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Abstract: Background: Creep-fatigue phenomena are complex and difficult to model in ways that
are useful from an engineering design perspective. Existing empirical-based models can be difficult
to apply in practice, have poor accuracy, and lack economy. Need: There is a need to improve on
the ability to predict creep-fatigue life, and do so in a way that is applicable to engineering design.
Method: The present work modified the unified creep-fatigue model of Liu and Pons by introducing
the parameters of temperature and cyclic time into the exponent component. The relationships
between them were extracted by investigating creep behavior, and then a reference condition was
introduced. Outcomes: The modified formulation was successfully validated on the materials of
63Sn37Pb solder and stainless steel 316. It was also compared against several other models. The results
indicate that the explicit model presents better ability to predict fatigue life for both the creep fatigue
and pure fatigue situations. Originality: The explicit model has the following beneficial attributes:
Integration—it provides one formulation that covers the full range of conditions from pure fatigue,
to creep fatigue, then to pure creep; Unified—it accommodates multiple temperatures, multiple
cyclic times, and multiple metallic materials; Natural origin—it provides some physical basis for the
structure of the formulation, in its consistency with diffusion-creep behavior, the plastic zone around
the crack tip, and fatigue capacity; Economy—although two more coefficients were introduced into
the explicit model, the economy is not significantly impacted; Applicability—the explicit model is
applicable to engineering design for both manual engineering calculations and finite element analysis.
The overall contribution is that the explicit model provides improved ability to predict fatigue life for
both the creep-fatigue and pure-fatigue conditions for engineering design.

Keywords: creep fatigue; pure fatigue; economy; engineering design

1. Introduction

Creep-fatigue damage is defined as the damage caused by reversed loading at elevated
temperatures, hence combines the effects of fatigue and creep. This is a complex process since
fatigue and creep behaviours are based on significantly different mechanisms at the microstructural
level. Observationally, fatigue occurs via cracks through the grains, while creep involves the grain
boundary cracking [1]. The creep-fatigue phenomenon is relevant to a wide range of industries, such as
aerospace, naval, nuclear and industries [2], hence cannot be ignored in engineering design.

1.1. The Design-Based Method

To provide an easier method for engineering practitioners to evaluate fatigue behaviour,
a design-based method was proposed by Marin (Equation (1)) [3]:

Se = kakbkckdkek f S′e (1)
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where Se is the endurance limit at the critical location of a machine part in the geometry and condition
of use, S′e is the rotary-beam test specimen endurance limit, ka is the surface condition modification
factor, kb is the size modification factor, kc is the load modification factor, kd is the temperature
modification factor, ke is the reliability factor, k f is the miscellaneous-effects modification factor.

Engineering designers typically use this simple equation to determine the acceptable fatigue stress
in a part. This modified endurance limit is based on the endurance limit at the reference condition and
several multiplicative factors for surface condition, part size, type of load, operating temperature, etc.
The only mechanical property included here is the endurance limit. This property can be related to
ultimate tensile strength, such as the values of the endurance limit for steels are half of the ultimate
tensile strength [4]. Therefore, the benefits of this approach (Equation (1)) are ease of use since the
tensile strength is readily known or easily measured. The detriments of this approach are that it only
includes temperature effect when creep is active, and the fatigue evaluation is merely an approximation.
Furthermore, all the modification factors have to be determined experimentally. Some degree of creep
may be accommodated in the temperature factor, but the equation does not present a robust treatment
for creep-fatigue.

Although the design-based method (Equation (1)) is simple enough for engineering practitioners,
the poor accuracy is of concern. In addition, the consideration of multiple effects (such as shape,
size and surface) is redundant if engineers merely aim to select materials. However, making further
improvements to this formulation would not seem to be a viable way forward, since this numerical
structure is only one of convenience rather than representing any deeper mechanics at the material
science level.

There is a need for a more robust design method for creep-fatigue. Ideally such a method would
have a formulation that directly related applied stress to life, included macrostructural rather than
microstructural properties, and was economical to validate. The various attempts at addressing this
problem are reviewed below.

1.2. The Conventional Empirical Methods

For mechanical design, a pre-evaluation of fatigue life (or damage) is normally applied at the initial
stage of design to make a material selection or structural optimization. Normally, in the creep-fatigue
situation, the total damage is numerically evaluated through the theory of damage accumulation and
conventional-fatigue-based formulations. However, they present significant limitations.

Specifically, the creep-fatigue evaluation based on damage accumulation is normally conducted
by the linear damage rule [1,5] or crack growth law [6], wherein the fatigue damage and creep damage
are evaluated separately and then are numerically added. However, this is untrue to the physics
of failure in that the fatigue and creep effects are not independent. Rather the effects compound
each other. Existing methods based on summation of fatigue damage and creep damage ignore the
interaction between fatigue and creep, and thus result in less reliable findings. Although the improved
representations of creep and fatigue components have been proposed in the literature, such as the
non-linear accumulated damage models for creep [7,8] and fatigue [9,10], the issue caused by ignoring
the interacted effect of fatigue and creep is still not fundamentally solved.

In addition, the conventional formulations typically assume a power–law relationship between life
and applied loading, as evident in the Basquin equation [11,12] and Coffin–Manson equation [13,14].
Although this approach is simple, the coefficients need to be recalculated with changed temperature
and/or frequency. Hence, this makes the design process inefficient and expensive because a large
number of empirical data are required and must be re-fitted for each condition. To improve this
limitation, others have attempted to introduce the variables of temperature and frequency into modified
models, resulting in the Coffin-Manson-based creep-fatigue models proposed by Solomon [15], Shi [16],
Jing [17] and Wong & Mai [18], and the Basquin-based creep-fatigue models developed by Kohout [19]
and Mivehchi [20]. However, these models may only be applied at the situations for which they were
derived. They do not represent the creep-fatigue behaviour for other materials, hence the formulations



Metals 2018, 8, 853 3 of 32

cannot present a unified characteristic. Furthermore, these models are determined by curve fitting,
the accuracy of which is strongly determined by the number of empirical datum points. This results
in poor empirical economy. Consequently, the conventional-based creep-fatigue models are severely
limited in their applicability to engineering design.

1.3. Models Based on Observation of Microstructural Damage (Mechanism-Based)

The curve-fitting method, which is applied to build the Basquin-based and the Coffin–Manson-based
models (Section 1.2), provides the simplest process to construct a numerical model, and thus is
well-accepted in the field of mechanical engineering. However, from the perspective of material science,
the fatigue models ideally should be constructed through observations of physical phenomena (such as
the crack growth, diffusion creep, and void growth). This approach has resulted in the development of
several mechanism-based models. These models are variously based on micromechanical cyclic void
growth [21], partition of energy and micro-crack growth [22], and multistage fatigue theory [23].

These models are attractive because they relate physically measureable microstructural properties
to life or total damage. Some of these models already include the ability to accommodate multiple
forms of damage (including creep, fatigue, or oxidation), and represent both creep and fatigue in
one formulation. However, this class of models suffers from limitations from the perspective of an
engineering designer:

• They relate to life evolution in some way, but often not in ways that are accessible to engineering
design. This is a particular limitation of the damage models.

• The mechanism-based models need to be validated. They require the measurement of microstructural
parameters of damage. This information is not readily available to design engineers, certainly not
at the onset of design. Also, designers do not select materials based on microstructure, but rather
on mechanical properties. Furthermore, microstructural data are also not easily available during
the service life of the part without resorting to destructive testing.

• They have abstract mathematical formulations that are not easy to conceptualise, and are difficult
to apply to design.

• They typically have multiple coefficients in power law formulations, and each equation has
sub-coefficients that can only be determined empirically by fitting.

• They are not convenient for mechanical design. For example, for the material selection at the
initial stage of design, it is not easy to investigate and determine the microstructural damage
caused by fatigue, creep and oxidation. It is also not reasonable to assume multiple materials
have the same damage. However, for the empirical-based models, the fatigue evaluation can be
conveniently calculated through inputting the temperature, frequency, and applied loading.

From the perspective of mechanical engineering design, it is desirable that a creep-fatigue model
should have a clear structure that is understood by engineering practitioners, include the general
variables at the engineering scale (such as temperature, time, and loading), include parameters that
are measureable or knowable, and be easily mathematically solved. This is not the case for the
mechanism-based models. Furthermore, material standards are invariably based on assurances of
mechanical properties and element composition, not on microstructural properties. Hence, while
designers may be interested in microstructure, they cannot rely on in their specifications.

1.4. Extension of the Empirical Models

As mentioned in Section 1.2, the damage-accumulation-based models ignore the interaction
between fatigue and creep. The microstructural interactions between creep and fatigue are beginning
to be understood at a qualitative level, e.g., [24]. Various mathematical expressions for this interaction
are also available, with some (albeit limited) basis in microstructure or loading partitioning, e.g., [25,26].
Hence a possible way to move the field forward from a materials and design perspective is to further
improve the conventional Coffin–Manson-based creep-fatigue models.
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A recent development in that direction has been the development of a model that includes
temperature, cyclic time, applied loading, and with applicability to multiple (metallic) materials [27].
This ‘unified’ model takes the form of a mathematical representation of plastic strain with functions
including empirically determined coefficients:

εp = C0c(σ, T, tc)N f
−β0 (2)

with
c(σ, T, tc) = 1− c1(σ)

(
T − Tre f

)
− c2 log

(
tc/tre f

)
T − Tre f =

{
T − Tre f f or T > Tre f

0 f or T ≤ Tre f

tc/tre f =

{
tc/tre f f or tc > tre f and T > Tre f

1 f or tc ≤ tre f or T ≤ Tre f

(3)

where εp is the plastic strain which reflects fatigue capacity, N f is the creep-fatigue life, C0 and β0

are the fatigue ductility coefficient and fatigue ductility exponent respectively, which are related to
fatigue capacity at the pure-fatigue condition, T is the temperature, tc is the cyclic time which presents
the reciprocal of loading frequency, c1(σ) is the stress moderating equation which reflects the creep
effect caused by the applied loading, c2 is the constant, and σ reflects the applied loading which can be
related to plastic strain through the cyclic strain-stress relation.

The equation also includes the concept of a reference condition. Here Tre f is the reference
temperature, which is defined as 35% of the melting temperature, tre f is the reference cyclic time
which is suggested as a small value of 1 s.

The limitations presented by the existing Coffin–Manson-based models are improved by this
model. The improvements are that: the structure includes the parameters of typical engineering
problems, is easily mathematically solved, may be applied in multiple situations on multiple metallic
materials, and covers the full range of conditions from pure fatigue to creep fatigue and then to pure
creep. In particular, the model provides a more economic method for fatigue-life prediction since less
empirical data are required than other empirical methods such as [15,17]. In addition, the model is
applicable for engineering design at the initial stage through combining with finite element analysis
(FEA) [28].

Nonetheless from an engineering design perspective, the model has room for improvement.
There is a need to have a representation that can predict fatigue life at a given applied loading (or can
be used to evaluate the critical value of applied loading under a given life). This process of engineering
calculation is applied at the early stages of engineering design, when candidate materials are being
considered in relation to the functional requirements. Furthermore, it is necessary to represent the full
range of fatigue, creep-fatigue, and creep conditions. From a design perspective it is essential that any
model is able to be applied using the type of information available to a design engineer (which may be
tentative or incomplete).

1.5. Opportunities for Modifying the Unified Model

There is something of philosophical debate between proponents of the mechanism-based models,
and the empirical models. From the perspective of the mechanism-based models, design ought to be
conducted by detailed examination of microstructure and the determination of multiple material
parameters, some based on properties of the crystal lattice, defect sizes, oxidation factors, and
curve-fitting parameters. The methods are valuable because they can relate say critical crack length to
life. However, they have other limitations as described above. From the perspective of the empirical
models, design ought to be conducted by performing macroscopic tests (no microstructural tests
required) at various environmental conditions, and then curve-fitting to obtain coefficients for a
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formulation. The methods are valuable because they can be highly accurate, and they readily relate
loading to life. However, they have other limitations as described above.

Both methods have strengths and weaknesses. Proponents of the different schools of thought
tend not appreciate the approach taken by the other, which is strange since both rely on fitting
of many coefficients, and formulations encapsulating many assumptions. In the longer term the
mechanism-based models may prove to be superior, if they can eventually link the physical features of
the virgin and damaged microstructure to life, using parameters that are easy to measure and available
at design time. However, at present, the empirical models are superior, at least for engineering design
purposes. Hence the further improvement of the existing models is still worthwhile attempting from
an engineering perspective.

The development of the unified creep-fatigue model [27] was based on an assumption, which
is the change rate (β0) of applied loading to fatigue life is constant for different temperatures and
cyclic times. Graphically, the curves of applied loading vs. fatigue life at the situations with different
temperatures and cyclic times at the log-log coordinate are parallel. The model applied this assumption
because the slopes of loading-life curves at the log-log coordinate change only slightly among the
situations with different temperatures and cyclic times. Although the accuracy of fatigue-life prediction
is acceptable [27], this assumption still suggests some opportunities for future improvements.

Firstly, the accuracy of the fatigue-life prediction could be further improved. Specifically, although
the influence of temperature and cyclic time to the exponent (β0) is slight, this influence may not be
negligible. However, in the unified model (Equation (2)), this exponent is a constant, not a function of
temperature and cyclic time. This implies that inclusion of this influence may improve accuracy of the
fatigue-life prediction. In addition, the derivation of creep-fatigue-related coefficients was conducted
by applying numerical optimization. This is a curve-fitting-based method, and thus the fitting quality
strongly depends on the number of power series and coefficients.

Such methods generally benefit, as regards fitting accuracy, from provision of higher power
series and more tunable coefficients. There are examples in the literature that specialize in this
approach, and result in exceptionally good fits [15–17]. However, this comes with two significant
costs: (a) parameter non-identification becomes problematic in that multiple different combinations
of parameters give similar results, hence the model becomes degenerate, and (b) it becomes difficult,
even impossible, to link the coefficients to any meaningful parameters of physical properties or
microstructure, hence the ontological power is depleted. Therefore, it is prudent to exercise restraint
when expanding the terms within predictive models. It is preferable to add parameters that have
some basis in physical reality. Consequently, we propose that the unified model might be improved
by introducing new parameters for temperature and cyclic time into the exponent component (β0)
(See Sections 4.3 and 5.2).

Secondly, the description of the pure-fatigue condition could be further improved. Specifically,
the unified model can be restored to the Coffin–Manson equation at the pure-fatigue condition which
is described by the coefficients of C0 and β0. These two coefficients are derived from the empirical
data by numerical optimization. As mentioned above, the assumption may impact the accuracy of
these two coefficients, and thus the quality of pure-fatigue description may be reduced. In this case,
the modification for exponent component (β0) may improve the accuracy of C0 and β0, and then a
better description for pure fatigue might be obtained (see Section 4.4).

In summary, we propose that the unified creep-fatigue model [27] could potentially be further
improved through introducing the parameters of temperature and cyclic time into the exponent
component. This has the potential to improve the accuracy of the fatigue-life prediction for both
creep-fatigue and pure-fatigue conditions.

In the present work, we propose an explicit creep-fatigue model.
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2. Methodology

The present work aims to further improve the unified creep-fatigue model [27]. This new explicit
model should present improved accuracy of the fatigue-life prediction for both the creep-fatigue
and pure-fatigue conditions. We are also mindful of the need to make such models accessible for
engineering design. This has not always been a strong feature of models in the literature. This requires
consideration of the type of information available to designers, and an understanding of what they are
trying to achieve.

To improve the model, we removed the assumption that β0 in Equation (2) is constant, and then
introduced the parameters of temperature and cyclic time into the exponent component. We retained
from [27] the concept that the fatigue capacity is reduced due to active creep behavior, which is
influenced by temperature and time [1,4]. These two elements were included into the unified model
(Equation (2)) through introducing a creep moderating function to the c component in Equation (2) [27].
In the present work the additional change is the introduction of an additional creep moderating
function (a function of temperature and cyclic time) to modify the fatigue ductility exponent (β0).
The numerical relationships among temperature, cyclic time and exponent component were extracted
from the understanding of creep behaviour (diffusion creep). Then, to build a bridge between pure
fatigue and creep fatigue, the reference condition was also introduced. By this way, the exponent
component can be restored to β0 at the pure-fatigue condition.

Creep mechanisms are normally divided into Nabarro–Herring creep, Coble creep, grain boundary
sliding and dislocation creep [1,29]. Nabarro–Herring creep and Coble creep show a strong dependency
on temperature, where the diffusional flow of atoms occurs under conditions of relatively high
temperature. Grain boundary sliding involves displacements of grains against each other. This is a
particularly important mechanism for the creep failure of ceramics at high temperature because of the
glassy-phase formation which provides a good sliding condition along the grain boundary. Dislocation
creep presents progressive disruption through the crystal lattice, which results from both line defects
and point defects, and can occur at relatively low temperature. This process is sensitive to the applied
stress on the material, with a secondary dependency on temperature [1].

Based on the brief description of these four creep mechanisms, the diffusion creep (including
Nabarro–Herring creep and Coble creep), which has strong temperature dependence, is used to
extract the creep effect. (In the Discussion we briefly comment on the effect of ignoring these other
creep mechanisms).

Then, an explicit creep-fatigue model was developed, see Section 3.1. This model was then
validated on the materials of 63Sn37Pb solder and stainless steel 316 (see Sections 4.1 and 4.2).
The coefficients were determined by the empirical data (including pure-creep data and creep-fatigue
data) which were extracted from the literature. Ideally, the creep-fatigue data applied to obtain the
coefficients and applied to validate the model should be extracted from two different literature sources.
However, in the present work the empirical data are limited so, we extracted the empirical data from
one source in the literature, and then the data were divided into two groups. One group was used to
extract the coefficients of this model, and the other group used to validate this model. Hence if the
experiments are conducted by following the experimental standard, the data at one specific condition
(temperature, loading and cyclic time) should not be impacted by the location and operator.

After this, this model was compared with the unified and other models to evaluate the accuracy
of the fatigue-life prediction at creep fatigue and pure fatigue (see Sections 4.3, 4.4 and 5.2), and the
economy (see Section 5.3). In this process, the accuracy of life prediction for both the creep-fatigue and
pure-fatigue conditions is discussed by evaluating the average error and prediction ratio (which
are defined in Sections 3.2 and 3.3). In addition, the unified and integrated characteristics of
the explicit model were investigated. Although the explicit model presents better the fatigue-life
prediction, introducing more parameters into a numerical representation may result in poor economy
for engineering designers because more empirical data may be required. Specifically, for an economical
method for creep-fatigue-life prediction, the coefficients of this model should be obtained by fewer
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creep-fatigue experiments, because conducting creep-fatigue test is an expensive and time-consuming
process. Thus, reduced empirical effect means better economy. This potential issue of economy is
discussed (see Section 5.3).

Finally, the explicit model was applied to engineering design calculation (see Appendix A.1) and
finite element analysis (see Appendix A.2). We provide specific directions for how the model may be
used under both approaches, and the limitations thereof.

This new explicit model was developed with engineering design in mind. In particular, the general
variables at the engineering scale (such as temperature, time and loading) were introduced to this
explicit model, but the variables at the microstructural level (such as crack configuration, damage
size, inter-void spacing, and oxidation) were not included. Although the explicit model still relies on
empirical data, it is not a purely curve-fitting-based model. Specifically, the relationships between
the different variables were derived from the understanding of creep and fatigue behaviours at
the microstructural level, and the formulation was constructed by harmoniously integrating these
relationships. This is not simply a curve-fitting-based process, thus gives an improved method for
life prediction. During the process of engineering design, the coefficients are determined from the
empirical data.

3. The Explicit Creep-Fatigue Model

We introduce the parameters of temperature and cyclic time into the exponent component.
The modification process is presented in Section 3.1, and the method of determining the coefficients is
presented in Section 3.2.

3.1. Development of the Explicit Creep-Fatigue Model

As mentioned in Section 1.4, the previous research applied an assumption that the fatigue ductility
exponent (β0) is constant at different temperatures and cyclic times. Removing this assumption gives
an opportunity to further improve the unified model (Equation (2)). The unified model aimed to
be applied for engineering design, thus the general variables at the engineering scale (temperature,
time and applied loading) were included. However, at one specific temperature and cyclic time,
applied loading does not influence the slope of life-loading curve, thus this parameter is not included
into the exponent component and only the variables of temperature and cyclic time are included.
In addition, according to the concept of fatigue capacity presented in [27], the slopes of life-loading
curves gradually trend to zero with an increased creep effect (elevated temperature and prolonged
cyclic time).

To resolve these issues, we introduce a creep moderating function b(T, tc) to modify the fatigue
ductility exponent, and then is further expanded as the form of ‘1 − x’:

β0 → β0b(T, tc) = β0
[
1− b′(T, tc)

]
(4)

We assume that time and temperature are not convoluted with each other, and thus the overall effect
caused by temperature and time are additive. Later we show that this assumption gives sufficiently
accurate outcomes. Then, function b′(T, tc) is split into a thermal component and a time component:

β0b(T, tc) = β0
[
1− b′1(T)− b′2(tc)

]
(5)

Then, we determine the relationships among temperature, cyclic time and exponent component.
This is achieved through investigating creep behaviour. Specifically, function β0b(T, tc) implies the
rate of fatigue-capacity decreases or increases between different temperatures and/or cyclic times.
This rate can be described by diffusion-creep rate, and described by Fick’s law [30]:

J = −D
dϕ

dx
(6)
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where J is the diffusion flux which shows that the amount of substance flowing through a unit area
at a unit time (thus reflects the diffusion rate), D is the diffusion coefficient, x is the position and ϕ

reflects the concentration of vacancies.
The diffusion process is identified as a thermodynamic system due to the strong driving force

of temperature. In this system, the transfer of atoms and the formation of vacancies are numerically
evaluated by free energy at atomic level [31], and then the equilibrium atomic fraction of vacancies
(Nv) is given by Equation (7):

Nv = exp
(
−

∆G f

kT

)
(7)

where ∆G f is the Gibbs free energy for formation of a vacancy, k is the Boltzmann’s constant and T is
the temperature. In Equation (6), ϕ is defined as the number of vacancies per unit volume, and thus is
related to the atomic fraction by Equation (8):

ϕ =
Nv

Ω
(8)

where Ω is the atomic volume. Therefore, a natural exponential relation between the diffusion flux
and the temperature component can be presented:

J ∝ exp(−1/T) (9)

The expression of exp(1/T) can be simplified to a linear dependence when the temperature is
relatively high enough, which is higher than the temperature where the creep behavior is activated
(normally 0.35 of melting temperature), and usually the case when creep-fatigue is being considered in
an engineering application. This provides a linear relationship, but the coefficient of the temperature
(the slope of this straight line) should be determined from the empirical data. Thus, a linear relationship
between diffusion rate and temperature arises:

J ∝ T (10)

In addition, Equation (9) shows that the diffusion-creep behaviour gives a logarithmical
relationship between temperature and diffusion flux. The definition of ‘diffusion flux’ indicates
that this term measures the amount of substance flowing through a cross sectional area during a unit
time. Thus, a time dependence is included in this parameter in the form of a rate function. Then,
Equation (9) can be presented as:

J =
dDv

dt
∝ exp(−1/T) (11)

where Dv reflects the amount of substance flowing through a unit area. This equation gives a
logarithmical relation between temperature and cyclic time:

T ∝ log(1/t) (12)

Then, the linear relationship of temperature vs. exponent component and the logarithmical
relationship of temperature vs. cyclic time are integrated into Equation (5). The moderating function
b(T, tc) is presented by Equation (13):

b(T, tc) = 1− b1T − b2 log tc (13)

where b1 and b2 are constant and determined by empirical data.
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To build a bridge between pure fatigue and creep fatigue, we introduce the thermal and cycle
time reference condition into Equation (13), then this equation is modified as:

b(T, tc) = 1− b1

(
T − Tre f

)
− b2 log

(
tc/tre f

)
(14)

Finally, the explicit creep fatigue model is given as:

εp = C0c(σ, T, tc)N f
−β0b(T,tc) (15)

with
c(σ, T, tc) = 1− c1(σ)

(
T − Tre f

)
− c2 log

(
tc/tre f

)
b(T, tc) = 1− b1

(
T − Tre f

)
− b2 log

(
tc/tre f

)
T − Tre f =

{
T − Tre f f or T > Tre f

0 f or T ≤ Tre f

tc/tre f =

{
tc/tre f f or tc > tre f and T > Tre f

1 f or tc ≤ tre f or T ≤ Tre f

(16)

3.2. The Method of Determining the Coefficients

The coefficients of the explicit model (Equation (15)) are determined by the empirical data,
including pure-creep data and creep-fatigue data.

3.2.1. Selecting the Reference Condition

The creep damage is assumed to be active above the reference temperature and the reference
cyclic time. The reference temperature is defined as 35% of the melting temperature [32], and the
reference cyclic time is suggested as a small value, nominally 1 s.

3.2.2. Deriving the Coefficients of Function c(σ, T, tc)

The method to derive the coefficients of c(σ, T, tc) proposed in [27] is extended to the present
work. In this case, function c1(σ) and constant c2 are presented by Equations (17) and (18):

c1(σ) = −
c2

PMH(σ)
(17)

c2 =
1

log
(

ta/tre f

) (18)

In Equation (17), PMH(σ) is a function which represents the relationship between the
Manson–Haferd parameter and applied stress (σ). The Manson–Haferd parameter under one specific
stress is numerically presented as:

PMH =
T − Ta

log t− log ta
(19)

where T is the absolute temperature, t is the creep-rupture time, and (log ta, Ta) is the point of
convergence of the log t-T lines. In particular, Ta is defined as the reference time (Tre f ) below which
creep is dormant.

Both Equations (17) and (18) are obtained by the empirical data of pure creep. Specifically, during
creep-rupture tests, the temperatures (T), stresses (σ) and creep-rupture times (t) are recorded. Then,
the relationships between T and log t under different stresses are plotted (Figure 1), wherein the
temperature at the point of convergence is identified as the reference temperature, and the value of
log t at this convergence point (log ta) is given by the average value of the logt(Tre f ) at different stresses.
The value of log t then gives c2.
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According to Figure 1, the Manson–Haferd parameters under different stresses are given, then the
relationship between the Manson–Haferd parameter and applied stress (PMH(σ)) can be obtained
through curve fitting. Then, function c1(σ) is expanded.

3.2.3. Deriving the Coefficients

The remaining coefficients in the explicit model are determined by the empirical data of creep
fatigue. Specifically, during the creep-fatigue tests, the temperatures (T), cyclic time (t), stresses (σ),
plastic strain (εP) and fatigue life (N) are recorded. In particular, with the empirical data of plastic
strain vs. stress, the coefficients (K′ and n′) of the cyclic strain–stress relation under different
temperature-cyclic time conditions are obtained. In the present work, these two coefficients are
applied to describe the engineering quantities-based relationship, and a power-law-based transition
between strain and stress is included. They then are involved in the function c1(σ) for transforming
stress into plastic strain (Equation (20)), and a moderating factor ( fm) is introduced to compress the
stress effect on creep-related damage. We did not separate the whole of applied loading (σ) into
two components. This is because we cannot say one part the applied loading contributes to creep,
and another part contributes to fatigue. Therefore, we defined that the whole of applied loading works
for both fatigue and creep damage.

c1(σ) = −
c2

PMH(σ)
→ c1(εP) = −

c2

PMH
[

fm · K′(T, tc) · εP
n′(T,tc)

] (20)

In the present work, we define fm as a stress-moderating factor which is applied to compress
the cyclic stress to an equivalent constant stress. This moderating factor is related to the shape of the
loading wave, and presents the average level of the cyclic loading. Illustratively, the area below the
contour of the cyclic loading along the time dimension should be equal to the area below the contour
of the equivalent constant loading at the same time period. This is based on an assumption that
creep makes the same contribution to tensile and compressional portions. Although this assumption
may be not appropriate for some materials [33,34], it simplifies the method of extracting this factor.
For example, fm is defined as 0.6366 for the sinusoidal wave and as 0.5 for the triangular wave.

Then, numerical optimisation was applied to derive the coefficients of C0, β0, b1 and b2 by
minimizing the average difference (δa) between the predicted fatigue life (Npre,ij) and the experimental
results (Nexp,ij) (Equation (21)).

δa = ∑
(
log Npre,ij − log Nexp,ij

)2/n (21)
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where n is the number of data, and Nij presents the fatigue life obtained at multiple conditions of
(T, tc)j and strain amplitude i.

3.3. Evaluation of the Explicit Model

The quality of fatigue-life prediction is evaluated by the prediction ratio. Specifically, the prediction
ratio (Equation (22)) gives the ratio of predicted creep-fatigue life to experimental creep-fatigue life:

Hij =
Npre,ij

Nexp,ij
(22)

In the present work, we define that:
An acceptable prediction ratio should be between 0.75 and 1.25.
This range is narrower (more conservative than the range shown in other literature, wherein a

factor of 2 or 1.5 is normally given [25,35,36]. This also can be shown illustratively, where all data
points of Npre vs. Nexp under multiple temperatures and cyclic times should fall between the upper
bound (+25%) and the lower bound (−25%) relative to ideal correlation (H = 1).

4. Validation

The explicit model is validated on the materials of 63Sn37Pb solder and stainless steel 316.
The coefficients are determined by using the method proposed in Section 3.2, where the empirical
data are extracted from the literature. The quality of fatigue-life prediction is evaluated by the method
proposed in Section 3.3.

4.1. Validation on 63Sn37Pb Solder

4.1.1. Deriving the Coefficients

The reference temperature for 63Sn37Pb solder was chosen as 160 K and the reference cyclic time
was defined as 1 s. The creep-rupture data [37] are plotted in Figure 2, and the point of convergence
(Tre f , log ta) is evaluated as (160 K, 8.232). This gives

c2 =
1

log
(

ta/tre f

) =
1

log(108.232/1)
= 0.1215 (23)

and the relationship between stress and the Manson–Haferd Parameter:

− 1
PMH(σ)

= 8.1979× 10−3 + 8.3244× 10−4σ + 6.6651× 10−6σ2 (24)

Then, substituting into Equation (24), function c1(σ) is expressed as:

c1(σ) = −
c2

PMH(σ)
= 9.9586× 10−4 + 1.01122× 10−4 · fm · σ + 8.09657× 10−7 · fm

2 · σ2 (25)

and the magnitude of fm is given as 0.6366 for the sinusoidal wave.
The creep-fatigue coefficients [16] obtained from the literature are tabulated in Table 1. Minimizing

the difference between the predicted creep-fatigue life (Npre,ij) and the experimental creep-fatigue life
(Nexp,ij) yields C0 = 7.790, β0 = 0.858, b1 = 0.000234 and b2 = 0.00596, and returns an average error (δa)
(Equation (21) of 0.000509.
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Table 1. Creep-fatigue data for 63Sn37Pb solder.

Temperature
(K)

Frequency
(Hz)

Cyclic Time
(s)

Creep-Fatigue Coefficients
εp=ε

′

fN
−β
f

Strain-Stress Coefficients
σ/2=K

′
(εp/2)n

′

ε
′

f β K′ n′

233 1 1 2.98 0.773 129.5 0.0652
398 1 1 1.45 0.723 84.026 0.1199
298 0.001 1000 1.01 0.708 90.437 0.1438

Consequently, the coefficients of the explicit creep-fatigue equation for 63Sn37Pb solder are
collected in Table 2:

Table 2. The coefficients of the explicit formulation for 63Sn37Pb solder.

C0 β0 C2 Tref (K) Tref (s) b1 b2 fm δa (log(cycle)2)

7.790 0.858 0.1215 160 1 0.000234 0.00596 0.6366 0.000509
c1(σ, fm) 9.9586× 10−4 + 1.01122× 10−4 · fm · σ + 8.09657× 10−7 · fm

2 · σ2

4.1.2. Evaluation

To evaluate the explicit creep-fatigue model, another groups of creep-fatigue data (Table 3) [16] are
used to compare with predicted fatigue life which is supported by the results shown in Section 4.1.1.

Table 3. Creep-fatigue data for 63Sn37Pb solder.

Temperature
(K)

Frequency
(Hz)

Cyclic Time
(s)

Creep-Fatigue Coefficients
εp=ε

′

fN
−β
f

ε
′

f β

298 1 1 2.28 0.756
348 1 1 1.86 0.743
298 0.1 10 1.57 0.719
298 0.01 100 1.28 0.712
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The prediction ratio (Npre/Nexp) under multiple temperatures and cyclic times are plotted in
Figure 3, where all data points fall between the upper bound (+25%) and the lower bound (−25%).
The upper bound and the lower bound present the prediction ratios are 0.75 and 1.25 respectively.
This implies that the explicit creep-fatigue equation provides a high quality of fatigue-life prediction,
specifically, a relatively high correlation between predicted and experimental creep-fatigue life.   
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4.2. Validation on Stainless Steel 316

4.2.1. Deriving the Coefficients

The reference temperature for stainless steel 316 was chosen as 585 K and the reference cyclic time
was defined as 1 s. The creep-rupture data [38] are plotted in Figure 4, and the point of convergence
(Tref, logta) is evaluated as (585 K, 10.783). This gives

c2 =
1

log
(

ta/tre f

) =
1

log(1010.783/1)
= 0.09274 (26)

and the relationship between stress and the Manson–Haferd Parameter:

− 1
PMH(σ)

= 0.006011 + 7.0286× 10−5σ− 1.1429× 10−7σ2 (27)

Then, substituting into Equation (27), function c1(σ) is expressed as:

c1(σ) = −
c2

PMH(σ)
= 5.575× 10−4 + 6.5184× 10−6 · fm · σ− 1.0599× 10−8 · fm

2 · σ2 (28)

and the magnitude of fm is given as 0.5 for the triangular wave.
The creep-fatigue coefficients [39] obtained from the literature are tabulated in Table 4. Minimizing

the difference between the predicted creep-fatigue life (Npre,ij) and the experimental creep-fatigue life
(Nexp,ij) yields C0 = 7.768, β0 = 0.571, b1 = −0.000225 and b2 = −0.0223, and returns an average error
(δa) (Equation (21)) of 0.00255.
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Table 4. Creep-fatigue data for stainless steel 316.

Temperature
(K)

Strain Rate
(%/min)

Creep-Fatigue Coefficients
εp=ε

′

fN
−β
f

Strain-Stress Coefficients
σ/2=K

′
(εp/2)n

′

ε
′

f K′ K′ n

723 0.4 0.279 0.522 444 0.338
873 4 0.347 0.578 175 0.173
973 40 0.425 0.578 150 0.211

Consequently, the coefficients of the explicit creep-fatigue equation for stainless steel 316 are
collected in Table 5:

Table 5. The coefficients of the explicit formulation for stainless steel 316.

C0 β0 C2 Tref (K) Tref (s) b1 b2 fm δa (log(cycle)2)

0.768 0.571 0.0927 585 1 −0.000225−0.0223 0.5 0.00255
c1(σ, fm) 5.575× 10−4 + 6.5184× 10−6 · fm · σ− 1.0599× 10−8 · fm

2 · σ2

4.2.2. Evaluation

To evaluate the explicit creep-fatigue model, another groups of creep-fatigue data (Table 6) [39] are
used to compare with predicted fatigue life which is supported by the results shown in Section 4.2.1.

The prediction ratio (Npre/Nexp) under multiple temperatures and cyclic times are plotted in
Figure 5, where all data points fall between the upper bound (+25%) and the lower bound (−25%).
The upper bound and the lower bound present the prediction ratios are 0.75 and 1.25 respectively.
This implies that the explicit creep-fatigue equation provides a high quality of fatigue-life prediction,
specifically, a relatively high correlation between predicted and experimental creep-fatigue life.
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Table 6. Creep-fatigue data for stainless steel 316.

Temperature
(K)

Strain Rate
(%/min)

Creep-Fatigue Coefficients
εp=ε

′

fN
−β
f

ε
′

f β

723 4 0.369 0.521
873 40 0.408 0.563
973 0.4 0.246 0.555
973 4 0.470 0.615
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4.3. Accuracy Comparison: Explicit vs. Unified Models

The present work aims to improve the accuracy of the creep-fatigue-life prediction through further
modifying the unified model. Thus, the ability of life prediction by applying the explicit model should
be better than applying the unified model. This is proved through comparing the explicit model with
the unified model on the materials of 63Sn37Pb and stainless steel 316.

Specifically, the explicit formulation removes the assumption applied in the unified creep-fatigue
model (Equation (2)), and then a creep moderating function was introduced into the exponent
component. In this way, the explicit model has better ability to describe creep fatigue. To prove
this, we applied the creep-fatigue data (Table 1 for 63Sn37Pb solder and Table 3 for stainless steel 316)
to extract the coefficients of the unified model (Equation (2)) and the explicit model (Equation (15)).
Then, these coefficients were applied to predict the fatigue life for the situations shown in Table 4 for
63Sn37Pb solder and Table 6 for stainless steel 316. The empirical data, and predicted life given by the
unified model and the explicit model are illustrated in Figure 6 for 63Sn37Pb and Figure 7 for stainless
steel 316.
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Figures 7 and 8 show that life-loading curves given by the explicit model are closer to the empirical
data, thus we conclude that the explicit model has better ability to predict fatigue life at the creep-fatigue
condition. This is also proved by the average errors and prediction ratios (see Equations (21) and (22)
in Sections 3.2.3 and 3.3 for the definitions of the average error and prediction ratio respectively) in
Table 7. In particular, the value of the prediction ratio in Table 7 is represented by a range which is
given by the maximum and minimum prediction ratios of the whole results. This representation is
also shown in Table 8.Metals 2018, 8, x FOR PEER REVIEW  3 of 4 
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Table 7. The average errors and prediction ratios given by the unified model and the explicit model.

Materials
Average Errors (log(cycle)2) Prediction Ratios Range

Unified Model Explicit Model Unified Model Explicit Model

63Sn37Pb solder 0.00177 0.00139 0.80–1.10 0.85–1.05
Stainless steel 316 0.0110 0.00883 0.75–1.20 0.75–1.00

Table 8. Accuracy of prediction regarding the empirical-data number.

Number of Data Groups
to Derive Coefficients

Average Errors for Predicting
Fatigue Life (log(cycle)2) Prediction Ratios Range

Wong & Mai’s
Model Explicit Model Wong & Mai’s

Model Explicit Model

Six groups of data 0.002481 0.001176 0.85–1.00 0.80–1.00
Three groups of data 0.006608 0.01547 1.00–1.10 0.60–1.15

Table 7 shows that the explicit model provides smaller average errors and narrower ranges of
prediction ratio for both the materials of 63Sn37Pb solder and stainless steel 316. This demonstrates
that the explicit model has better accuracy for quantitatively representing creep fatigue.

4.4. The Ability to Describe Pure Fatigue

Both the unified creep-fatigue model and the explicit model can be restored into the
Coffin–Manson equation at pure fatigue. This loading condition is numerically presented by the
coefficients of C0 and β0, thus the accuracy of pure-fatigue description is determined by them. In the
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present work, this ability was evaluated through comparing the predicted life with the empirical data
on stainless steel 316 [39] (Figure 8).

Figure 8 shows that the loading-life curve formulated by the coefficients of C0 and β0 in the
explicit model is closer than the unified model to the empirical data. This is also described by the
prediction ratio. The prediction ratios for these two models is presented in Figure 9. The dotted lines
(bounds) which are labeled by 1, −25%, −50% and −75% in Figure 9 represent the prediction ratios of
1, 0.75, 0.5 and 0.25 respectively.
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Figure 9 shows that the pure-fatigue prediction ratios are around 0.75 for applying the coefficients
of the explicit model, but the prediction ratios are lower, between 0.5 and 0.25, for using the coefficients
of the unified model.

Both Figures 8 and 9 imply that the errors between the empirical data and the predicted life given
by the explicit model are smaller. Therefore, we conclude that the explicit model has better ability to
describe pure fatigue than the unified model.

4.5. General Process of Validation for Other Materials

The explicit model could be further validated through involving more empirical data on more
materials. The general process of validation can be summarised as follows:

(1) Obtain the empirical data for one specific material. The data include pure-creep data and
creep-fatigue data, which could be extracted from the literature, or collected by performing testing.
In particular, the creep-fatigue data under multiple temperatures and cyclic times are divided into two
groups (3 to 4 sub-group data at different temperatures and cyclic times for each group). One group
data (named Group1) are applied to determine the coefficients of the explicit model, and other
group data (named Group2) are applied to compare with the predicted life (evaluate accuracy of the
fatigue-life prediction).

(2) Determine the coefficients of the explicit model. The coefficients are determined by the
method presented in Section 3.2.
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(3) Predict fatigue life. With the coefficients obtained in step 2, the predicted life under the
situations presented in ‘Group2’ are calculated through using the explicit model.

(4) Evaluate the explicit model. The evaluation of the explicit model is conducted by the method
given in Section 3.3. This process is numerically and illustratively presented by the prediction ratios.
If the predicted data satisfy the range of acceptation given in Section 3.3, we can conclude that the
explicit model can be applied on this material to predict creep-fatigue life.

5. Discussion

5.1. The Characteristics of the Explicit Creep-Fatigue Model

The explicit creep-fatigue model was validated on the materials of 63Sn37Pb solder and stainless
steel 316 (see Section 4). This implies that this model has ability to be applied at multiple temperatures
and cyclic times, and the relationships between different variables (temperature, cyclic time, applied
loading and life) in the explicit model are applicable for different materials.

In addition, at the reference (the pure-fatigue) condition (where T = Tre f and tc = tre f ), the explicit
creep-fatigue model can be restored to the Coffin–Manson equation. At the pure-creep condition
(where c(σ, T, tc) = 0), the explicit creep-fatigue model can be reformed as the Manson–Haferd
parameter for creep. Consequently, the explicit formulation recovers both of the standard fatigue and
creep formulations.

Consequently, the explicit model (Equations (15) and (16)) has the following features:

1. Provides one formulation that covers the full range of conditions from pure fatigue, to creep
fatigue, then to pure creep.

2. Recovers the mathematical formulation of both of the standard fatigue and creep formulations
(Coffin–Manson and Manson–Haferd respectively).

3. Accommodates multiple temperatures. Specifically, the explicit model can be applied to predict
fatigue life at situations with different temperatures.

4. Accommodates multiple cyclic times. The explicit model is applied at the cyclic loading without
hold time, thus the cyclic time refers to the period of one cycle of this loading condition. This is a
limitation of this model, which will be discussed in Section 5.4.

5. Accommodates multiple materials. The explicit model was not a purely empirical-based model
because the physical meaning was indirectly introduced into the explicit model. This process
is quite different from the curve-fitting method. Thus, we conclude that the explicit model is
potential able to be applied for multiple materials: we have demonstrated validation for 63Sn37Pb
solder and stainless steel 316. Further validation on different materials is needed: this will be
discussed in Section 5.4.

6. Provides a physical basis for the structure of the formulation. The basis of the c term has been
explained previously [40]. Specifically, diffusion-creep behaviour gives a linear relationship of
temperature vs. loading and a logarithmical relationship of temperature vs. cyclic time. Plastic
zone around the crack tip gives a power-law relation between life and loading. The new b
term is justified on principles of diffusion-creep rate and represents Fick’s law (see Section 3.1).
Both c and b terms were built on the concept of fatigue capacity, which was formulated as
‘1 − x’. This formulation numerically presents the negative effect of creep on fatigue. In addition,
the introduction of the reference condition gives an opportunity to connect pure fatigue with
creep fatigue.

Attributes 1–2 may be considered ‘integrated’ attributes, 3–5 ‘unified’ attributes, and 6 a
‘natural origin’ attribute. Regarding integration, the models based on microstructural features,
e.g., the integrated creep-fatigue theory [41,42], also offer an integrated characteristic. However,
the determination of microstructural variables (such as crack, damage size and inter-void spacing)
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is challenging in the engineering situation. The explicit model is potentially easier to use in the
engineer case.

Furthermore, the explicit model can be restored to the Coffin-Mason equation at pure fatigue
and can be reformed as the Manson–Hefard parameter at pure creep. Both of these two formulations
are conventional engineering models, and can be applied for engineering design without the need of
observations at the microstructural level. This is a positive feature.

By natural origin we do not necessarily mean that the model has a physical basis traceable to
microstructure and mechanical properties. Rather that the formulation of the model is consistent with
existing representations of principles of physics (e.g., laws). We acknowledge that a full connection
of all parameters in the explicit model to measureable variables of microstructure remains elusive.
This limitation applies to all creep and fatigue models.

While there are other creep-fatigue formulations that also have high accuracy, they lack one or more
of the features of the explicit model: they do not have the integrated characteristic; they are typically
accurate only for specific cases (poor unified attribute); or they rely on the inclusion of many coefficients
(typically into power series) which have no natural origin. Many of the competing models are so
over-endowed with coefficients, e.g., [16,18], that they also have the risk of parameter non-identifiability.

5.2. The Ability to Describe Creep Fatigue

The unified model (Equation (2)) presents better ability to predict life at the creep-fatigue
condition. This was proved through comparing the unified model with the existing creep-fatigue
models. For example, the unified model was compared with Solomon’s model [15], Jing’s model [17],
and Wong & Mai’s model [18].

Both Solomon’s model and Jing’s model use fixed coefficients. When they are applied to other
situations, Solomon’s model results in a poor average error (23.96), and Jing’s model cannot give any
numerical solution. Thus, they only can be used in the situations where they were derived, and cannot
be extended to other situations and other materials where there are no empirical data. This is because
these models determine their coefficients by numerical optimisation across all variables (including
temperature, frequency, fatigue life and applied loading). Hence when changing to a different material
it is necessary to recalculate all the coefficients: it is not possible to simply change only some of
the coefficients. However, Wong & Mai’s model has potential to be applied to multiple materials.
This is because this model has seven independent coefficients which are required to be recalculated for
different materials. The accuracy of these models comes at the cost of high specificity of the coefficients,
and the risk of parameter non-identifiability. Also, the coefficients in the power series terms have no
physical identity, but only exist to provide improve mathematical fit.

To allow a comparison with the explicit model, we re-calculated the coefficients for Solomon’s
model, Jing’s model, and Wong & Mai’s model, as follows.

Solomon’s model (Equation (29)) is:

εp = C1(T)
(

N f f k−1
)−β0

(29)

with
C1(T) = c1 − c2T − c3T2 − c4T3 (30)

where T is temperature in ◦C, f is the frequency, N f is the fatigue life, and c1, c2, c3, c4, k and β0 are
constants derived from the empirical data.

Jing’s model (Equation (31)) is:
εp = C2(T)N f

β(T) (31)

with
C3(T) = c4 − c5T + c6/

√
T

β(T) = b3 − b4T + b5/
√

T
(32)
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where c4, c5, c6, b3, b4 and b5 are constant derived from the empirical data.
Wong & Mai’s model (Equation (33)) is:

εp = C0s(σ)c(T, f )N f
−β0b(T, f ) (33)

with

s(σ) =

1 when creep is dormant

exp
[
−
(

σyieldεn′
p

)
/A′

]
when creep is active

c(T, f ) = 1− c1

(
T − Tre f

)
− c2 log

(
f / fre f

)
b(T, f ) = 1− b1

(
T − Tre f

)
− b2 log

(
f / fre f

) (34)

where n′ is cyclic hardening index, σyield is the yield stress, T is the temperature in Kelvin, f is the
frequency, Tre f is the reference temperature below which creep becomes dormant, fre f is the reference
frequency, and C0, β0, A′, c1, c2, b1 and b2 are constant.

We recalculated all these constants, for these three models, for stainless steel 316, and plotted the
results in Figure 10 to compare with the explicit model and empirical data.
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The average errors calculated by Equation (21), for the explicit model, Solomon’s model, Jing’s model,
and Wong & Mai’s model, for stainless steel 316, are plotted in Figure 11:
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Both Figures 10 and 11 show that the explicit model (Equation (15)) has better numerical accuracy
for describing creep fatigue than the models of Solomon, Jing, and Wong & Mai models. For Solomon’s
and Jing’s models, the average error given by these two models are much higher than the explicit model.
This is because the relationships between different variables in these two models were completely
derived from the empirical data of one specific material, thus they cannot be extended to other
materials. However, Wong & Mai’s model presents better ability for life prediction than Solomon’s
and Jing’s models (except the situation of 973 K-4%/min). This may be because Wong & Mai’s model
involves a material property (yield stress), and it also applied a concept that would later be referred to
as fatigue capacity. However, this model has seven independent coefficients which are required to be
determined by empirical data. Consequently, this leads to another issue, that of economy.

5.3. The Economy

The economy is an important factor which is considered during the process of engineering
design [4]. An economical method should provide a good balance between the accuracy and cost.
Although the mechanism-based models may not need any creep-fatigue tests, observing and measuring
microstructure is not a simple and economic process for engineering practitioners. The empirical-based
models are more suited for engineering purposes, hence are the point of comparison for the explicit
model. We selected Wong & Mai’s equation [18] to compare with the explicit model regarding to the
economy, since the Wong & Mai’s equation shows better life-prediction ability than other existing
models (see Section 5.2).

In the present work, empirical data under different temperatures and cyclic times was taken from
the literature (Table 4). The first stage took seven groups of data and split this into a group of six and
one. The six groups of empirical data were applied to derive the coefficients of Wong & Mai’s equation
and the explicit model. Then, these coefficients were used to predict fatigue life at the condition of the
remaining data set (named ‘predicted condition’). The discrepancy was noted.

The second stage repeated this analysis but with three and four groups respectively, and again
the discrepancy was noted. Finally, the average errors and prediction ratios obtained in these two
situations were compared. Thus, it becomes possible to infer how sensitive each model is to the
available quantity of data. A model with better economy would be one where the degradation in
accuracy was less sensitive to the quantity of data.
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The comparison between Wong & Mai’s equation [18] and the explicit model for the accuracy of
the fatigue-life prediction regarding the empirical-data number is shown in Table 8 and Figure 12 for
stainless steel 316.
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Table 8 and Figure 12 show that the Wong & Mai equation gives better accuracy for the
fatigue-life prediction (at the condition of 973 K-0.4%/min) than the explicit model when six groups
of creep-fatigue data are available. This is because the Wong & Mai equation has more independent
coefficients which are extracted through the numerical optimisation (a curve-fitting-based method),
which results in a better fitting quality when enough empirical data are involved [43].

When only three groups of creep-fatigue data were selected to obtain the coefficients, then the
situation changes. The Wong & Mai equation experiences more severe degradation against both
measures: average error and prediction ratio.

In both cases the numerical optimization still yields quite small average errors for fitting for
the Wong & Mai equation. However, poor accuracy results when Wong & Mai’s equation with
the coefficients obtained at this stage is extended to predict fatigue life at the ‘predicted condition’
(973 K-0.4%/min). Specifically, for the Wong & Mai equation, the average error worsens from 0.001176
to 0.01547, and the range of prediction ratio also widens.

The explicit model also degrades, but not to the same extent. Specifically, the average error
is 0.002481 for the coefficients obtained from six groups of creep-fatigue data, and 0.006608 for the
coefficients obtained from three groups of data. Meanwhile, the range of prediction ratio only slightly
changes between these two situations.

Thus, the explicit model shows greater robustness for smaller datasets. This is significant is it
indicates that fewer creep-fatigue experiments are necessary to obtain the coefficients of the explicit
model. As a result, we conclude that the explicit model is the more economical method because less
empirical data are required.

The explicit model was developed through introducing the parameters of temperature and cyclic
time into the exponent component, and thus two more coefficients (b1 and b2) were included. This leads
to a risk that more empirical data are required to obtain high-fitting accuracy. However, Table 8 implies
this risk is not significant. Although the accuracy is reduced if less empirical data are applied to
determine the coefficients, the difference of errors between these two situations is small based on a
log-scale calculation, and the reduced accuracy still provides good ability for life prediction (this was
proved in Section 4).

We suggest that the robustness of the explicit model arises because the parameters and
corresponding coefficients were introduced into the exponent component (modifying the fatigue
ductility exponent) rather than the coefficient component (modifying the fatigue ductility coefficient).
In this case, the process of numerical optimisation for the coefficient and exponent components
was conducted in two relatively separate directions. While this reduced the accuracy somewhat,
it also reduced the risk of parameter non-identifiability. We expect that the economy would worsen



Metals 2018, 8, 853 24 of 32

if the modification was conducted for the coefficient component, since this already has a several
tunable coefficients.

Consequently, we conclude that the explicit creep-fatigue model presents an economical method
for the fatigue-life prediction, and introducing two more coefficients into the exponent component
does not significantly impact the economy.

5.4. Limitations and Implications for Future Research

Limitations that designers need to note are that strictly speaking the method has only been
validated for the materials of 63Sn37Pb and stainless steel 316. However, this explicit model is
potentially usable for other metallic materials. We anticipate difficulties applying this model for
plastics and composites because they present totally different material characteristics and failure
mechanisms. However, it is not impossible that this explicit model may be further improved and
extended to other material categories as more empirical data are included. In particular, nylon is
widely used in the engineering industry for load bearing parts. Thus, it may be an interesting future
project to check and adapt this model to engineering nylon (such as nylon 6).

The explicit model is not yet ideal regarding natural origin as it does not include quantifiable
microstructural properties. To achieve this, it would be necessary to better understand the microstructural
processes of fatigue & creep—especially their interactions—and how those affect plastic strain and
life. Some work is available in this area, e.g., [24], but there is still a long way to go before the values
of coefficients in a creep-fatigue model can be predicted ab initio from microstructural inspection.
In addition, as mentioned in Section 2, the explicit model ignores the dislocation creep and grain
boundary sliding. In this case, introducing these two behaviours to reflect creep effect at high stress
may be beneficial.

Another potential avenue of future research is to continue the process of extending existing
models towards a more complete theory, as has been illustrated here with the redevelopment of the
unified model into the explicit. During the process of development, more microstructural-level-based
parameters may be included, with a corresponding inclusion of new terms into the model. We suggest
that it is worthwhile designing these extensions to include other well-established phenomena, as we
demonstrated in Section 3, rather than merely chasing better accuracy by adding more power terms
and coefficients.

The situation of cyclic loading without hold time (dwell-fatigue) is not covered by the explicit
model. In this loading condition, fatigue makes more of a contribution than creep, because the total
time is too small to produce marked creep damage. However, for cyclic loading with hold time, the
creep effect gradually intensifies as the hold time increases. Then more creep damage is produced than
fatigue damage, and the failure finally occurs due to the creep effect. We could imagine that in the
situation with a relatively short hold time, the explicit model may still present a reasonable prediction
of fatigue life, but the accuracy of this prediction may become worse when the hold time is prolonged.
This implies that the explicit formulation has an opportunity to be further improved to cover the
situation with hold time or relatively long cyclic time. To achieve this, it would seem necessary to
modify the formulation (especially, the creep component in this explicit model) to include new terms
of as yet-unknown mathematical form. Conceptual works, e.g., [24], may be useful in identifying the
basic form of these relationships.

At elevated temperature, the crack surface is oxidized, and then the material becomes more brittle.
This results in further crack propagation. Therefore, the oxidation effect should ideally be included.
The class of models based on observation of microstructure, e.g., [41,42], are superior in this regard
because they can measure the voids and internal damage.

The class of models based on macroscopic empirical testing, to which the explicit model belongs,
lack the microstructural parameters of crack length, oxidation, etc. At least not as primary variables,
but the effects are partly accommodated through other means. In the explicit model, the coefficients
are determined from the empirical data through numerical optimization, thus any oxidation effects are
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incorporated into the fitting process. Although the accuracy of fatigue-life prediction may be impacted,
the results still show acceptable accuracy (see Sections 4.3 and 5.2).

In future work it might be possible to include oxidization in the explicit equation. Superficially
this might involve simply including a power series term. However this may not be entirely successful,
because our observation is that simply adding more terms and coefficients does improve accuracy,
but at the cost of introducing model degeneracy. This has the further consequence of making the model
more highly dependent on the specific situation, i.e., reduces the ability of the model to generalize
to other materials and situations. The challenge is to include the oxidation effect, in a way that is
coherent with how the effect operates physically, and to do so using parameters that are identifiable by
the engineering designer. This opens an opportunity to further improve this engineering-based model.

5.5. Application to Engineering Design and Structural Mechanics

The present work aims to develop a creep-fatigue model for engineering design, thus this section
is included to briefly explain how this model is applied by manual engineering calculations and finite
element analysis at the engineering design process.

Fundamentally, the explicit creep-fatigue model can be used to predict fatigue life at a given
applied loading, or can be used to evaluate the critical value of applied loading under a given life.
This process of engineering calculation is normally applied at the initial stage of engineering design.
For example, the explicit model can be applied to select a material.

In addition, the explicit model can also represent the pure fatigue condition. This is because it can
be restored to the Coffin–Manson equation at the reference condition (T = Tre f and tc = tre f ), which
represents pure fatigue wherein the creep effect is dormant. In this case, this restored equation can
be used to predict the fatigue life or critical value of applied loading at pure fatigue. The accuracy of
pure-fatigue description was demonstrated in Section 5.3, which implies the coefficients of C0 and β0

obtained in creep fatigue can be extended to predict fatigue life at pure fatigue.
The method may be applied to manual calculation or finite element analysis, as shown in

Appendix A.

6. Conclusions

The present work modified the unified creep-fatigue model by introducing the parameters of
temperature and cyclic time into the exponent component. In this way, the accuracy of the fatigue-life
prediction for both the creep-fatigue and pure-fatigue conditions are improved. The explicit model
has the following beneficial attributes: Integration—it provides one formulation that covers the full
range of conditions from pure fatigue, to creep fatigue, then to pure creep. The inclusion of the
reference condition gives an opportunity to connect pure fatigue with creep fatigue. It also recovers
the mathematical formulation of both of the standard fatigue and creep formulations (Coffin–Manson
and Manson–Haferd respectively); Unified—it accommodates multiple temperatures, multiple cyclic
times, and multiple metallic materials; Natural origin—it provides a physical basis for the structure of
the formulation, in its consistency with diffusion-creep behaviour, the plastic zone around the crack
tip, and fatigue capacity; Economy—although two more coefficients were introduced into the explicit
model, the economy is not significantly impacted; Applicability—the explicit model is applicable to
engineering design. This was demonstrated by its application to manual engineering calculations,
and also to finite element analysis.

The overall contribution is that the explicit model provides improved ability to predict fatigue life
for both the creep-fatigue and pure-fatigue conditions.
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Nomenclature

A cross-sectional area
A′ constant
b1, b2, b3, b4 and b5 constants
C0 fatigue ductility coefficient
c1, c2, c3, c4, c5 and c6 constants
D diffusion coefficient
Dv amount of substance flowing through a unit area
E Young’s modulus under consideration
F applied force
f frequency of applied force cycles
fm stress moderating factor
fref reference frequency
∆Gf Gibbs free energy for formation of a vacancy
Hij prediction ratio
J diffusion flux
K′ cyclic strength coefficient
K Boltzmann’s constant
ka surface condition modification factor
kb size modification factor
kc load modification factor
kd temperature modification factor
ke reliability factor
kf miscellaneous-effects modification factor
L length
∆L change of the length
Nexp,ij experimental results of fatigue life
Nf creep-fatigue life
Npre,ij predicted fatigue life
Nv equilibrium atomic fraction of vacancies
n number of data
n′ cyclic strain hardening exponent
PMH Manson–Haferd parameter
Se endurance limit
S′e rotary-beam test specimen endurance limit
T temperature
Tref reference temperature
t creep-rupture time
tc cyclic time
tref reference cyclic time
x position
β0 fatigue ductility exponent
δa average difference
εe elastic strain
εp plastic strain which reflects fatigue capacity
εt total strain
σ applied loading
σyield yield stress
ϕ concentration of vacancies
Ω atomic volume
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b(T, tc) creep moderating function
b′1(T) temperature moderating function
b′2(tc) cyclic time moderating function
c1(σ) stress moderating equation
s(σ) stress function
(logta, Ta) point of convergence of the logt-T lines

Appendix A. Application for Engineering Design

Appendix A.1. Manual Calculation Method for Design

The design engineer needs to determine the coefficients of the explicit equation for the material of interest.
This is achieved by the following steps:

(a) Obtain empirical data for the material of interest. The data needed are pure creep, and creep fatigue.
The pure creep data are generally commonly available in the literature, and if not then the empirical test is not
onerous. The creep-fatigue data may also exist, but if not then a more extensive testing regime is necessary.
This is where the economy of the explicit model is advantageous. In particular, in this process of creep-fatigue
testing, the cyclic strength coefficients (K′) and cyclic strain hardening exponents (n′) under different temperatures
and cyclic times are extracted. Then, the parameters of cyclic strain-stress relation (K′ and n′) are formulated in
functions of temperature and cyclic time (K′(T, tc) and n′(T, tc)) through curving fitting. This is conventional
practice; see Equation (19).

(b) Extract the coefficients of the explicit model using the method shown in Section 3.2. This process involves
numerical optimisation, which may be achieved by using a spreadsheet (e.g., MS Excel® 2013) or other solver.
Numerical optimisation is applied to determine the coefficients of C0, β0, b1 and b2 by minimizing the average
difference (δa) (Equation (21)).

This method involves the following six steps and is shown in Figure A1:

1. Opening Excel® solver: DATA→ Solver
2. Selecting objective: selecting optimum cell in the spreadsheet. In the present work, the cell which shows

average error is selected.
3. Defining optimized condition: defining the criterion of numerical optimization for the value of the optimum

cell. In the present work, the option of ‘Min’ is selected to find the minimum average error.
4. Selecting variables: selecting adjustable cells in the spreadsheet. In the present work, the cells which give

the values of C0, β0, b1 and b2 are selected.
5. Selecting solving method: selecting the numerical optimization algorithm. In the present work, we select

the method of ‘GRG Nonlinear’ which is applied to the smooth-nonlinear situation.
6. Clicking ‘Solve’ to get results.

After this, designers get all the coefficients of the explicit equation. Then this equation can be applied to
predict fatigue life under consideration. This is conducted by the following steps:

(c) Determine loading conditions. They are force (F), temperature (T) and cyclic time (t). These will be
known, or able to be estimated, by the designer.

(d) Determine plastic strain in the geometry under consideration. The plastic strain is determined by a
stress-centric approach (Equation (A1)):

εp = εt − εe =
∆L
L
− σ

E
=

∆L
L
− F

A · E (A1)

where εt is the total strain, εe is the elastic strain, L is the length, ∆L is the change of the length, σ is the applied
stress, E is the Young’s modulus under consideration, F is the applied force, and A is the cross-sectional area.

(e) Calculate fatigue life. With the cyclic strain-stress relation extracted in step (a), the coefficients obtained
in step (b), and the values of temperature, cyclic time and plastic strain given by steps (c) and (d), the fatigue life
is calculated by Equation (A2):

N f =

[
εp

C0c(σ, T, tc)

]−1/β0b(T,tc)

(A2)

Overall, we conclude that this simple process can readily be used to provide a more detailed and accurate
representation of life under creep-fatigue conditions.
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Appendix A.2. Using the Explicit Equation for Finite Element Analysis (FEA)

The conventional method for creep-fatigue in FEA is for the algorithms to determine the plastic strain
in the part, based on the stress and the pure creep loading (strain dependency on applied temperature).
The Coffin–Manson equation (Equation (A3)) is then used to determine the life.

∆εp = ε′f N f
c (A3)

where ∆εp is the plastic strain amplitude, ε′f is the fatigue ductility coefficient and c is the fatigue ductility exponent.
Conventional finite element creep-fatigue simulation is conducted under cyclic loading and elevated

temperature. Generally, this is a complex process. There are two areas where the explicit equation simplifies
the process.

First, the conventional FEA process requires empirical data for the specific loading case. This comprises
a creep test (strain vs. time) for the applied loading. The creep parameters are determined using curve-fitting,
and input to software. There is a need to redo the creep test when the applied loading is changed. In contrast
the explicit method has the following advantages: (a) It merely requires data from a creep rupture test—this is a
simpler test to perform; (b) If the loading changes, say due to modifications in the design conditions (geometry,
temperature, stress, etc.), then there is no need to perform another empirical test nor to recalculate the coefficients.
The explicit equation already includes all the variables for multiple different loading conditions.

Second, the conventional FEA process treats the creep effect as independent to the fatigue induced strain.
Consequently this may result in non-convergence for FEA, and then the analysis settings may need to be
repeatedly modified to attempt convergence. In contrast the explicit method has the advantage of removing the
creep parameters. The creep strain is instead included in an integrated manner with the fatigue formulation.
Consequently non-convergence is less of an issue.
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The benefits of the explicit model is that it provides a method for representing the interaction between creep
and fatigue. Thus, the creep effect may be removed from the simulation and the simpler process of creep-fatigue
life prediction can be applied. Ideally the explicit model would be formulated within the FEA software, but this
is not currently the case. However there is a way to circumvent this problem, which involves adapting the
coefficients of the Coffin–Manson equation to represent the full creep-fatigue behaviour. We illustrate this using
ANSYS® 17.0 (ANSYS, Inc., Canonsburg, PA, USA). We do not show the other parts of the FEA workflow, such as
the setting up of the model and the convergence as we assume the analyst will be familiar with those.

The process is as follows:

(a) Obtain empirical data for the material of interest. See step (a) in Appendix A.1.
(b) Extract the coefficients using the method shown in Section 3.2. See step (b) in Appendix A.1.
(c) Determine loading conditions. They are stress, temperature and cyclic time.
(d) Determine parameters imported into ANSYS® as engineering data. These parameters include the general

material properties (such as yield stress, Young’s modulus and Poisson’s ratio) and the strain-life parameters
under consideration. The general material properties are commonly available in the design handbook.
The strain-life parameters are determined by the following method:
The ductility coefficient (ε′f ) and ductility exponent (c) of the Coffin–Manson equation are given by
the coefficient component (C0c(σ, T, tc)) and the exponent component (−β0b(T, tc)) of the explicit
equation respectively.
The cyclic strength coefficient (K′) and cyclic strain hardening exponent (n′) under consideration are
determined by the relation obtained in step (a).
The strength coefficient (σ′f ) and strength hardening exponent (b) are given by the compatibility equations
(Equations (A4) and (A5)):

σ′f = K′ε′f
n′ (A4)

b = n′c (A5)

(e) Operate FEA. In this process, the thermal effect is removed and the finite element simulation is performed
under the pure-fatigue condition. Finally, FEA gives the fatigue life.

Note that this method may only be applied to evaluate the creep-fatigue life of the part. Specifically,
the resulting stress/strain distribution and deformation shown by the FEA is unreliable, because its algorithms
will not have modelled the creep effect. Nonetheless we believe the life prediction should be robust. However,
this opens an opportunity for future research, where the combination between the explicit model and FEA may be
further improved.

The accuracy of life prediction using the method above is demonstrated by the following example. In this
example, we evaluated the fatigue life for a cylindrical specimen by two different FEA processes. On the one
hand, we conducted simulation with creep effect and thermal condition. During this process, creep-related
parameters were included as the engineering data, and the simulation was operated under cyclic loading at
elevated temperature.

On the other hand, we conducted simulation using the explicit model (using the method above). In this
process, the coefficient and exponent of the explicit model were imported into ANSYS® (Revision 17.0) as the
fatigue parameters in engineering data. Since they already contain the creep effect, the creep-related parameters
and thermal condition are removed from FEA. The fatigue life given by these two methods are shown in Figures A2
and A3.Metals 2018, 8, x FOR PEER REVIEW 29 of 31 
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Figure A3. Fatigue life obtained at the pure-fatigue condition using explicit method.

This example is also summarised in Table A1.

Table A1. Fatigue evaluation by FEA.

Simulation Using Conventional
FEA Methods Simulation Using Explicit Method

Temperature 977 K 977 K but model parameters set to
room temperature

Loading amplitude 100 MPa 100 MPa

Creep parameters Were imported Were removed

Mechanical properties Values at pure fatigue Values at the running condition

Fatigue parameters Parameters at pure fatigue Parameters were obtained from the explicit
model at the running condition

Fatigue life 5257 5081

Table A1 shows that these two life-evaluation processes give similar results (fatigue life), with the explicit
method being slightly more conservative. The explicit method is faster to implement even for a single pass
through the design, and has further time advantages when there are revisions and loops in the design process.
We conclude that combining the explicit model with FEA can reduce the difficulty and complexity of analysis
regarding fatigue evaluation, and speed up the design process. These benefits are particularly attractive early
design stages, when the design is still experimental and the loading conditions are not finalized.
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