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For more than a century, corrosion inhibitors have been added to aggressive environments to
protect metallic materials. Currently, they are integral to structural integrity strategies across a wide
range of industrial sectors, e.g., oil production, chemical processing, and aerospace. On this basis,
there is significant ongoing research in this area seeking to optimise the performance of corrosion
inhibitors, ranging from development of new active species to gaining mechanistic understanding.
The eight articles published in this Special Issue showcase some of this work, encompassing both
experimental and modelling effort.

Concerning experimental work, Wood and Clarke [1] provide an excellent review of the
application of neutron reflectometry for studying corrosion and corrosion inhibition. They demonstrate
the potential of this approach for characterising pertinent interfaces in situ at the atomic scale,
and describe the advantages and limitations of such measurements. Arkhipushkin et al. [2] report
their recent work on the inhibition of brass (Cu/Sn alloy) through the addition of a triazole-type
compound to aqueous sodium chloride. Employing a combination of electrochemical measurements
and X-ray photoelectron spectroscopy (XPS), they are able to gain insight into the functionality of
the inhibitive species. Driven by the imperative to remove chromate from coatings, the experimental
study of Rodič et al. [3] focuses on the impact of cerium ions on the structure and corrosion resistance
of Si/Zr-based sol-gel coatings applied to aluminium. A combination of electrochemical probes and
interfacial characterisation reveal the benefits of cerium addition through improving both barrier and
active inhibition properties.

Turning to modelling, two articles by Gustinčič and Kokalj [4,5] demonstrate the power of
the ab initio density functional theory (DFT) bottom-up approach to scrutinise the bonding of
corrosion inhibitors with oxidised metal surfaces. Although the inhibitor–surface bonding itself is not
synonymous with corrosion inhibition, it nevertheless represents one aspect towards an atomic-scale
understanding of corrosion protection mechanisms. Such work enables one to systematically
address specific aspects of corrosion inhibitor interaction, and so extract key phenomena and trends.
For example, the importance of dissociative adsorption (loss of H) was examined for the binding of
azole compounds to oxidised copper [4]. In their second article they utilise the DFT calculated data
and apply an ab initio thermodynamics framework to shed light onto the stability of various surface
structures and molecular phases [5]. In another DFT study, Cornette et al. [6] show the potential
importance of considering the substrate as an active component in corrosion modelling through
examining the segregation of Cu in Cu-Al alloys terminated by a passive oxide film, and illuminate the
effect of such segregation on the electronic properties of the surface (e.g., work function and band gap).

The final two articles are concerned with increasing the efficiency of the corrosion inhibitor
selection process. Taylor et al. [7] discuss the development of computationally fast cluster-type DFT
calculations for predicting key thermodynamic parameters in the context of corrosion inhibition.
The goal is to facilitate more rapid, but reliable, computer-based screening of candidate corrosion
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inhibitor molecules. Winkler [8] reviews efforts to date to exploit high-throughput testing in combination
with machine learning methods to identify high-performing candidate molecules. As indicated,
a primary motivation for this work is to discover more environmentally acceptable corrosion inhibitors,
which is an increasingly important consideration for both technical suppliers and users. He further
casts doubt on many reported correlations between molecular properties derived from quantum
chemical calculations and corrosion inhibition efficiency, because these correlations are based on very
small data sets with limited chemical diversity and because these descriptors are not statistically
significant enough to be useful.
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