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Abstract: Brazing of titanium provides a joining technique suitable for the fabrication of highly-loaded
aerospace components, but it still poses numerous challenges, such as the formation of brittle
intermetallic interphases. This study of the interphase formation in brazed joints consisting of
different titanium alloys (Ti-CP2, Ti-CP4, Ti-6Al-4V, Ti-6Al-2Mo-4Zr-2Sn) and Ag28Cu shows that
complex reactions lead to the formation of various intermetallic phases including a Ti2Cu-TiCu
boundary zone. The compositions of the titanium alloys influenced the particular microstructures,
which have been characterized with various methods including synchrotron X-ray microtomography.
Tensile tests evidence high ultimate tensile strengths that are, importantly, not directly limited by the
strength of the brazing alloy. The strength of the Ti2Cu-TiCu phase boundary is significantly increased
by the alloying elements in Ti-6Al-4V and Ti-6Al-2Mo-4Zr-2Sn and the crack paths change from
boundary failure to transcrystalline fracture through TiCu as well as Ag-rich regions. Cu diffusion
into the titanium substrate, leading to a coarse grained β-phase that transforms eutectoidally into a
lamellar α-Ti + Ti2Cu structure during cooling, occurred in all systems except Ti-6Al-2Mo-4Zr-2Sn
where Mo stabilized a fine grained microstructure and enabled the formation of a columnar
TiCu structure.

Keywords: brazing; titanium alloys; intermetallics; synchrotron tomography

1. Introduction

Brazing is currently being investigated as a joining technique for manufacturing aerospace
components made of Ti alloys [1,2]. This technique is used for joining similar or, importantly,
dissimilar [3,4] metallic parts by melting a brazing solder with a melting point lower than that
of the base materials. Various solders are usually applied for Ti and Ti alloys, in particular
Al-based (e.g., Al-1Mn), Pd-based (e.g., Pd-60Cu-10Co), Ti based (e.g., Ti-15Cu-15Ni) and near-eutectic
Ag-Cu-based alloys [5,6]. The latter are particularly attractive owing to their low melting point,
suitable wetting behavior and relatively high strength [5]. However, complex interfacial reactions take
place as it has been reported in detail by several authors [3,7–10]:

(1) Dissolution of Ti and alloying elements in the solder alloy
(2) Diffusion of Cu from the solder into the base material
(3) Formation of Ti-Cu-rich intermetallic phases
(4) Depletion of Cu in the melt, especially in the vicinity of the base material
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(5) Isothermal solidification of Ag as a consequence of Cu depletion
(6) Precipitation of intermetallic phases from the residual melt
(7) Eutectoid β-Ti→ α-Ti + Ti2Cu reaction in the Cu-enriched diffusion zone

The technological advantages of brazing Ti-based parts can be underlined on the basis of an
example of an aerospace application, in which complex titanium parts are joined using a Ag-Cu solder
for manufacturing a new rotor concept for aero-engines [1]. Here, three titanium-based discs are joined
together in one brazing step. The benefit of this approach is that individual compressor discs can be
machined to final shape, allowing for a higher design freedom before joining to form a monolithic
structure (machining of the complete rotor is not feasible owing to the complex geometry of the part).
Furthermore, the comparatively low melting point (below the β-transus temperature of Ti) of the
Ag-Cu solder does not severely degrade the heat treatment of the individual discs.

The Ti-Ag-Cu system has been previously investigated in connection with the development of
cost-efficient metal matrix composites [11]. For this purpose, SiC fibres were coated with pure Ti or
Ti-6Al-2Sn-4Zr-2Mo (wt. %) and consolidated through infiltration of an eutectic Ag-Cu alloy [12].
In a previous study [11] we found that the composition of the titanium matrix significantly affected
the formation of the intermetallic structure in the transition zone, which in consequence resulted in
different fracture modes. Cracks formed mainly at the intermetallic phase boundaries in the Ti/AgCu
system during tensile deformation, whereas cracks particularly along the columnar intermetallic
structure of the intermetallic phase TiCu were observed in Ti6242/AgCu. Thus, the present work aims
at elucidating the effects of the composition and microstructure of titanium alloys on the formation of
interfacial reactions, and the resulting strength and fracture behavior of joints brazed using a eutectic
Ag28Cu filler alloy.

2. Materials and Methods

Four Ti alloys were chosen for the investigations: Commercially pure Ti, ASTM grade 2 (Ti-CP2),
commercially pure Ti grade 4 (Ti-CP4) with a higher amount of impurities (especially iron and oxygen),
Ti-6Al-4V (Ti64) and Ti-6Al-2Sn-4Zr-2Mo (Ti6242). The maximum concentrations of alloying elements
are summarized in Table 1.

Table 1. Composition of titanium alloys (maximum values according to specification in wt. % [13]
(bal: balance).

Alloy Ti Al V Sn Zr Mo Si N C H Fe O

Ti-CP2 bal. - - - - - - 0.03 0.08 0.02 0.30 0.25
Ti-CP4 bal. - - - - - - 0.05 0.08 0.02 0.50 0.40

Ti64 bal. 6.5 4.5 - - - - 0.05 0.1 0.01 0.30 0.20
Ti6242 bal. 6.5 - 2.25 4.5 2.25 0.01 0.05 0.05 0.01 0.25 0.15

The eutectic alloy Ag28Cu (28 wt. % Cu) purchased from UMICORETM (Brussels, Belgium) with
a melting temperature of 780 ◦C was used as brazing material.

In the brazing experiments, two cylindrical parts (Ø = 11.2 mm, length = 33 mm) of the same
Ti alloy were fixed together with a 80-µm-thick Ag28Cu foil in between, heated in a high-vacuum
(<10−5 mbar) furnace up to ~820 ◦C, held at this temperature for 10 min, and slowly cooled with a
cooling rate less than 1 K/s.

Tensile test samples with a total length of 60 mm, a diameter Ø = 3.5 mm and a gauge
length of 10 mm were machined by turning the brazed rods. Six marking stripes for a laser
extensometer were glued within the gauge length of the samples. The strength of the samples
was determined using a universal electro-mechanical testing machine (Instron POZ1960, Instron,
Darmstadt, Germany), while the elongation was measured with a laser extensometer (P130, Fiedler
Optoelektronik, Lützen, Germany).
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Longitudinal sections as well as fracture surfaces were investigated using a Zeiss Ultra 55 scanning
electron microscope (SEM, Zeiss, Oberkochen, Germany) equipped with energy dispersive X-ray
spectroscopy (EDS).

The fracture surfaces were investigated with a confocal laser scanning microscope ZEISS
LSM 700 with PILine© workstation (Oberkochen, Gemany). The height profiles were analyzed
three-dimensionally according to ISO 25178 using ConfoMap©—3D Advanced Surface Texture module
(Zeiss, Oberkochen, Germany).

X-ray diffraction (XRD) of the fracture surfaces was carried out with a Bruker D8 discover with
Cu Kα radiation and a beam diameter of ~1 mm.

Synchrotron X-ray microtomography (SXCT) investigations of the brazed regions were carried
out at the beamline ID19 of the European Synchrotron Radiation Facility (ESRF) in Grenoble. Samples
of 0.9 × 1.1 × 8 mm3 (x, y, z respectively) were prepared by wire cutting with the joint being oriented
in the x,z-plane. The tomographic scans were carried out at energy of 35 keV. A pco.edge detector
(2560 × 2160 pixels: 845 × 713 µm2) was used to obtain a voxel size of (0.33 µm)3. 8000 projections
were acquired at 0.15 frames/s operating in half acquisition mode to double the field of view of
the detector.

3. Results

We distinguish between three different regions of the brazed samples for the description and
interpretation of the material systems: The chemically unaffected base Ti alloy, a transition zone
consisting of chemically modified base alloy as well as intermetallic phases, and the Ag-rich region.

The intermetallic phases are designated hereafter based on the binary system Ti-Cu, although the
phases can contain significant amounts of Ag (see e.g., phase diagrams of Ti-Cu-Ag [14]) and other
constituents of the Ti alloys.

3.1. Microstructure of the Brazing Joints

A comparison of brazing joint cross sections of the considered material systems (Figure 1)
shows similarities as well as clear differences in the interface formation: Cu from the brazing alloy
participates in the interfacial reactions to form different consecutive intermetallic layers consisting of
Ti-Cu-based phases.
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Figure 1. SEM micrographs of the brazing region for all investigated compounds: Ti-CP2 (a), Ti-CP4
(b), Ti64 (c) and Ti6242 (d). While alloying elements participate in the interface reactions, only phase
designations according to the Ti-Cu phase diagram are presented here for legibility. Typical results of
the EDS analysis are summarized in Table 2.
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The main intermetallic phases observed here are modifications of Ti2Cu, TiCu and Ti3Cu4

according to EDS (See Table 2), which is widely consistent with the layer sequence reported by
Andrieux et al. [9] for Ag28Cu unsaturated with Ti. In our study, Ti2Cu3 was not observed as it can
only be expected for higher temperatures or longer reaction times [8]. The thickness of the layers is
not entirely uniform, with an average of approx. 10 µm for TiCu and 0.5 µm for Ti2Cu, whereas no
continuous Ti3Cu4 layer is formed but regions of up to 7 µm width are recognized.

There is a ~7 µm thick biphasic microstructure between the chemically unaffected base alloy
Ti-CP2 and the Ti2Cu layer (Figure 1a), consisting of α-Ti with fine Ti2Cu lamellae that formed during
cooling from Cu-rich β-Ti [10] region by means of an eutectoid reaction at ~800 ◦C [15,16].

The transition zone in the case of Ti-CP4/Ag28Cu (Figure 1b) appears similar to Ti-CP2/Ag28Cu
and the same sequence of intermetallic layers (Ti2Cu, TiCu and Ti3Cu4) with analogous chemical
compositions (based on EDS, Table 2) was found. However, there is one remarkable difference: Ti-CP4
appears less affected by Cu diffusion into the base material since the eutectoid zone made up of
α-Ti + Ti2Cu is less pronounced and has a completely different structure that will be considered in
detail later.

Table 2. Results of EDS analysis of intermetallic phases in the transition zone (Figure 1) (at. %).

Ti-Alloy Phase Ti Cu Ag Al Mo Zr Sn

Ti-CP2 Ti2Cu 66.0 32.0 2.0 - - - -
TiCu 49.2 47.6 3.2 - - - -

Ti3Cu4 41.1 57 1.9 - - - -
Ti-CP4 Ti2Cu 66.2 31.7 2.1 - - - -

TiCu 49.1 48 2.9 - - - -
Ti3Cu4 41.8 56.3 1.9 - - - -

Ti64 Ti2Cu 62.6 30.8 2 4.6 - - -
TiCu 48.1 48 2.9 1 - - -

Ti3Cu4 41 57.1 1.9 - - - -
TiCu2Al 24.6 65.1 2 8.3 - - -

Ti6242 Ti2Cu 62.4 31.0 1.5 3.7 - 1.4 -
TiCu 49.2 43.3 4 1.3 0.4 0.9 0.9

TiCu2Al 24.7 56.8 2.9 12.0 - 3.2 -

Also for Ti64/Ag28Cu (Figure 1c), a similar configuration of the intermetallic layers is found.
Again TiCu and Ti2Cu are observed but the chemical compositions indicate the presence of Al (Table 2).
Also Ti3Cu4 is detected (not visible in Figure 1), which does not contain a large amount of Al. Moreover,
a second Cu-rich phase with a considerable amount of Al was detected with EDS (~65 at. % Cu,
~25 at. % Ti, ~8 at. % Al, 2 at. % Ag, Table 2). Unlike the other intermetallic phases, its crystal structure
could not be clarified in our study, but it should correspond to the phase TiCu2Al [17,18]. The fine
lamellar eutectoid reaction zone contains V and Cu, although a local discrimination of both elements is
not possible by EDS.

In contrast to the previous systems, Ti6242/Ag28Cu shows a comparatively thick columnar
TiCu-layer. The EDS analysis reveals similar chemical compositions as the Al-enriched phases in
Ti64/Ag28Cu with the addition of some Zr. The phases TiCu and Ti2Cu contain Ag, Zr and Al (Table 2)
and there is an accumulation of Al and also Zr close to the Ag-rich phase (Figure 2), probably also due
to the formation of TiCu2Al.

This phase allows for the incorporation of more Al than Ti2Cu, TiCu, and Ti3Cu4, according to
the phase diagram of the system Al-Cu-Ti [18]. No Ti3Cu4 was detected by EDS point measurements,
and the mapping (Figure 2) also indicates its presence as in the case of Ti64/Ag28Cu.
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Figure 2. EDS mapping of the cross section of the brazing joint Ti6242/Ag28Cu. (a) An Al-rich
phase (marked with arrows, probably TiCu2Al) which also contains Zr can be recognized clearly.
(b) Enrichment with the elements Cu and Mo in separate areas (marked with arrows) can be seen below
the Ti2Cu layer.

3.2. Characterization of Joints by Synchrotron X-Ray Microtomography (SXCT)

The distribution and morphology of the intermetallic phases were examined three dimensionally
by SXCT. A 3D visualization of the joint area of brazed Ti-CP2 is presented in Figure 3 with an
unsegmented tomographic reconstruction showing the brazing region between the two Ti-CP2 parts
is given as a grey-scale cuboid. The main microstructural components in the brazed region are
presented separately in the front: The intermetallic transition zone (grey), the Ag-rich region (white)
and intermetallic particles inside the Ag-rich region (red).
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Figure 3. 3D distribution of microstructural constituents in the brazing region of the Ti-CP2/Ag28Cu
system obtained by SXCT. The cuboid (grey-scale) in the back shows a brazing region between two
Ti-CP2 parts while in the front the constituents are presented separately: Intermetallic layers, Ag-rich
region and intermetallic particles inside the Ag-rich region.

The intermetallic particles in the Ag-rich volume have different morphologies, sizes and volume
fractions depending on the base Ti alloy, despite the fact that the solidification and cooling conditions
during brazing were the same (Figure 4).
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Figure 4. Comparative 3D visualizations of the intermetallic particles embedded in the Ag-rich region
(horizontal cuts of the isometric top view): (a) Ti-CP2/Ag28Cu, (b) Ti-CP4/Ag28Cu, (c) Ti64/Ag28Cu,
(d) Ti6242/Ag28Cu.The Ag-rich region is transparent. The total volume fractions specified here were
determined from volumes of 300 × 300 × 50 µm3.

The Ti-CP2/Ag28Cu system exhibits small randomly arranged platelet-like particles ≤5.000 µm3

and a fraction of ~8 vol. % in the investigated volume (Figure 4a). Similar platelet-like intermetallic
particles, although partially interconnected, are found in Ti-CP4/Ag28Cu (Figure 4b). Here, the total
volume fraction is ~10 vol. %. Irregular particles amounting to ~14 vol. % are detected in Ti64/Ag28Cu
(Figure 4c), whereas for Ti6242/Ag28Cu ~4 vol. % of small round intermetallic particles are found.
According to EDS the particles predominantly consist of Ti3Cu4 in the case of the commercially pure
grades Ti-CP2 and Ti-CP4, whereas in the Al-containing systems the Al-rich phase (TiCu2Al) was also
detected (see Section 3.1).

3.3. Tensile Tests

Tensile tests carried out on brazed specimen of the different systems (Figure 5) showed stress-strain
curves that at large indicate a brittle joint behavior for the α + β alloy Ti64 and the near-α alloy Ti6242.

Some ductility was observed in Ti-CP4/Ag28Cu and more markedly for Ti-CP2/Ag28Cu.
The tensile strengths differ considerably between the material systems, and the data in Table 3
demonstrates that there is a correlation between the strengths of the titanium alloys and the strengths
of joints.
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Table 3. Comparison of strengths of brazing joints and strength of base material [19,20].

Alloy Strength of Joint (This Work) Strength of Base Alloys [19,20]

YS (MPa) UTS (MPa) εf (%) YS (MPa) UTS (MPa) εf (%)
Ti-CP2 161 ± 3 224 ± 10 2.4 275 345 20
Ti-CP4 609 ± 1 614 ± 5 0.9 480–655 >550 15

Ti64 - 810 ± 22 0.7 800–1100 900–1200 13–15
Ti6242 - 830 ± 40 0.72 990 1100 13

3.4. Fractography

SEM fractographs of the halves of the fractured samples without the Ag-rich region (Figure 6)
indicate that the crack path depends strongly on the microstructure of the interface region. The fracture
surface of Ti-CP2/Ag28Cu exhibits a homogeneous undulating cellular morphology (Figure 6a).
A similar surface morphology can be found for Ti-CP4/Ag28Cu, although a few small sharp-edged
particles can be observed (Figure 6b). In contrast, the fracture surface of the Ti64/Ag28Cu joint is
covered with fractured plate-like flakes (Figure 6c). Finally, the fracture surface of Ti6242/Ag28Cu
comprises deep crater-like regions in which parts of the reaction zone were pulled out during tensile
testing (Figure 6d). The color scaled images on the right side of each subfigure show the height
profile measured by confocal laser scanning microscopy. The surface of Ti-CP2/Ag28Cu appears
relatively homogeneous (maximum corrugation is about 10 µm), whereas the fracture surface of the
Ti-CP4/Ag28Cu and especially Ti64/Ag28Cu joints present scarce regions with significantly more
elevated areas, which can be explained by the observed fractured platelet-like flakes mentioned above.
The Ti6242/Ag28Cu joint exhibits plateaus with different heights that can be traced back to the pulled
out regions observed by SEM.
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Figure 6. Fracture surfaces of the samples halves without the Ag-rich regions (excluding joint):
Fractographs obtained by SEM (left image of each subfigure) and height profiles measured by confocal
laser scanning microscopy (right image of each subfigure).

The fracture surfaces were also characterized by XRD (Figure 7). The results for the surfaces of
the sample halves with and without the Ag-rich region of the Ti-CP2/Ag28Cu system are shown in
Figure 7a. The near-surface area excluding the joint consists mainly of Ti2Cu and α-Ti, whereas the
half including the joint contains mainly TiCu and Ag, indicating that the fracture path took course
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predominantly at the phase boundary between Ti2Cu and TiCu (see also Figure 1a). A comparison of
the diffractograms of all investigated brazing systems for the sample halves excluding the joint shows
similar results for the commercially pure grades (Ti-CP2, Ti-CP4), while TiCu is additionally observed
for Ti64 and even more TiCu and Ag for Ti6242 (Figure 7b).
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Based on these results the fracture surfaces were analyzed using EDS. The phases identified are
presented in Figure 8 with the corresponding fracture surface region. The results confirm that the
fracture path in the Ti-CP2/Ag28Cu system proceeds almost exclusively along the TiCu/Ti2Cu phase
boundary. Only in very few cases transcrystalline fracture through TiCu crystals could be observed
(Figures 6a and 8a, here, additionally, the half of the sample including the Ag-rich part of the joint is
depicted). In the Ti-CP4/Ag28Cu system (Figures 6b and 8b), slightly more TiCu fragments and also
some Ag-rich areas could be observed, while, in agreement with XRD results, the amount of TiCu at the
surface is much higher in Ti64/Ag28Cu (Figures 6c and 8c). Plateaus covered with dimples indicating
local plastic deformation of the Ag-rich phase were observed in Ti6242/Ag28Cu (Figures 6d and 8d),
explaining the Ag detected in the XRD measurement (Figure 7b).
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Figure 8. SEM+EDS investigation of the fracture surfaces of both halves of the Ti-CP2/Ag28Cu
specimen, i.e., excluding the joint at the top and including the joint at the bottom (a), fracture surfaces
of the parts excluding the joint for Ti-CP4/Ag28Cu (b), Ti64/Ag28Cu (c) and Ti6242/Ag28Cu (d).
All indicated phases were identified by EDS at the pointed regions.
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Longitudinal sections of the near-surface region of the fractured tensile specimen provide
complementary information (Figure 9—load direction was vertical). A predominantly intact Ti2Cu
layer with a marginal amount of TiCu fragments was observed in Ti-CP2/Ag28Cu (Figure 9a) above
the approx. 15-µm-thick eutectoid α-Ti/Ti2Cu region. TiCu fragments were found on the surface of
Ti-CP4/Ag28Cu (Figure 9, bottom), while the eutectoidically transformed lamellar region below the
Ti2Cu layer has a coarser but much thinner structure (Figure 9b top). Additionally, EDS revealed the
Fe-rich β-Ti phase besides Ti2Cu. Even more TiCu fragments and a large number of secondary cracks
can be observed in case of Ti64/Ag28Cu (Figure 9c), while the eutectoid α-Ti + Ti2Cu zone below
the Ti2Cu layer is approx. 5 µm in width. A completely different damage behavior was found for
Ti6242/Ag28Cu (Figure 9d): The crack propagates frequently across the thick columnar TiCu layer,
partially along the TiCu columns with many secondary cracks. A eutectoid reaction zone below the
Ti2Cu layer cannot unambiguously be identified as the Cu-enriched area gradually merges with the
globular α + βmicrostructure.
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4. Discussion

4.1. Brazing Reaction Products

The investigated joints show the formation of intermetallic layers at the interface between the
Ti substrate and the Ag-rich region for all investigated Ti alloys (Figure 1). Moreover, the reaction
products extend well into the Ag-rich region and intermetallic particles with different morphologies
are formed (Figure 4), i.e., predominantly Ti3Cu4 for Ti-CP2 and Ti-CP4, whereas TiCu2Al also was
found for Ti64 and Ti6242. Al has a considerable solubility in Ag and Cu [6] and dissolves easily in the
melt. During solid state transformations and solidification it is incorporated in the intermetallic Ti-Cu
phases (Table 2).

Moreover, Zr was detected in all Ti-Cu intermetallic phases of the Ti6242-Ag28Cu joint. It has
previously been shown that TiCu can incorporate Zr [21,22], while there exists a continuous solid
solution (Ti,Zr)2Cu intermetallic also designated γ-phase [22]. Nevertheless, the highest amount of
Zr was detected in the Al-enriched phase (Figure 2 and Table 2), indicating that TiCu2Al can also
incorporate a significant amount of Zr.

The presence of only small amounts of Mo is a consequence of the low solubility of this element
in the Ti-Cu phases [23]. No eutectoid reaction zone consisting of α-Ti + Ti2Cu could be found in
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the Ti6242/Ag28Cu joint, contrary to the Ti64/Ag28Cu and the Ti-CP2/CP4 systems, while there are
Mo-rich grains (β-Ti) besides Cu-rich areas (probably Ti2Cu) mainly at the grain boundaries of α-Ti
(Figure 2), indicating that two separate β phases may form during brazing, namely one Mo-enriched
and one Cu-enriched.

The absence of the lamellar structure from the eutectoid reaction in the Ti6242/Ag28Cu joints
(in contrast to the Ti64/Ag28Cu system, Figure 9c) implies that no homogeneous, coarse grained β-Ti
layer is formed during the brazing process, presumably owing to the lower diffusivity of Mo [24] and
its higher β stabilization effect [25] as compared to that of V. As a result the Mo-rich regions beyond
the growing intermetallic phases remain stable at 820 ◦C and Cu diffuses into the former α-regions
to form β. During cooling β transforms eutectoidally into α-Ti + Ti2Cu and thus different regions
with Mo-rich β-Ti, Ti2Cu and α-Ti are obtained. Moreover, during brazing of Ti6242/Ag28Cu the
microstructure in the Cu diffusion zone remains fine grained and a fine columnar TiCu structure is
formed (Figures 1 and 9).

4.2. Strength and Failure Mechanisms of the Joints

The crack path in the tensile specimen is found to depend strongly on the microstructure of
interface region, which is schematically depicted in Figure 10 for all joints. Fracture takes place
predominantly at the interface between Ti2Cu and TiCu for Ti-CP2 (Figure 10a), revealing the structural
weakness of this boundary. The contribution of transgranular fracture through TiCu increases for
Ti-CP4 (Figure 10b) and particularly Ti64 (Figure 10c). In the case of Ti6242 (Figure 10d) the phase
boundary between Ti2Cu and TiCu is more stable and, therefore, the fracture path deflects from the
Ti2Cu-TiCu boundary into the Ag-rich phase, which leads to the plateaus with dimples observed in
this region (Figure 6d). This may be because the Ag-rich area has a lower strength in this system due
to the lower volume fraction of intermetallic particles (Figure 4d).
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systems: Ti-CP2/Ag28Cu (a), Ti-CP4/Ag28Cu (b), Ti64/Ag28Cu (c), Ti6242/Ag28Cu (d). The crack
paths are indicated by dashed red lines.

The microstructural analysis (see Section 3) indicates that the weakest links of the brazed joints
are the transition zones, i.e., the intermetallic phases, which might seem surprising, since according
to the technical data sheet [26] the strength of the Ag28Cu alloy used for brazing shows only a low
strength of ≤390 MPa. This can be attributed to the composite-like structure of these regions owing to
the formation of intermetallic phases in Ag-rich matrix during brazing (Figure 4).

The joints with commercially pure grades fail under loads close to the yield strength of the base
alloys (Table 3). Thus, the UTS is much higher in the case of Ti-CP4/Ag28Cu, although the results
of the microstructural and fractographical analyses of both grades are similar. The only obvious
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microstructural difference between the joints of both grades is the extended lamellar α-Ti + Ti2Cu zone
within the bulk Ti-CP2 below the Ti2Cu layer (Figure 9a), indicating that the diffusion of Cu into Ti
is restricted by the presence of higher amounts of O and, especially, Fe in Ti-CP4 (Table 1). The SEM
investigations revealed the presence of Fe-rich grains (β-Ti), which seem to have formed a boundary
for diffusion of Cu since these grains are predominantly found as a layer below the eutectoid reaction
zone (Figure 9b). However, this microstructural difference provides no direct explanation for the
different strength. We hypothesize that compositional differences (Fe, O) at the phase boundaries
may instead be responsible for the behavior, which has to be investigated on the submicrometer scale,
e.g., by atom probe tomography and transmission electron microscopy.

In contrast to the CP titanium grades, the joints of Ti64 and Ti642 show much higher strengths
and fail at stresses close below the yield strength of the base alloys. In these systems the grain size of
the base metal is fine grained and biphasic. The reaction zones of the Ti64/Ag28Cu joints resemble
extensively those of the commercially pure grades whereas those of Ti6242/Ag28Cu are very dissimilar
as outlined in Section 3.1.

In spite of the structural similarity of CP2-Ti/Ag28Cu, CP4-Ti/Ag28Cu and Ti64/Ag28Cu joining
zones, the strengths differ significantly, whereas the remarkable structural discrepancies between
Ti64/Ag28Cu and Ti6242/Ag28Cu are not mirrored by strong strength differences. Therefore, the
strength of the interfacial phase boundary Ti-Ti2Cu is considered to be essential for the performance of
the brazed joints of Ti alloys. The considerable strengths differences are believed to be related to the
alloying elements of the titanium base materials.

5. Conclusions

Brazing of titanium alloys has been studied in order to develop new insights into the formation of
joints’ interphase regions, their microstructure and mechanical behavior under tensile loads.

For Ti-CP2 and to a large extent Ti-CP4, the ultimate tensile strength of the joints is mainly
determined by the interface boundary strength between TiCu and Ti2Cu formed during brazing.
Importantly, it is not governed by the strength of the base titanium alloy or the Ag-rich phase of the
brazing material, despite the latter having a low strength. Very likely as a consequence of higher
amounts of the alloying elements in Ti-CP4, particularly β-stabilizing Fe, the strength of the Ti2Cu-TiCu
phase boundary is significantly increased and transcrystalline fracture through TiCu grains is more
pronounced. In Ti64/Ag28Cu joints, very high UTS are associated with considerable transcrystalline
fracture through TiCu. Finally, for Ti6242 the phase boundary strength in the Ti2Cu-TiCu zone is even
higher, so that the fracture path deflects frequently through TiCu and the ductile Ag-rich phase of
the joint.

The differences in the failure mechanism are thus linked to the structure of the intermetallic
reaction zone in the joints’ interfaces, which is affected by the alloying elements. The most striking
microstructural observation, i.e., the formation of fine grained columnar TiCu in Ti6242/Ag28Cu,
is attributed to the stabilization by Mo during brazing in the Cu diffusion zone. For the other systems,
Cu diffusion led to formation of a coarse grained β-phase, ahead of the growing intermetallic reaction
zone, which transformed eutectoidally to α-Ti + Ti2Cu upon cooling.

The results of this study demonstrate that besides the already explored approaches, i.e.,
modification of the brazing solders (e.g., by Sn or In) and application of interlayers (e.g., with Ag
or Pd), the composition of the base material can play a remarkable role—an issue that seems not
adequately considered so far.
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