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Abstract: The atmospheric corrosion of copper in pure coastal atmospheres has not been extensively
studied. This paper presents the results of research carried out in pure coastal atmospheres with
annual chloride deposition rates of between 110–1640 mg/m2·d. Copper specimens (99.99 wt % Cu)
were exposed for 3, 6, 9, and 12 months at six testing stations located at different distances from the
seashore. Tests were performed to determine the copper corrosion rate, the surface area coated with
corrosion products, and the evolution of both magnitudes with exposure time. Conventional and
grazing X-ray diffraction techniques were used to analyze the corrosion products formed—cuprite
and the polymorphs botallackite, atacamite, and clinoatacamite—and their presence through the
patina thickness, while scanning electron microscopy/energy dispersive X-ray spectrometry was
employed to study the morphology of the resulting corrosion layers. The most relevant findings are
a notable increase in atacamite and clinoatacamite formation at higher atmospheric salinity levels
and longer exposure times, and the flaking-off of the corrosion product layer formed in the marine
atmospheres with the highest chloride deposition rates.
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1. Introduction

Copper is a widely used material due to its high atmospheric corrosion resistance and its good
thermal and electrical conductivity. However, though the magnitude of copper corrosion is low, it can
nevertheless have a negative impact on the correct functioning of electronic equipment such as printed
circuits [1]. Thanks to the attractive nature of the corrosion product layer (patina) formed on copper,
this material has also long been used in architectural applications such as domes, roofing and frontages
on churches, castles, and other monumental buildings [2–9].

Scientific literature on the atmospheric corrosion of copper is highly abundant [6,10–12] as is
published information on the mechanisms by which copper patinas form in atmospheres polluted
with SO2 and other atmospheric compounds [6,13–17]. However, data on the corrosion of copper in
chloride-rich atmospheres is less abundant [6,18–29] and only a very small number of studies consider
in depth the effect of marine aerosol (sea-chloride deposition) in pure marine atmospheres without
SO2 pollution [26–29]. The present paper seeks to address this deficit by considering six pure marine
atmospheres located at different distances from the seashore in the same coastal area.

Papers published long time ago, when very few information on coastal atmospheres was available,
tended to generalize and indicate a copper corrosion rate in marine atmospheres of the order of
1 µm/year [3,6,30] or in the range of 1–2 µm/year [10], which as shall presently be seen are well below
the real levels recently found in coastal atmospheres when more focused studies have been carried out.
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Table 1 sets out the corrosion rates found by different studies when testing copper behavior in pure
marine atmospheres (without SO2 pollution). The table has been prepared after an exhaustive review of
the literature published on this subject, considering only marine atmospheres with chloride deposition
rates of ≥10 mg/m2/day and SO2 deposition rates of ≤10 mg/m2/day [27,28,31]. Published data
referring to marine atmospheres with SO2 contents in excess of this value [20,22] has not been included
in the table. It can be seen that the copper corrosion encountered in this type of atmosphere is often
higher than the aforementioned 1–2 µm range.

Table 1. First-year worldwide corrosion of copper in pure marine atmospheres, Cl−: ≥10 mg/m2·day;
SO2: ≤10 mg/m2·d.

Ref. Test Site Country Cl− Deposition Rate,
(mg Cl−/m2·d)

First-Year
Corrosion, (µm)

[31] Sabanilla Costa Rica 11.3 1.2
[27] Vladivostok Russia 11.8 1.4
[27] Murmansk Russia 12.1 1.7
[31] Matanzas Venezuela 15.9 1.0
[31] Acapulco Mexico 23.8 1.2
[31] S. Cristobal Ecuador 25.0 1.5
[31] Coro Venezuela 27.5 2.4
[27] Camet Argentina 28.7 2.2
[31] Punto Fijo Venezuela 31.0 3.2
[31] Puntarenas Costa Rica 33.4 3.0
[27] Choshi Japan 40.5 1.4
[31] Salinas Ecuador 47.3 2.3
[27] Kattesand Sweden 51.9 1.7
[31] Camet Argentina 55.1 2.2
[27] Okinawa Japan 78.9 2.1
[28] Brest (S.2) France ~80.0 1.8
[27] Kure Beach USA 112.0 2.9
[31] Ubatuba Brazil 113.0 3.3
[31] P. del Este Uruguay 144.0 2.5
[27] Tannager Norway 182.9 1.9
[31] Limón Costa Rica 220.0 3.7
[31] A. do Cabo Brazil 229.0 2.5
[27] Kvarnvik Sweden 404.9 2.8
[28] Brest (S.1) France ~500.0 2.7

It is well established among researchers who have studied this subject that the first stage of copper
corrosion in marine atmospheres is the formation of a cuprite (Cu2O) film on the copper surface. Then,
the formation of chlorinated corrosion products (nantokite and copper hydroxychlorides) takes place
in the cuprite surface depending on the concentration of chloride ions in the atmosphere [6].

However, there is a lack in the scientific literature regarding the quantitative information of the
crystalline phases present in the copper patina and its location in the corrosion layer, as well as the
coverage of the cuprite surface by basic copper chlorides (Cu2(OH)3Cl).

The research exposed in this work is mainly focused on these issues.

2. Materials and Methods

2.1. Environmental Characteristics of the Atmospheric Testing Site: Cabo Vilano Wind Farm (Galicia, Spain)

Environmental parameters characterizing the atmospheric testing site during the study period of
April 2015 to March 2016 were obtained from the Spanish Meteorological Agency (AEMET) database
for Cabo Vilano weather station, located on the same site. The area presents a high mean annual
relative humidity (82.4%), a mild mean annual temperature (14.0 ◦C), and a high precipitation rate
(11,109 L/m2/year) with >150 days precipitation/year. These values indicate a high time of wetness
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of the metallic surface that favors the atmospheric corrosion process. The test site is exposed to strong
winds, mainly northeasterly (NE) and south–southwesterly (SSW), with a mean annual wind speed of
27.7 km/h. The testing stations were installed facing north (N) and so have been exposed to strong
winds with considerable entrainment of marine aerosol (atmospheric salinity), which has invigorated
the atmospheric corrosion process. Figure 1 shows the annual wind rose for the area during the
study period.
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correspond to frequencies (%) of wind running in different directions.

2.2. Testing Stations

Research has been carried out at six testing stations located at different distances from the seashore.
The atmosphere surrounding the testing stations may be considered pure marine, with a very low
atmospheric SO2 content (0.7–0.9 mg SO2/m2/day) [32]. A description of the type of testing station
used has been given elsewhere [33].

Figure 2 shows the variation in the annual chloride deposition rate [32] with the distance from the
seashore at the testing sites. A strong decrease in atmospheric salinity is seen between stations 1 and 2,
and very similar salinity levels are found at stations 4 to 6.Metals 2018, 8, x FOR PEER REVIEW  4 of 19 
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2.3. Test Specimens

Test specimens of 99.99 wt % Cu and dimensions of 100 mm × 50 mm × 1.5 mm were prepared
from a cold-rolled half-hard copper sheet (Cu-DHP CW 024A R240 [34]). Before being exposed to the
atmosphere the specimens were degreased and then washed in a sulfuric acid solution [35] followed
by three rinses in distilled water, a final rinse in ethanol and drying with hot air. Prior to their
atmospheric exposure the specimens were weighed to the nearest 10−4 g in a Mettler AT 261 Delta
Range microbalance and stored in a desiccator over silica gel.

2.4. Evaluation of Corrosion Rates

The test specimens were exposed in outdoor (unsheltered) conditions with an inclination of
90◦ from the horizontal to better reproduce the exposure condition of copper sheets, widely used
in covering the facades of buildings. Specimens were withdrawn after 3, 6, 9 and 12 months and
three-monthly measurements of the atmospheric chloride deposition rate were carried out using the
wet candle technique [32]. The corrosion experienced by copper was evaluated in triplicate using the
mass loss technique in an amidosulfonic acid solution (Annex A ISO 9226 [36]).

2.5. Nature of the Corrosion Products Formed

X-ray diffraction (XRD) studies with a Bruker AXS D8 diffractometer (Bruker AXS, Karlsruhe,
Germany) in parallel beam mode (Goebel mirror) were carried out for characterizing the crystalline
phases forming the copper patinas and their evolution with exposure time. XRD data were collected in
both, Bragg–Brentano geometry and under grazing incidence condition (GIXRD) keeping the incidence
beam angle at 2◦ to obtain information on the evolution of the phase fractions as a function of depth.
The penetration depth at which 90% of the X-ray are scattered (t0.90) upon a copper hydroxychloride
(Cu2(OH)3Cl) surface was estimated in both cases using the AbsorbDX software by Bruker AXS
(AbsorbDX program version 1.1.4, Bruker AXS GmbH, Karlsruhe, Germany). As for Co Kα radiation
at an incidence angle of 2◦ t0.9 is about 2.5 µm, grazing incidence XRD is especially suitable for
characterization of the phases present in the outermost layer of patina (final corrosion products).
On the other hand, as in conventional of θ–2θ scan it was detected the presence of the diffraction peaks
of Cu, the corresponding XRD patterns contain an average information of all the products generated
under atmospheric corrosion.

In most of previous works, the phase identification of the phase present in the patina formed
on a copper and its alloys has been performed by XRD diagrams using a search-match program
supported by the Joint Committee on Power Diffraction Standards (JCPDS) cards. Thus in a first
attempt, the phases present in our patina were identified from XRD patterns with the help of the
JCPDS cards of International Centre for Diffraction Data (ICDD) for the most common copper chlorides.
In Table 2 it is included the position of the strongest peak of theses phases for Co radiation.

Table 2. Position of the strongest peak of the most common copper chlorides for Co radiation.

Phase JCPDS Card Reflection (hkl) Peak Position (2θ)

Atacamite 025-0269 (011) 18.789
Paratacamite 025-1427 (−110) 18.928

Clinoatacamite 050-1559 (−101) (011) 18.823
Botallactite 008-0088 (001) 18.186
Nantokite 006-0344 (111) 33.243

As shown in Table 2, the most intense peaks of atacamite, paratacamite, clinoatacamite,
and botallactite are placed at very near positions. Thus, matching the XRD pattern with the JCPDS
data base did not allow to unambiguously characterizing the phases present in the patina due to the
broad reflections normally observed in copper corrosion products. This problem could be overcome by
using the Rietveld analysis since this method fits the whole diffraction pattern, including explicitly all
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reflections, overlapping or not, and peak broadening associated to microstructural details (crystallite
size and microstrain), are explicitly included. Besides, quantitative information of the crystalline
phases present in the patina from the XRD patterns is obtained by the Rietveld fitting method. In this
study, the version 4.2 of the Rietveld analysis program TOPAS (Bruker AXS, Karlsruhe, Germany) has
been used for modelling the full patterns with the crystallographic information for Cu, cuprite, copper
hydroxychlorides (atacamite, clinoatacamite, botallackite) and nantokite obtained from Pearson’s
Crystal Structure databases [37]. In order to eliminate the instrumental contribution from XRD
patterns, the instrument function was calculated from a XRD pattern of a corundum plate standard
recorded under the same conditions.

2.6. Coverage of the Cuprite Surface by Basic Copper Chlorides (Cu2(OH)3Cl)

The base copper is initially coated with a cuprite patina of a reddish color. As exposure time
in the marine atmosphere advances, this cuprite surface gradually becomes coated with corrosion
products of a turquoise blue color. It is of interest to evaluate this coverage in terms of a percentage
and its evolution with exposure time. For this purpose use has been made of the ImageJ image analysis
technique [38]. The selection of the covered area and the determination of the percentage of cuprite
surface that is covered by basic copper chlorides were done automatically by the software, selecting
the areas with similar turquoise blue color in contrast with the reddish tone corresponding to cuprite.

2.7. Morphology of the Patinas Formed

The morphology of the patinas formed was assessed by both surface and cross-section microscopic
observations. Use was made of a Hitachi S4800 field emission gun scanning electron microscope (SEM,
Hitachi, Tokyo, Japan). SEM images were recorded working at an acceleration voltage of 15 kV at
different magnifications.

3. Results

3.1. Corrosion Rates

Table 3 sets out the copper corrosion rates found in this research. Copper corrosion clearly
decreases inland from the seashore and the lower the chloride deposition rate (see Figure 2).
The copper corrosion rate decreases notably in all the stations the longer the atmospheric exposure
time. The variation in first year copper corrosion as a function of the chloride deposition rate follows a
straight line (Figure 3).

Table 3. Variation in the copper corrosion rate at each testing station after the different exposure times.
Average values considering both sides of the specimens.

Test Site (Figure 2)
Corrosion Rate (µm/year)

3 Months 6 Months 9 Months 12 Months

1 11.70 ± 1.14 7.56 ± 0.87 6.83 ± 0.12 4.21 ± 0.22
2 7.64 ± 0.32 5.17 ± 0.10 3.95 ± 0.11 3.01 ± 0.02
3 6.31 ± 0.02 4.42 ± 0.06 3.31 ± 0.09 2.57 ± 0.01
4 6.11 ± 0.05 4.03 ± 0.11 3.10 ± 0.07 2.33 ± 0.03
5 5.18 ± 0.04 3.44 ± 0.06 2.59 ± 0.06 2.03 ± 0.03
6 4.29 ± 0.14 3.12 ± 0.08 2.10 ± 0.05 1.74 ± 0.04
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deposition rate.

3.2. Nature of the Corrosion Products Formed

Table 4 presents a summary of the results obtained by XRD (Rietveld) concerning the phases
present in the corrosion products formed on copper in different exposure conditions. The following
phases are always seen to form on all the test specimens: cuprous oxide or cuprite (Cu2O) and
the polymorphs of basic copper chloride (Cu2(OH)3Cl) botallackite (minor) and atacamite and
clinoatacamite (major). Figure 4 presents the typical diffractogram obtained with fitting by the
Rietveld method, showing the peaks corresponding to these four phases. The presence of nantokite
(CuCl) was never observed.

Table 4. Composition of the patinas formed on copper in coastal marine atmospheres in different
exposure conditions. Data obtained by X-ray diffraction (XRD).

Test Site
(Figure 2)

Time of Exposure
(Months) XRD Cuprite

Basic Copper Chlorides

Botallackite Atacamite Clinoatacamite

1 9
conventional 64.4 1.1 21.9 12.6

GIXRD 25.5 1.3 34.9 38.3

2

3 conventional 72.0 7.3 11.4 9.3
6 conventional 70.2 1.7 18.5 9.6

12
conventional 60.6 1.1 23.9 14.4

GIXRD 16.6 3.9 27.3 52.2

3 12
Conventional 61.7 1.7 20.8 15.8

GIXRD 35.3 2.5 31.6 30.6

6

3 conventional 72.7 2.4 17.0 7.9
9 conventional 65.9 2.5 20.6 11.0

12
conventional 61.7 3.6 22.2 12.5

GIXRD 50.6 4.9 26.8 17.7

Conventional XRD: XRD on corroded sheet; GIXRD: Grazing Incidence X-ray Diffraction.
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line) XRD patterns obtained after Rietveld refinement for patinas formed on copper in the marine
atmosphere of Cabo Vilano. The differences between experimental data and the fitted simulated pattern
are plotted as a continuous grey line at the bottom, and the contribution of the component phases in
different colors.

But first of all it is important to clarify two matters related with copper chlorides that are the cause
of some confusion in the scientific literature: “polymorphism” and “clinoatacamite”. With regard to
the first of these matters, “polymorphism”, it is noted that some papers, including recent publications,
make reference to isomorphous compounds instead of polymorphous compounds [3,6,16]. It should
be recalled that polymorphism refers to different crystalline forms of the same compound, in this
case Cu2(OH)3Cl, and that the crystalline structure of the different polymorphous compounds is
different: botallackite is monoclinic, prismatic; atacamite is orthorhombic; and clinoatacamite is
pseudo-rhombohedral [39,40]. Isomorphism, on the other hand, refers to similarity in the crystal
structure of different compounds.

With regard to the second of these matters, “clinoatacamite”, another error that is very commonly
seen in the literature on atmospheric corrosion products of copper, even nowadays, concerns the
identification of paratacamite [3,6,18,20,24,28,29,41], which crystallizes in the trigonal–rhombohedral
system [39,40], as a polymorph of atacamite, when really it is clinoatacamite. These then are
two different compounds that present slightly different Raman spectra and XRD patterns [39].
Clinoatacamite, whose chemical formula is Cu2(OH)3Cl, is different to paratacamite, ((CuM)2(OH)3Cl)
where M may be Zn, Ni, Co, which forms when any of these elements replaces some of the Cu [40].
According to Jambor et al. [42] and Malchevek and Schlüter [43], paratacamite may not exist as a pure
copper mineral and its published JCPDS Power Diffraction File (PDF 25-1427) is only slightly different
to the diffraction pattern for clinoatacamite. Thus, previous reports of paratacamite should probably
be attributed to clinoatacamite instead. In the present work, it has not been possible to determine from
XRD measurements exactly which of these phases is present, since the diffraction pattern fitting quality
by the Rietveld method is basically the same for paratacamite or clinoatacamite crystallographic data.

In heavy marine environments, it has been reported that the cuprite patina reacts with chloride
ions from the atmosphere primarily to form nantokite [6], which may rapidly change into the basic
copper chlorides botallackite, atacamite, and clinoatacamite. Thus it is not unreasonable to expect the
presence of a minor amount of this phase in the patinas, which may be missed in a phase identification
procedure involving the comparison of experimental XRD patterns with patterns from the JCPDS
database. This problem could be overcome by fitting the whole observed diffraction pattern by the
Rietveld method to a structural model including nantokite along with cuprite, botallackite, atacamite,
and clinoatacamite. As the quality of the simulated patterns did not improve compared to fitting using
a crystal structure model without nantokite, it was concluded that this phase was not significantly
present in the patinas.
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3.3. Coverage of the Cuprite Surface by Basic Copper Chlorides (Cu2(OH)3Cl)

When copper is exposed to the marine atmosphere it immediately becomes coated with a copper
oxide patina and its color goes from the initial salmon pink (Figure 5a) to more reddish tones (Figure 5b)
corresponding to cuprous oxide (cuprite). Subsequently, corrosion products of a turquoise blue
coloring corresponding to basic copper chlorides form on the cuprite surface. This new corrosion layer
is heterogeneous and does not initially cover the entire cuprite surface (Figure 5c), and may in fact not
achieve complete coverage even after a long exposure time, depending on the atmospheric salinity.
In this respect, Cathcart [44] ironically noted that “when a young architect covers a roof with copper
it will turn green when his hair turns grey”. Thus, in marine atmospheres the complete coverage of
the cuprite surface as exposure time advances is dependent on the chloride deposition rate and the
exposure conditions, and only happened in our testing station closest to the sea (Figure 5d).
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Figure 5. Overview of color changes in the patina formed on copper when exposed to marine
atmospheres. (a) Initial salmon pink; (b) reddish tone corresponding to cuprite, (c,d) turquoise blue
coloring corresponding to basic copper chlorides formed on cuprite.

The present study considered the two sides of the test specimens; side A, which was facing the
sea and the reverse side B. Coverage with basic chlorides starts at the edges of the test specimens
and in areas around the fastening clips, where the time of moisture retention is longer and the saline
concentration in the precipitated aqueous layer is higher as a result of evaporation during the drying
period. This has also been referred to in a recent study [25] and can clearly be observed in the
photographs in Figure 6. It should also be noted that side B becomes coated with turquoise blue
corrosion products faster as it also receives the marine aerosol but is more protected from the rain,
and so the deposited pollutant is less likely to be washed off.

It is of interest to quantify the percentage of the cuprite surface that is covered by basic copper
chlorides, and Table 5 has been prepared for this purpose with the assistance of image treatment [38].
As exposure time advances and the atmospheric chloride deposition rate increases, the coverage
percentage increases. The great importance of atmospheric salinity in relation with this effect is
clearly shown. At station 1, with the highest chloride deposition rate, the coverage percentage after
three months was already 80%, reaching approximately 100% after one year of exposure. Contrarily,
at stations 5 and 6, with much lower chloride deposition rates, the coverage percentage was very small
(1–4%) and the patina formed retained the characteristic reddish color of cuprite.
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Table 5. Evolution with exposure time of the percentage coverage of the cuprite patina by basic
copper chlorides. Information corresponding to the seaward facing specimen side at the different
testing stations.

Test Site (Figure 2)
Time of Exposure

3 Months 6 Months 9 Months 12 Months

1 80 82 91 97
2 33 43 52 55
3 17 24 25 36
4 19 12 15 40
5 7 6 4 4
6 4 1 1 1

4. Discussion

Taking into account the results obtained in this research and existing literature on the subject of
copper corrosion in pure marine atmospheres, there follows an overview of the atmospheric corrosion
process of copper in this type of atmosphere.

There is unanimous agreement among researchers who have studied this subject that the copper
corrosion process in marine atmospheres is of an electrochemical nature and develops in a series of
stages, as described below.

4.1. Formation of a Cuprite Film

It is well established that the first stage is the formation of a cuprite (Cu2O) film on the copper
surface. From the very first moments of exposure to clean air, copper becomes instantaneously coated
with a nanometric thin film of Cu2O by means of a direct oxidation mechanism [45]; the oxidation
rate decreases with time and practically comes to a halt when the cuprite film thickness reaches
5 nm [46,47].
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The electrochemical corrosion of copper in the atmosphere takes place once an aqueous layer has
formed on the surface as a result of rainfall, condensed humidity, etc. The possible anodic reactions in
principle would be:

Cu→ Cu+ + e− (1)

Cu→ Cu2+ + 2e− (2)

and the predominant cathodic reaction in neutral aerated solutions is the following:

O2 + 2H2O + 4e− → 4OH (3)

The formation of cuprite will take place according to the overall reaction:

2Cu+ + 2OH− → Cu2O + H2O (4)

According to Graedel [30] this passive cuprite layer may have a sequential structure of Cu2O,
CuO and Cu(OH)2 or CuO·xH2O, depending on its depth. Cu+ and Cu2+ ions can form stable
complexes in the presence of Cl− ions, and for this reason the concentration of copper ions decreases
notably. According to Veleva et al. [18] this means that the oxidation of Cu to Cu+ (Equation (1)) in
marine atmospheres is the only possible reaction.

There is unanimous agreement that cuprite (Cu2O) is the initial corrosion product to form on
copper in atmospheric conditions. The growth of the cuprite film goes from an initial nanometric
thickness to heterogeneous layers of the order of several tens of microns in thickness after years or
decades of atmospheric exposure, giving rise to more compact and protective layers. The color of the
cuprite patina changes from an initial appearance of metallic luster into a dull brown, depending on
the exposure conditions [6].

The aqueous deposit on the cuprite surface may give rise to an oxidation process according to
the reaction:

Cu2O + 2H+ → 2Cu2+ + H2O + 2e− (5)

According to Fitzgerald et al. [4] this cuprite oxidation process must be slower than copper
oxidation, otherwise the cuprite layer would disappear.

Some studies report the rapid initial formation of tenorite (CuO) [19], but this is an unstable
compound and would quickly be transformed into other more stable compounds [6]. In fact, tenorite
does not usually appear among the corrosion products of copper exposed to the atmosphere, whereas
cuprite always does [24].

Cuprite crystals of a submicrometric size are initially formed and over time grow and acquire
a characteristic cubic–octohedral appearance with highly symmetrical cubic crystals [48]. Figure 7
shows the formation of cuprite crystals on the copper surface when the metal is exposed for 3 months
in the marine atmosphere with the lowest chloride deposition. In the right-hand area of Figure 7a it is
possible to see among the cuprite crystals the initial formation of basic copper chlorides (according to
the presence of chlorine in the energy dispersive X-ray spectrometry analysis), which will be analyzed
in greater detail below.

The relatively low chloride concentration in this atmosphere and the short length of time
that has passed means that the formation of basic chlorides is still very incipient. In fact, in the
corresponding photograph of the specimen (Figure 5b) the characteristic turquoise blue coloring of the
basic chlorides is barely perceptible and the color is predominantly of a reddish tone corresponding to
the cuprite crystals.
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4.2. Interaction of the Cuprite Layer with Marine Aerosol

In marine atmospheres the formation of chlorinated corrosion products takes place, depending on
the concentration of chloride ions from the marine aerosol. These corrosion products form locally and
grow on the surface of the cuprite film. They are relatively stable and have little solubility, ultimately
giving rise to a patina of a turquoise blue color with protective characteristics.

In laboratory studies involving the interaction of copper with airborne chloride ions at different
RH levels, Strandberg and Johansson [19] find that depending on the pH and the chloride concentration
in the aqueous layer, Cu+ ions can precipitate:

(a) as nantokite (CuCl):
Cu+ + Cl− → CuCl (6)

(b) as cuprite (Cu2O), by the reaction of the cuprous ions with the hydroxyl ions from the cathodic
reaction, as indicated in reaction (4) or

(c) form chlorinated complexes of Cu+:

CuCl + Cl− → CuCl2− (7)

Both nantokite and the chlorinated complexes of Cu(I) oxidise in the presence of moisture with
dissolved oxygen, giving rise to the formation of basic copper chlorides (Cu2(OH)3Cl) of a turquoise
blue coloring.

3CuCl + 3/4O2 + 3/2H2O→ Cu2(OH)3Cl + Cu2+ + 2Cl− (8)

3CuCl2− + 3/4O2 + 3/2H2O→ Cu2(OH)3Cl + Cu2+ + 5Cl− (9)

If a cuprite patina previously exists, its interaction with the marine aerosol is also an
electrochemical corrosion process, which is initiated by the breakdown of the passive cuprous oxide
film, giving rise to the formation of soluble chlorinated complexes of Cu+ [19,49].

1/2Cu2O + 2Cl− + H+→ CuCl2−+ 1/2H2O (10)

The oxidation of Cu+ (reactions (4) and (6)) close to the anodic areas implies a drop in pH due
to the acidity of the Cu(H2O)4

2+ ion and the high activity of the Cl− ion. This contributes to the
breakdown of the passive oxide film and accelerates anodic dissolution [49].

The nantokite initially formed (reaction (6)) is only stable in acid conditions and in the
absence of oxygen and moisture (dry conditions). This explains its rapid transformation into
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other chlorinated products and that when present in the corrosion product layer formed on copper
exposed to the marine atmosphere it is usually found in local areas (pockets) below the cuprite
film [11,19], often making it difficult to detect. According to Leygraf et al. the relatively unstable
nantokite crystals act as seed crystals for the formation of Cu2(OH)3Cl polymorphs through many
subsequent dissolution-ion-pairing-precipitation steps [6]. These polymorphous compounds present
a significantly larger molar mass and hence volume than the nantokite crystals from which they
originate. The formation of these compounds, with a certain protective effect, means that the base
copper corrosion rate decreases as exposure time advances (see Table 3).

With regard to the presence of nantokite in the patinas formed on copper exposed to marine
atmospheres, this compound has been detected in a number of studies [6,11,14,15,19,28,29]. One of
these refers to work carried out in the International Cooperative Programme (ICP) Materials/UNECE
(United Nations Economic Commission for Europe) framework [14,15]. Although this study was not
addressing the behavior of copper in marine atmospheres, some of the 39 testing stations considered
presented a certain chloride content in the rainwater. XRD analysis of the corrosion products formed
in up to eight years of exposure never indicated the presence of tenorite (CuO) on specimens exposed
in sheltered or unsheltered conditions, but always detected the presence of cuprite. With regard to
the presence of nantokite, this was never found on unsheltered specimens, as in our study, but was
encountered on sheltered specimens (less exposed to marine aerosol), though in a very low proportion.
The rapid transformation of unstable nantokite into basic copper chlorides (Cu2(OH)3Cl) (reaction [9])
was the reason why it was not found on unsheltered specimens. The proportion of basic copper
chlorides in the patinas formed was a function of the chloride concentration in the rainwater.

4.3. Formation of Basic Copper Chlorides

The copper corrosion rate in this type of atmospheres is a function of chloride deposition and
exposure time (Table 3). The corrosion rate may be very high at sites close to the seashore, but as
exposure time advances it drops considerably due to the protective effect of the basic chloride patinas
that form on the cuprite film, sealing its inherent porosity (see Figure 7b). These turquoise blue films
formed on top of the cuprite may come to completely cover it (Figure 5d and Table 5) [28].

At sites further away from the seashore, where the chloride deposition rate is much lower,
the copper corrosion rate is also reduced, and similarly decreases with exposure time (Table 3).
The patinas formed show a lower presence of basic chlorides, with fairly small coverage percentages
(Figure 5c and Table 5).

As in other studies carried out in pure marine atmospheres [18], the proportion of cuprite
decreases as exposure time advances and the basic chloride content in the patinas formed increases
(see Table 5). The basic chlorides formed: botallackite, atacamite and clinoatacamite, polymorphs
with the formula Cu2(OH)3Cl, present fairly similar formation energies of −1322.6, −1339.2 and
−1342.8 kJ/mol, respectively. The first phase to crystallize is botallackite, which is the least
stable. It then rapidly recrystallizes to the other two polymorphs, atacamite and clinoatacamite,
whose formation energies are fairly similar. In laboratory research carried out by Pollard et al. [39]
it was seen when varying the chloride concentration in the solution that botallackite was the phase
which formed at low chloride concentrations. When the chloride concentration was raised, botallackite
recrystallized to atacamite. At high chloride concentrations atacamite formed and in turn recrystallized
to clinoatacamite, and the transformation rate increased with the chloride concentration, in such a
way that at very high chloride concentrations clinoatacamite was the only phase observed. Strandberg
and Johansson [19], also in laboratory research, did not always detect the presence of atacamite but
always found clinoatacamite. At intermediate chloride concentrations Pollard et al. [39] observed
that the phases found depended on the specific nature of the medium and on the reaction kinetics
(temperature, chloride concentration, etc.). According to Frost [40] the thermodynamic data shows
that the more stable phase is clinoatacamite and the other phases are intermediates in the series of
reactions with the end product being clinoatacamite.



Metals 2018, 8, 866 13 of 19

An analysis of the XRD results obtained in our study allows us to know the nature of the phases
in the patinas formed as a function of the atmospheric chloride deposition rate and the exposure
time. Table 6 summarizes the results obtained in the testing stations with highly different salinity
levels. Analysis of this table clearly shows how the cuprite content decreases (and in parallel the
proportion of basic chlorides increases) as exposure time advances. With regard to basic chlorides,
those corresponding to botallackite are much lower than the other two polymorphs due to their poorer
stability, and lower contents are also seen after longer exposure times in the marine atmospheres with
the highest salinity levels, perhaps due to the increase in their transformation rate to Cu2(OH)3Cl
with the chloride concentration in the aqueous layer. The clinoatacamite contents in the patinas are
lower than the atacamite contents which suggests an incomplete transformation of atacamite into
clinoatacamite. As the chloride deposition rate rises and the exposure time advances, the clinoatacamite
contents in the patinas formed tend to increase.

Table 6. Proportions (wt %) of the different phases integrating the patinas formed on copper in different
atmospheric exposure conditions.

Test Site
Chloride Deposition

Rate (mg/m2·d)
Time of Exposure

(Months)
Cuprite

Basic Copper Chlorides

Botallackite Atacamite Clinoatacamite Total

2 430
3 72.0 7.3 11.4 9.3 28.0
6 70.2 1.7 18.5 9.6 29.8
12 60.6 1.1 23.9 14.4 39.4

6 120
3 72.7 2.4 17.0 7.9 27.3
9 65.9 2.5 20.6 11.0 34.1
12 61.7 3.6 22.2 12.5 38.3

With regard to the location of the different phases in the patinas formed, it may be interesting to
analyze the XRD data presented in Table 7, obtained on the same specimens with two techniques at
different analysis depths: conventional XRD and grazing angle XRD (GIXRD).

Table 7. Quantification (wt %) of the different phases formed on copper by conventional XRD
and GIXRD.

Test Site
Chloride

Deposition
Rate (mg/m2·d)

Time of
Exposure
(Months)

XRD
Technique Cuprite Botallackite Atacamite Clinoatacamite Copper Signal *

1 1640 9
conventional 64.4 1.1 21.9 12.6 37.4

GIXRD 25.5 1.3 34.9 38.3 ND

2 430 12
conventional 60.6 1.1 23.9 14.4 64.5

GIXRD 16.6 3.9 27.3 52.2 ND

3 230 12
conventional 61.7 1.7 20.8 15.8 76.0

GIXRD 35.3 2.5 31.6 30.6 ND

6 120 12
conventional 61.7 3.6 22.2 12.5 69.6

GIXRD 50.6 4.9 26.8 17.7 2.3

ND—Not detected; * The quantification of the base copper signal obtained in the X-ray diffractogram has been
performed prior to normalization of the diffractogram.

It can clearly be seen how the cuprite signal decreases considerably when GIXRD is used, which is
obvious as this phase is the innermost in the patina formed on copper. Similarly, the copper signal is
not detected in the diffractogram, which indicates that the X-ray penetration has not generally reached
the copper substrate. A weak signal of the base copper is only detected with the thinnest patina formed
in the atmosphere with the lowest chloride deposition rate (station 6). With regard to the other three
phases, botallackite, atacamite and clinoatacamite, these are located in the upper strata of the patina,
and it may be suggested that the clinoatacamite phase is the outermost due to the greater increase in
its proportion found when using the grazing angle technique. It may be speculated that the other two
phases, botallackite and atacamite, are located at intermediate depths, as their contents in the patina
obtained by the two XRD analysis techniques are not so different as in the case of the clinoatacamite
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phase. The smaller size of the atacamite phase crystallites in comparison with the clinoatacamite phase,
as deduced from the XRD peak profile analysis, reinforces this hypothesis.

The formation of basic chlorides gives rise to superposed layers over the innermost cuprite layer.
The superposed lamina structure is easily observable in the cross section in Figure 8a, and in the surface
observation of the patina in an area close to the detachment of the basic chloride layer (Figure 8b),
which allows the cuprite crystals in the innermost region to be seen.
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4.4. Flaking of Basic Chloride Layers Present on the Cuprite Film

As noted by Graedel et al. [3], the patinas formed on copper are chemically and structurally
complex. They do not have a uniform surface but are spatially heterogeneous, porous and therefore
possess the capacity to retain moisture, rainwater and atmospheric pollutants [50]. The inner cuprite
layer is not uniform, is highly porous and rich in defects. The outer patina presents a laminar structure,
is also porous and presents poor adhesion.

With regard to the basic chlorides formed on copper in marine atmospheres, these grow in a
disorderly fashion, with numerous imperfections (voids, defects, etc.). Depending on the atmospheric
chloride deposition rate they can come to completely cover the inner cuprite film, as has been seen
above, providing the patinas with a certain protective ability. The entry of chloride ions through
defects in the patina can cause localized attack of the base copper (Figure 9).

The outer patina of basic chlorides tends to crack and flake off the cuprite film as a
consequence of its weak internal adhesion. This flaking phenomenon has been observed by several
researchers [6,28,29,51], especially in severe marine atmospheres. Zhang et al. [29] attribute flaking
to the presence of nantokite on the cuprite surface and its transformation into basic copper chlorides,
confirming this by Fourier-Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. They also
note as a contributing factor the greater volume of basic chlorides that induces physical stresses in the
interior of the patina.

This flaking phenomenon has also been observed in our study, also especially in the marine
atmospheres with high chloride deposition rates. Figure 10a shows the flaking process that has taken
place in the patinas formed on copper exposed for nine months at station 1, with the highest chloride
deposition rate. It is clearly seen how the basic chloride layer has undergone cracking and flaking-off
(Figure 10b), leaving the internal cuprite region uncovered (Figure 10c). Energy-dispersive X-ray
spectroscopy (EDS) analysis in both regions confirms the nature of both: an outer patina integrated by
basic chlorides and an internal patina of cuprite.
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As has already been mentioned, in this study we have not been able to detect the presence of
nantokite in the corrosion products formed on copper exposed to the marine atmospheres. This is
not surprising, since as has been noted throughout the paper nantokite is not stable in humid
environments. However, in contrast it is stable in acid environments and in the absence of oxygen and
moisture (dry conditions), and thus in the exposure of copper in marine atmospheres it will rapidly
be transformed into the Cu2(OH)3Cl polymorphs, and nantokite will go unnoticed in XRD analysis.
However, what is beyond all doubt is the remarkable increase in the molar volume of copper chlorides
compared to cuprite [37] (see Table 8). The greater average molar volume of the basic copper chlorides
would in itself explain the enormous physical stresses developed at the cuprite/basic copper chlorides
interface which would lead to the cracking and flaking off of the loosely adherent turquoise blue
colored outer patina preferentially integrated by the latter.

Table 8. Molar volume of the different phases that usually form on copper when exposed to marine
atmospheres [37].

Corrosion Product Molar Volume (nm3)

Cuprite (Cu2O) 0.078
Nantokite (CuCl) 0.160

Botallackite (Cu2(OH)3Cl) 0.200
Atacamite (Cu2(OH)3Cl) 0.377

Clinoatacamite (Cu2(OH)3Cl) 0.380
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5. Conclusions

From the results obtained in this research, the following main conclusions may be drawn:

- The copper corrosion rate may initially (three months of exposure) reach very high values
(11.70 µm/year) at sites close to the seashore (332 m), notably decreasing further inland
(1250 m) in the studied coastal region (4.29 µm/year). The corrosion rate also decreases as
the exposure time advances. After 12 months of exposure, corrosion rates decrease to 4.21 and
1.74 µm/year, respectively.

- The patinas formed on copper are comprised by the following phases: cuprite (Cu2O) and the
polymorphs of basic chlorides (Cu2(OH)3Cl): botallackite, atacamite and clinoatacamite. Due to
the instability of nantokite (CuCl) it was not possible to identify this phase by XRD.

- The greater or lesser coverage of the cuprite film by basic chlorides (pleasant turquoise blue
appearance) depends on the atmospheric chloride deposition rate and the exposure time of
copper in the coastal atmosphere. In the atmosphere with the highest chloride deposition rate
(1640 mg/m2/day) the coverage percentage after three months of exposure already reached 80%,
arriving at 100% coverage after one year of exposure. In contrast, for lower atmospheric salinity
levels (~100 mg Cl−/m2/day) the coverage percentage was very low (1–4%) and the patina
formed maintained the characteristic reddish color of the cuprite film.

- Information obtained by GIXRD confirms the location of the cuprite phase in the innermost
region of the patina. In view of the greater relative increase in the proportion of clinoatacamite
encountered when using GIXRD, compared to the proportions found with conventional XRD,
it may be speculated that this phase preferentially comprises the outermost region of the
patina. Moreover the smaller size of the atacamite phase crystallites, as deduced from the
XRD peak profile analysis, suggests that this phase is preferentially located in intermediate strata
of the patina.

- At high chloride deposition rates in the marine atmosphere, the outer patina of basic chlorides
cracks and flakes off locally, making it possible to observe the inner cuprite film. The greater
average molar volume of the basic chlorides compared to cuprite would in itself explain the
physical stresses developed at the cuprite/basic copper chlorides interface, which would lead
to the cracking and flaking off of the loosely adherent outer patina preferentially integrated by
the latter.
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