrite and pearlite microstructure,
as shown in Figure 1a,b. In the CHR-Q&P steel, pearlite banding was observed parallel to the rolling
direction (RD), but in the AHR-Q&P steel, the pearlite banding was broken and was present in a
non-continuous manner. AHR refined the grain size. After AHR and DQ, the as-direct quenched
microstructure of AHR-DQ-Q&P steel is shown in Figure 1c, which exhibits a typical martensitic
microstructure. Resulting final microstructure of subsequent Q&P process are shown in Figure 1d–f.
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In the SEM micrographs, ferrite appears black, while martensite appears light grey. It is difficult
to make a clear distinction between RA and matrix in the SEM micrographs. The microstructural
constituent consisted of equiaxed grains of intercritical ferrite surrounded by martensite and RA.
In contrast, as is shown in Figure 1d–f, the average ferrite grain size of the three samples are about
3.5 µm, 1.2 µm and 0.8 µm, respectively. The best refined microstructure was present in AHR-DQ-Q&P
steel, followed by AHR-Q&P steel and CHR-Q&P steel.
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Figure 1. OM and SEM micrographs of microstructures. OM micrographs of (a) as-air cooled
microstructure after CHR for CHR-Q&P steel, (b) as-air cooled microstructure after AHR for AHR-Q&P
steel, (c) as-direct quenched microstructure after AHR for AHR-DQ-Q&P steel; SEM micrographs of
final microstructures for (d) CHR-Q&P, (e) AHR-Q&P and (f) AHR-DQ-Q&P samples.

Figure 2 shows TEM result of samples pertaining to CHR-Q&P, AHR-Q&P and AHR-DQ-Q&P
processes. As shown in Figure 2a,b, the microstructure including ferrite and RA of AHR-Q&P steel
were significantly refined than CHR-Q&P steel. Compared with the CHR process, the AHR process
refines the microstructure. Furthermore, in contrast, as is shown in Figure 2a–c, the AHR-DQ process
not only effectively refined the microstructure, but also changed the RA morphology. Blocky RA was
observed in CHR-Q&P and AHR-Q&P steel (Figure 2a,b). However, the morphology of RA in the
AHR-DQ-Q&P steel was mainly present as a film (Figure 2c). For the AHR-DQ-Q&P steel, Figure 2d–f
show bright and dark-field TEM images of film-like morphology RA and the selected area diffraction
pattern (SADP), shows the orientation relationship between film-like RA and lath martensite, and was
Kurdjumov-Sachs (K-S) relationship. The cold-rolled structure of AHR-DQ martensite was further
studied by TEM as shown in Figure 2g–i. The corresponding SADP in Figure 2i exhibited ring-like
pattern, indicating that grain subdivision occurred and the presence of very high density of dislocations
during cold-rolled deformation (Figure 2g,h).

It is proposed that the reasons for the refinement of microstructure (Figures 1 and 2a–c), increasing
of f RA (Table 1) and change of RA morphology (Figure 2a–f) are related to AHR and subsequent DQ



Metals 2018, 8, 872 4 of 9

prior to Q&P process. Compared to CHR, extra shear strain can be introduced into the steel plate
by applying AHR, which can influence the microstructural evolution by increasing the total value of
effective strain, and the final hot-rolled microstructure is refined [17]. In this study, the temperature
of γ-α transformation (Ar3) and non-recrystallization temperature (Tnr) of steel was measured to be
730 ◦C and 945 ◦C by Gleeble 1500 thermo-mechanical simulator. To measure non-recrystallization
temperature (Tnr), samples 10 mm diameter and 15 mm long were used for hot-rolled process
simulations after cutting from hot-forged slab. The process schedule is involved: reheating for
5 min at 1200 ◦C; roughing deformation up to 0.35 strain at 1 s−1 strain rate at 1100 ◦C; cooling at 1 ◦C
s−1 to each of deformation temperatures between 900 and 1000 ◦C, finishing deformation up to a strain
of 0.60 at a strain rate of 1 s−1, followed by either water quenching to room temperature. All samples
were examined using optical microscopy to confirm the recrystallization. The present CHR and AHR
initial 8 passes were above Tnr and finish rolling pass was below Tnr. The extra shear strain above
Tnr increases the rate of recrystallization, and reduces the recrystallized grain size. The extra shear
strain below Tnr increases the ferrite nucleation rate of AHR-Q&P steel or martensite nucleation rate
of AHR-DQ-Q&P steel. Thus, AHR refines the hot-rolled microstructure as shown in Figure 1a–c,
which agrees with the literature [25,26].

The AHR and the subsequent DQ are beneficial to obtain fine martensitic microstructure
(Figure 1c), which is favorable to the achievement of fine microstructure after cold rolling and Q&P
treatment. Furthermore, cold rolling of martensite requires significantly less strain to obtain UFG
structure [27]. The rapid grain subdivision and a very high density of dislocation (Figure 2g,h) after
cold rolling with a reduction of ~67% is attributed to fine and hierarchical structure of martensite [11].
Thus, the deformation structure due to AHR and subsequent DQ prior to Q&P process was sufficiently
refined, which was beneficial in obtaining UFG microstructure.
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Figure 2. TEM images of final microstructures for (a) CHR-Q&P, (b) AHR-Q&P and (c) AHR-DQ-Q&P
steel; (d–f) TEM images of final microstructures for AHR-DQ-Q&P steel, (d) bright-field TEM images of
film-like morphology retained austenite (RA), (e) dark-field TEM images and (f) selected area diffraction
pattern (SADP); (g–i) TEM images of cold-rolled martensite for AHR-DQ-Q&P steel, (g) cold-rolled
martensite, (h) enlargement of selected area in (d), (i) corresponding to SADP.
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It is interesting to note that by applying AHR and subsequent DQ prior to Q&P process, a total
volume fraction of 18.5% (Table 1), smaller grain size and stable RA with film-like morphology was
obtained. The blocky RA that usually exists treated by Q&P process after intercritical austenitization
was suppressed (Figure 2a–f). During intercritical annealing, austenite islands were formed in the
matrix, the carbide particles dissolved in austenite and enriched with C and Mn. Furthermore,
small austenite islands can also impose a strong pinning effect on ferrite sub-grain boundaries and
grain boundaries, which can retard the boundary migration and recrystallization of ferrite [28,29].
In this study, when the fine martensite prior to Q&P process was cold rolled, the stored energy after
deformation was higher and formation of small austenite islands was promoted. At the same time,
in low-alloy steels, in which the martensitic microstructure partially reaustenitizes in the intercritical
region, two types of austenite will form during annealing, i.e., interlath/acicular austenite forms at
martensite lath boundaries and blocky austenite mainly at the prior austenite grain boundaries [7,11].
Accordingly, the finer grained austenite structure will result in a higher share of secondary martensite
containing more carbon and thus being stronger [30,31]. After quenching to 260 ◦C during Q&P process,
film-like and blocky morphology RA are preserved, which correspond to interlath/acicular austenite
and blocky austenite in the intercritical region. Subsequently, during partitioning at 400 ◦C, because
the film-like RA is more stable than the blocky RA, and blocky RA is difficult to be homogeneously
enriched in carbon [32,33]. Thus, majority of the blocky RA transform to new martensite, while a
considerable amount of film-like RA is retained at room temperature.

AHR and subsequent DQ prior to Q&P process, is the primary reason for AHR-DQ-Q&P
steel exhibiting excellent mechanical properties (Table 1) and work-hardening ability (Figure 3).
The engineering stress-strain curves for CHR-Q&P, AHR-Q&P and AHR-DQ-Q&P steel are presented in
Figure 3a. The three groups of steels exhibited continuous yielding, which is desirable to control surface
defects during metal sheet forming. The mechanical properties of steels are presented in Table 1. AHR led
to increase of yield stress (YS) (because of the finer grains) and slight increase of UTS and TEL. PSE of
AHR-Q&P (air cooling after AHR) steel was greater than 28 GPa%. Comparing air cooled specimens after
AHR, it is interesting to note that UFG Q&P steel using DQ after AHR showed not only better YS but also
a better combination of UTS and TEL. The sample referred as AHR-DQ-Q&P steel was characterized by
an excellent combination of UTS of 1023 MPa, TEL of 35%, and PSE of ~35 GPa%.

Table 1. Mechanical properties of experimental steels.

Sample YS (MPa) UTS (MPa) TEL (%) UTS × TEL (GPa%) f RA (Vol.%)

CHR-Q&P 495 (±10) 963 (±15) 28 (±0.3) 26.9 (±0.2) 12.1
AHR-Q&P 537 (±8) 978 (±10) 29 (±0.2) 28.3 (±0.2) 15.0

AHR-DQ-Q&P 605 (±12) 1023 (±17) 35 (±0.3) 35.8 (±0.3) 18.5

Figure 3b shows variation in instantaneous WH exponent with true strain. It is obvious that the
WH behavior can be divided into three stages, i.e., the instantaneous WH exponent of CHR-Q&P and
AHR-Q&P steel rapidly decrease during early stages of tensile deformation in stage I, then slightly
decrease in stage II, before finally rapidly decreasing again until failure in stage III with increased true
strain. It is interesting to note that the WH behavior of AHR-DQ-Q&P steel is different from the other
two kinds of steels, the instantaneous WH exponent slightly increases in stage II, and sustains a longer
stage until the peak stress (UTS).
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as a function of engineering strain (c) for CHR-Q&P, AHR-Q&P and AHR-DQ-Q&P steel.

The evolution of f RA during tensile tests is shown in Figure 3c. The f RA change can be also divided
into three stages. AHR-DQ-Q&P steel had higher f RA before tensile deformation. However, during
deformation, the three kinds of steels exhibited different trend in f RA. In stage 1, the f RA change of
CHR-Q&P steel is rapid, AHR-Q&P and AHR-DQ-Q&P steels show a slow decreasing rate. In stage
2, AHR-Q&P and AHR-DQ-Q&P steels indicated a rapid decreasing rate, in contrast to CHR-Q&P
steel. In stage 3, AHR-DQ-Q&P steel exhibited a slow decreasing rate, CHR-Q&P and AHR-Q&P steels
showed an almost no change in trend.

The observed difference in mechanical properties and WH behavior can be explained in terms
of different f RA, morphology, location, and grain size of RA. First, compared with CHR-Q&P and
AHR-Q&P steels, the initial f RA was higher in AHR-DQ-Q&P steel, which still had some RA that
can transform at high strains, whereas the other two steels had exhausted its RA because of the
transformation-induced plasticity (TRIP) effect (Figure 3c). Second, blocky austenite was surrounded
by ferrite in CHR-Q&P and AHR-Q&P steel (Figure 2a,b), while film-like RA was located between
martensite laths in AHR-DQ-Q&P steel (Figure 2c–f). It is well known that film-like RA has better
stability compared to the blocky shape, and the latter tends to transform to martensite at a small strain
and contributes less the TRIP effect [7,34]. At the same time, ferrite is ductile and soft, and withstands
more strain during tension especially at low strain. The harder martensite phase bears more stress,
which can “shield” RA during deformation and make RA transform at high strain [3,35]. Consequently,
AHR-DQ-Q&P steel exhibited high WH exponent, TEL and UTS at higher strain induced by the higher
volume fraction and higher stability of film-like retained austenite located between the martensite
laths (Figure 3b).

We compared the mechanical performance of AHR-DQ-Q&P steel to other advanced high
strength steels (AHSS) in literature [36–39] in Figure 4. By AHR and subsequent DQ prior to Q&P
process, AHR-DQ-Q&P steel not only exhibited significantly higher PSE than conventional AHSS,
but also exhibited significantly higher UTS and larger TEL than other convectional TRIP (C-TRIP)
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steel, dual phase (DP) steel and complex phase (CP) steel in the region of the first generation AHSS.
Moreover, it exhibited higher TEL than medium Mn (M-Mn) steel, Q&P steel and carbide-free bainite
(CFB) steel in the region of the third-generation AHSS. Simultaneously, it exhibited slightly higher
PSE than deformed and partitioned (D&P) steel [39]. Although its PSE is lower than that of the
third-generation steel mainly including twinning-induced plasticity (TWIP) steels, its weight fraction
of alloying element is decreased, and the price is relatively cheap. Consequently, our AHR-DQ-Q&P
steel achieves excellent tensile properties and defined a new region above the PSE line of 30 GPa%
in the strength-ductility map (Figure 4). Not only tensile strength of ~1000 MPa, the excellent PSE of
~35 GPa% in our AHR-DQ-Q&P steel makes it a desirable alloy for applications where PSE is the main
design criterion, which is rather remarkable for a low-alloy steel.
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4. Conclusions

In summary, a novel approach to ensure excellent mechanical properties and work-hardening
ability is proposed. Compared with CHR-Q&P and AHR-Q&P steel, UFG AHR-DQ-Q&P steel was
obtained by AHR and subsequent DQ prior to Q&P process, which was beneficial in refining the
microstructure, increase f RA and change RA morphology from blocky to film-like. Consequently,
AHR-DQ-Q&P steel was characterized by an excellent combination of UTS of 1023 MPa, TEL of 35%
and PSE of ~35 GPa%, and higher WH exponent at higher strain caused by the higher volume fraction
and stability of RA. However, considering a 67% cold reduction for DQ (martensitic) hot strip in an
industrial mill probably leads to overloading of the rolling stands. Therefore, further study of the
proposed process is needed in industry.
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