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Abstract: The similar crystal structures of martensite (BCT) and ferrite (BCC) cause difficulty
in distinguishing the grain orientations of individual phases in dual-phase (DP) steels.
A dislocation-based multiphase mixed hardening model is presented, considering both ferrite and
martensite strain partitioning, to describe the texture-dependent mechanical behavior of DP steels
more precisely. This model is based on the ideals that (i) the volume fractions of the constituent
phases and the corresponding strain partitioning function are obtained through in situ tensile
experimentation, and (ii) the grain orientations of ferrite and martensite are assumed to be in
accordance with the overall texture. We applied the model to calculate the macroscopic and
microscopic mechanical behavior of DP800 steel using a crystal plasticity finite element (CPFE)
code. The results show that the calculated stress-strain response and textural evolution are in good
agreement with the experimental results. The dislocation evolution indicates that the rapid hardening
of ferrite induces a high hardening rate for DP steels early in plastic deformation. In addition, for the
grains corresponding to the texture center orientations of DP800, the activity and dislocation density
evolutions of the slip systems are studied.

Keywords: dual-phase steel; crystal plasticity; strain partitioning; mechanical behavior

1. Introduction

The ever-increasing demands for lightweighting in manufacturing inspired increasing research on
advanced high-strength steels (AHSS). Advanced high-strength dual-phase (DP) steels have both high
strength and good ductility. Therefore, much effort is devoted to studying the mechanical behavior
(i.e., strength, elongation, forming ability, etc.) of DP steels [1-3].

Many scholars performed experimental studies on the mechanical behavior of DP steels.
Bleck et al. [4] and Papaefthymiou et al. [5] pointed out that the tensile strength of DP steel increases
with higher martensite volume fraction and carbon content. Armaki et al. [6] in 2014 investigated
the inhomogeneity of strength and hardness in different regions of DP steel by nanoindentation and
micropillar compression tests. Yu et al. [7] in 2014 experimentally measured the mechanical properties
of DP steels, of which samples were prestrained by uniaxial tension, plane strain, and equal biaxial
stretching. Employing nanoindentation experiments, Mazaheri et al. [8] in 2015 found that with the
increase in hardness ratio between martensite and ferrite, the strength of materials improved, but the
ductility deteriorated. Amaral et al. [9] in 2017 also measured the hardening curves and yield loci of
various DP steels, utilizing bulge and uniaxial tensile tests.
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In recent decades, many numerical methods were adopted to study the mechanical behavior of
materials. Paul et al. [10] showed that an empirical formula based on the iso-energy hypothesis could
not accurately reflect the flow curves of DP steel, and the results were consistent with the experiment
under various strain partitioning coefficients associated with deformation. Xiong et al. [11] also
calculated the mechanical behavior of DP steel using the modified iso-work model, and pointed out
that the strain-induced ferrite had higher strength than polygonal ferrite. Based on the crystal plasticity
constitutive model, the crystal plasticity finite element method (CPFEM) is widely used and a number
of positive results were achieved. Kadkhodapour et al. [12] analyzed void initiation and growth during
the material failure of DP steel. Woo et al. [13] in 2012 predicted the stress-strain relationships of
martensite and ferrite in DP steel based on electron backscattered diffraction (EBSD) data. In 2012,
Kim et al. [14] investigated the Bauschinger effect and permanent softening behavior of DP steels.
In 2007, using the experiments and a representative volume element (RVE) model, Prahl et al. [15]
analyzed the crack initiation and propagation of five kinds of microstructure multiphase steel.
In 2017, coupling the crystal plasticity and RVE methods, Kim et al. [16] inspected the effects of
crystal orientation and martensite morphology of the ferrite/martensite (F/M) interfacial de-cohesion
in DP980 steel. Ogata et al. [17] in 2017 analyzed the effects of different phase boundaries and
microstructural evolution on the strain-hardening behavior by CPFEM. They also attributed the
inhomogeneity of DP steels during secondary processing to the differences in deformability between
martensite and ferrite.

On the other hand, hard-phase martensite and soft-phase ferrite were unequivalent in both
stress and strain responses [18-20]. Kuang et al. [21] in 2009 reported that the strain ratio of ferrite
to martensite was increased almost linearly with the macro-strain of DP steel. Kang [22] in 2007
and Ghadbeigi [23] in 2010 measured the strain distributions of DP steels utilizing the digital image
correlation (DIC) method. Tasan et al. [24-26] in 2010 and 2014 also studied the corresponding
strain distributions of DP steels utilizing a method integrating micro-DIC experiments and CPFEM
simulations. In 2012, Dan et al. [27] proposed an exponential strain partitioning function to describe
the strain distributions of ferrite and martensite. Employing the finite element method (FEM),
Paul [10] and Han [28] in 2014 predicted the plastic strain partitioning of ferrite and martensite
in DP steels. Chen et al. [29] in 2014 investigated the flow strength and strain rate partitioning of
DP980, utilizing micropillar compression experiments and microstructure-based numerical simulations.
Fillafer et al. [30] in 2015 reported that the averaged plastic equivalent strains of ferrite and martensite
behaved as functions of the macro strain and loading angle. Based on metallographic pictures,
the strain distributions of ferrite and martensite under uniaxial tension were exhibited using the
point interpolation method [31]. In 2017, Sun et al. [32] analyzed the strain partitioning coefficient of
ferrite-austenite duplex medium-manganese steels with different manganese contents. All the above
studies show that the deformation of multiphase composite materials containing both a soft phase and
a hard phase is not uniform, and the strain of the hard phase is less than that of the soft phase.

In summary, the macro-mechanical behavior (i.e., yield strength, tensile strength, elongation,
etc.) of materials can be obtained by experimental methods, but the micro-deformations (i.e., grain
deformation, grain rotation, slip systems activity, etc.) thereof are difficult to observe and acquire.
As a numerical method, the FEM can construct the grain-to-grain or phase-to-phase morphology,
and thus, facilitate the study of micro-deformation mechanisms. However, because of limitations
in computational ability, the FE model is not able to calculate too many grains, and therefore, fails
to accurately reveal the effects of texture on macro-mechanical behavior. For dual-phase steels,
the deformation of martensite and ferrite is nonuniform, and the strain partitioning of each phase
significantly affects the overall deformation and hardening behavior of materials. However, existing
research rarely considers the effects of texture and strain partitioning on the mechanical behavior of
DP steels; thus, further studies are necessary.

In this study, a multiphase mixed hardening law for similar crystal structures was constructed
to describe the mechanical behavior of DP steel. In DP steels, the martensitic phase takes
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a low-tetragonality crystal structure [33], which is difficult to distinguish texturally from ferrite using
existing X-ray diffraction methods [13]. However, the existing literature suggests that these two phases
can be treated as similar in texture [16,28,29]. Considering these characteristics, this research examines
the idea of superimposing the respective hardening effects of martensite and ferrite, and combining
the strain partitioning function with the hardening law. Based on the texture and the micro-strain
partitioning function, the mechanical behavior of DP800 steel was predicted by CPFEM using the new
multiphase hardening law.

This paper is organized as follows: the crystal plasticity theory and the improved multiphase
hardening law are introduced briefly in Section 2. Section 3 describes the materials and experiments; the
main results and discussions are presented in Section 4. Section 5 provides some concluding remarks.

2. Theory and Methodology

2.1. The Crystal Plasticity Model

Here, the crystal plasticity model is briefly described. Although these theories can be found
in other works [34-36], the following description of the model is necessary for a more concise
understanding of polycrystalline theory.

Firstly, the single-crystal model with the deformation gradient tensor F and velocity gradient
tensor L is introduced [37-40]:

F = F°FP, 1)

where F = dx/0X is the deformation gradient tensor, and x and X are the coordinates of a point in the
deformed and reference configurations, respectively. F¢ and FP are the elastic and plastic parts of the
deformation gradient, respectively.

L=FF'=1°+LP, )

where L = dv/0X is the velocity gradient tensor. v is the velocity of the point x in the deformed
configuration. L€ is the elastic part of the velocity gradient, and LP is the plastic part, which can be
decomposed according to the following formulas:

L® = d° + w®, 3)

LP = dP +wP, @)

where d and w are the symmetrical and asymmetrical parts of the velocity gradient tensor, respectively.

F* = LPpP, ®)
n

LP =Y v8m8 @ n8, (6)
g=1

where vectors m# and 18 are unit vectors describing the slip direction and normal to slip plane of the
slip system g, respectively. y® is the shear strain rate of slip system g.

In order to connect single-crystal deformation and polycrystalline macroscopic mechanical
behavior, the mean field homogenization method was adopted. This study uses the extended Taylor
hypothesis [40,41], i.e.,

D=dW=wX= o), (7)

where D, W, and X are the macroscopic deformation rate tensor, the macroscopic spin rate tensor, and
the macroscopic Cauchy stress tensor, respectively. d, w, and o are the corresponding microscopic
quantities. The symbol < > means the volume average of the enclosed tensor.
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2.2. Single-Crystal Viscous Model

For a single grain, the rate-dependent kinetic law of a slip system is described as follows [40,42-45]:

1
T(g) "

T(g)

(o

YgZYOX

X sign (T(g)), (8)

where vy is a reference shear rate; the exponent m is a plastic strain rate sensitivity parameter

m = alnT) o where 0 <m < 1. ’cgg) is the critical resolved shear stress of slip system g.
TelY

dlny
The critical resolved shear stress is determined by the interactions of all slip systems, and the
expression of the strain-hardening law is [45]
. ‘h
i = Y HEVN, ©)
h

where H is the strain-hardening matrix, which is determined by the corresponding hardening models.

2.3. Multiphase Hardening Model

The overall deformation of a multiphase material is a superimposition of the deformations of all
the constituent phases. In order to accurately describe the hardening process of a multiphase material,
it is necessary to simulate the deformation of each phase separately and establish the relationship
between the individual strengthening and overall hardening. As mentioned in Section 1, similar crystal
structures are assumed to have similar slip systems. In addition, because the textures of the ferrite and
martensite in DP steels are similar and difficult to distinguish, it is assumed that the grain orientations
of these phases are the same. Based on the evolution of dislocation density, the hardening model of DP
steels is constructed below.

The shear strain and shear rate for slip system g of the i-th phase can be defined as

v = fi(ndu)- (10)
o (8) _ (8) (8)
Vi = fi (Vtotal) “Yiotal” (11
where yl(g) and y§g> denote the shear strain and shear strain rate, respectively, of slip system g of the i-th
phase. yfft)al is the overall shear strain. f;( ) denotes the strain partitioning function of the i-th phase.

(8).

ic *

AT%) = o X W X b; IZafgh)p?, (12)
h

where 1, b;, and p!! are the shear modulus, magnitude of the Burgers vector, and dislocation density
of slip system h, respectively. aggh) is the dislocation-dislocation coefficient. The evolution of the

dislocation density of i-th phase can be defined as [45,46].

(g) _ 1 1 (8)
o;° _bi<Li(g) —nyicxpig> x

The critical resolved shear stress of the i-th phase affected by dislocation is defined as At

(8)

, (13)

-1/2
Lig) = Ki (Z SP51)> / (14)

i7#g
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where yj is the dislocation annihilation length of the i-th phase. L;,) is the mean free path of the i-th
phase. K; and s are numerical parameters.

Combining all the component phases, the overall hardening formula for multiphase steels is
defined as follows:

ic 7

ng) = TE(%) + RZ v; X ¢; X At'® (15)

where R is the grain-boundary hardening coefficient. v; denotes the volume fraction of the i-th phase.
¢; is the strain partitioning ratio of the i-th phase, determined experimentally.

The value ng) is defined as the overall internal friction term of multiphase steel. It is the result of

(8)

the friction stress 1,5 of the i-th phase, volume fraction v;, initial dislocation density pinitial, and grain
size g of all component phases. It can be more coarsely calculated as the experimental yield stress os:

Os [
ng) = f(TECgO),U,',pi,g,’ .. ) ~ M — RZUZ'XOC,' X U X b; ;a(gh)pﬁﬁﬁal, (16)
i

where M is the Taylor factor.
3. Materials and Experiments

3.1. Materials and In Situ Stretch Experiment

The studied material is AHSS DP800 of 0.8 mm in thickness, having the ultimate strength of
approximately 800 MPa. The industrial dual-phase steel sheets were supplied by BAOSTEEL, and the
specific composition and mechanical properties of DP800 are presented in Tables 1 and 2 respectively.
Through uniaxial tensile testing in MTS universal test systems, the engineering stress-strain curve of
DP800 steel was obtained as shown in Figure 1a. For DP steel, the microstructure features, such as phase
composition and grain size, have a decisive influence on the mechanical properties [4]. Therefore,
we observed the metallographic structure of DP800 (as shown in Figure 1b), in which martensite
accounts for about 46%. The dual-phase micro-structure of martensite and ferrite was obtained by
annealing after cold continuous rolling.

Table 1. Chemical composition of DP800 steel.

Element C Cr Cu Mn Mo Ni P Si S
Content (wt. %) 0.1658 0.0347 0.0061 1514 0.0096 0.027 0.0123 0.1821 0.00172

Table 2. Mechanical properties of DP800 steel.

Material YM 2 (GPa) YS ® (MPa) UTS € (MPa) TE 4 (%)
DP800 207 500 770 20

2 Young’s modulus; ® Yield strength; © Ultimate tensile strength; 4 Total elongation.

As already known, the martensite strain is smaller than the overall strain, while the ferrite strain
is greater. To identify the strain partitioning of each phase, the in situ stretch experiments were done.
For the in situ experiments, to observe a clear phase boundary and grain boundary, the sample was
first subjected to a local polishing treatment, and then a 4% nitric acid alcohol solution was used for
etching in the polishing region for about 5 s. The in situ stretch experiments at room temperature were
performed at a quasi-static stretch speed. At the same time, the deformation area was image-captured
using a portable microscope (Shanghai Wanheng Precision Instruments Co., Ltd., Shanghai, China)
containing a charge-coupled device (CCD) module. The DP800 sample and experiment platform are
shown in Figures 2 and 3, respectively.
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Figure 1. Mechanics and metallographic of DP800 steel. (a) The engineering stress-strain curve of
DP800. (b) The metallograph of DP800.
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Figure 2. Dimensions of DP800 sample for in situ tensile test (mm).
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Figure 3. Diagrammatic sketch of in situ tensile test platform. 1, Metallurgical microscope and
charge-coupled device (CCD) Image capture card; 2, In situ test machine; 3, DP800 sample; 4, Fixture;
5, Gauge.

As shown in Figure 4, the corresponding strain partitioning was obtained by in situ tensile
experimentation, and the micro-strain experimental results were acquired by the point interpolation
method (PIM) [31]. To facilitate numerical calculation, we assumed that the strain partitioning
functions of the constituent phases were exponential [27,31]. The specific coefficients of DP800 are

shown in Table 3. We assumed that the form of the slip system shear strain partitioning function f; ()
(8) (8)

(Equation (10)) was consistent with Equation (17), whereby ¢; was replaced with y; total”

and ¢ with y

g =€ xc;=¢xelPatPaxe) (17)
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where ¢; and ¢ represent the strain of the i-th phase and overall strain, respectively.p;;, p;, are the
corresponding fitting coefficients.
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- Eﬁﬁ:irgf:f;esu'ts m  Experiment results L7
) " N [ ] Fitting curve .
0.24 | === Uniform deformation reference fine | © g g'a " 0.12 4 | - - - Uniform deformation reference line |, * 1
" l_rfl.;-.-' e .-y
] c .7
S 0.18+ . mgate B ‘T 0.09 L e
g [ -7 k7 L . T
7] . - - s () < - i
" u Phd = e L
3 [} Pra [ . "
= 0.124 = . e S 0.06 P .
o) [] . = =g
('8 Phe [} L r
[ ] /m B ),/’ =  a - - .
0064 w mw e 0.034 = e L]
L ! - e
V4 T L
0.00 4= ‘ : . : 0.00 4+ . ; , . .
0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.00 0.03 0.06 0.09 0.12 0.15 0.18
Over strain Over strain

Figure 4. The experimental and fitting micro-strains of ferrite and martensite.

Table 3. Fitting coefficients of each phase.

Phase Ferrite Martensite

1 1.04092  —0.97854
py  —4.18105 422

3.2. Texture Measurement

The texture of the DP800 sample was measured using D8 ADVANCE (BRUKER 3kW /*D8§
ADVANCE Da Vinci, Germany), a poly-functional X-ray diffractometer with a ceramic X-ray generator
and copper target. The {110}, {200}, {211}, and {220} diffraction data were obtained from a non-deformed
specimen and a specimen with the tensile plastic strain of 0.125. The generated pole figures are shown
in Figure 5.

(110} (200} (211}
Y 2 Y 3 Y
1.5
1.5
2
X X X 1
1
1
0.5 0.5
(a)
(110) (200) (211)
24 Y
A
15
X 2 X 1
! 0.5
(b)

]

Figure 5. The pole figures of DP800, (a) before and (b) after deformation with & = 0.125.

As can be seen from the pole figures, the orientation aggregation intensities of DP800 steel are
weak. The specimen presents a typical cold-rolled and annealed texture [33,47,48].
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4. Results and Discussion

4.1. Mechanical Behavior of DP800

Some parameters of the crystal model were selected from the existing literature. The magnitudes
of the Burgers vectors of ferrite and martensite are 2.5 x 10719 mand 3 x 10719 m, respectively [14,49].
The initial dislocation densities of the slip systems were set to 10!*> m~2 for martensite and 10 m~2 for
ferrite [45,47]. The initial internal friction values for martensite and ferrite are 250 MPa and 55 MPa,
respectively [47,50,51]. The dislocation-dislocation coefficient a8 was set as 0.5 [51]. Each grain
contained three independent elastic constants [26]. All crystal parameters are shown in Table 4.

Table 4. The simulated parameters of single crystals.

Phase Martensite Ferrite
Tqo (internal friction term) 250 MPa 55 MPa
pi (initial dislocation density) 1 x 1018 m—2 1 x 10° m—2
B (Burgers vector) 30x10710m 25x1071%m
G (shear modulus) 98.4 GPa 55 GPa
Cy1 (anisotropic elasticity constant) 417.4 GPa 233.3 GPa
Cj2 (anisotropic elasticity constant) 242.4 GPa 135.5 GPa
Cy4 (anisotropic elasticity constant) 211.1 GPa 118 GPa

The martensitic crystal structure has a body-centered tetragonal (BCT) structure similar to the
body-centered cubic (BCC) lattice [45], and the {110} <111> and {112} <111> slip systems, with a 24 x 24
hardening matrix, were mainly considered. For the individual phases, the relationship between the
shear strain of each slip system and overall shear strain is the same as that of the micro-strain.
The reference shear strain rate v, and the strain rate sensitivity index m associated with the plastic
flow law were set as 1 s~ ! and 0.05, respectively [26].

In addition, some parameters for the strain hardening model, such as the material parameter K
and annihilation length y., could be determined based on the actual material properties (in Table 5).
Based on the DP800 tensile experimental results, the yield stress was approximately 500 MPa, and the
overall internal friction term .9 was finally determined as 155 MPa.

Table 5. The simulated parameters of DP800.

Item v (%) K o R Y (m)
Martensite 46 1.1 0.2 1.1 36 x 1078
Ferrite 54 25 0.2 1.1 34 x10°8

With the parameters above, the stress-strain curves of DP800 steel were calculated during
quasi-static stretching in the rolling direction (in Figure 6). The results show that the calculated result
is in good agreement with the experimental result. Moreover, the transverse and normal direction
stress-strain responses of the DP800 steel sheet were also calculated (Figure 7a). The results indicate
that the stress in the rolling direction is close to that in the transverse and normal direction [7,52].
In other words, the cold-rolled texture after annealing is weak and the mechanical properties of
the sheet in different directions are almost the same. However, as the texture is strengthened, the
anisotropy of the steel sheet is enhanced, as can be seen from Figure 7b, which indicates that the
formability of DP steel with the rotated cube (Rt-C) texture is weakened.
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Figure 6. True stress vs. logarithmic strain curve from experiment and simulation.
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Figure 7. True stress vs. logarithmic strain curves with different stretching directions. (a) Real texture
results. (b) With 30% rotated cube (Rt-C) texture results added.

In the hardening process of the material, the critical resolved shear stress of the grain is qualified
by the dislocation density, and the dislocation density is increased with strain. For the DP800 steel,
the relationships between the mean dislocation density and the overall strain and true stress of each
phase are shown in Figure 8.

The results show that the mean dislocation densities of both martensite and ferrite are positively
correlated with the true stress, as shown in Figure 8a. For ferrite, when the stress is greater
than 250 MPa, the dislocation density increases rapidly, making DP steel harden early (Figure 8b).
For martensite, when the stress is greater than 550 MPa, the dislocation density increases rapidly
and the tensile strength of DP steel increases (Figure 8c). The dislocation evolution of individual
phases can note the deformation characteristics of DP steels. At the initial plastic deformation period,
the hardening rate of the DP steel is high and there is no obvious yielding plateau. With straining,
the dislocation density of martensite increases rapidly, which makes the subsequent strengthening of
the DP steel obvious. Therefore, the DP steel has a high tensile strength. Combined with Figure 8d,
when the overall strain is greater than 0.03, the ferrite dislocation density tends to saturate; thus,
subsequent material hardening is mainly attributed to martensite. Due to a high internal friction stress

and the dislocation density of martensite, the martensitic stress is much higher than that of the ferrite
and the overall stress (Figure 9) [13,47,53-58].
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Figure 8. The dislocation density evolution. (a) The evolution curves of ferrite/martensite dislocation
densities with true stress. (b) Partial curve of ferrite dislocation density evolution with true stress. (c)
Partial curve of martensite dislocation density evolution with true stress. (d) The evolution curves of
ferrite/martensite dislocation densities with true strain.
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Figure 9. The stress vs. strain curves of martensite, ferrite, and DP800.

4.2. Textural Evolution of DP800

All polycrystalline materials contain a large number of grains with different orientations, and all
the grains tend to become concentrated in specific directions during a deformation process [59,60].
The aggregation of grain orientation leads to texture formation and affects the macro-mechanical
behavior. Hence, the study of textural evolution is necessary.
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This section discusses the textural evolution of DP800 steel during uniaxial tensile experiments.
The orientation distribution function (ODF) of the sample is calculated from the experimental pole
figures and is used to generate 1000 sets of Euler angle data for CPFEM. For the BCC crystal,
the important cross-sectional figures of the ODF at ¢, equal to 0°, 33°, 45°, and 63° are shown
in Figure 10.

(b)

Figure 10. The important cross-section of the initial orientation distribution function (ODEF).
(a) Calculated by the pole figures. (b) Calculated by the Euler angles.

The results show that the DP800 steel mainly contains rotated cube (Rt-C), {111} <112>, and ~5
textures, and the Rt-C texture is dominant (Figure 10 and Table 6). The texture volume fractions were
quantitatively analyzed by the MTEX software (MTEX 4.2.1, Ralf Hielscher, Germany), an additional
toolbox for MATLAB. The function “volume” of MTEX returns the ratio of an orientation similar to
a given orientation (the center) within a misorientation tolerance (the radius) to the volume of the
entire ODF. Here, the radius was set to 15°. The evolution of a series of textures of DP800 in different
stretching directions is shown in Figure 11.

Table 6. Miller indices and Euler angles for common texture components in cubic-crystal metals.

111} <112> 90 55 45
111} <110> 0 55 45

Texture Component {hkl} <uvw> ©1 o ©2
Cube (C) {001} <100> 0 0 0
Rotated cube (Rt-C) {001} <110> 45 0 0
Copper (Cu) {112} <111> 90 35 45
Brass {011} <211> 35 45 0
Goss (G) {011} <100> 0 45 0
S {123} <634> 59 37 63
R {124} <211> 57 29 63
~S {123} <111> 75 37 63
Rotated Goss (Rt-G) {011} <011> 0 90 45
BRASS R {236} <385> 79 31 33

{111}

{111}
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Figure 11. The volume fraction evolution of several textures in different stretching directions. (a) Rt-C
texture; (b) {111} <112> texture; (c) ~S texture.

Examining the results in Figure 11a, the Rt-C texture is strengthened in all tension directions,
and the Rt-C component increase is the fastest when the sample is stretched in the transverse direction.
The calculation results show that the grain orientations generally follow the Rt-C texture direction
during transverse stretching. For the {111} <112> texture, the volume fraction of the texture is almost
constant, and the texture component is slightly reduced in all directions of stretching (Figure 11b).
The ~S texture intensity also decreases in all stretching directions (Figure 11c).

The important ODF cross-sectional figures of the rolling-direction stretching process are shown
in Figure 12, which shows the orientation distribution at overall strains of 0.050, 0.107, 0.125, and
0.161. Examining the ODF figures and Figure 10b, it is apparent that the Rt-C texture tends to intensify,
which is consistent with the trend of the {110} and {200} pole figures.

4.3. Grain Deformation of DP800

From the previous section, we can conclude that the three main textures of DP800 steel are Rt-C,
{111} <112>, and ~S, with the corresponding three sets of Euler angles as (45° 0° 0°), (90° 55° 45°), and
(75° 37° 63°). In this section, the corresponding strain rates, strains, and dislocation densities of the slip
systems of the center orientation grains corresponding to the DP800 steel textures are studied under

tensile deformation. The BCC crystal has 24 slip systems, and the corresponding slip systems are listed
in Table 7.
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(d)

Figure 12. The ODF evolution during stretching in the rolling direction. (a) When the strain is 0.050.
(b) When the strain is 0.107. (c) When the strain is 0.125. (d) When the strain is 0.161.

Table 7. Slip systems and reference numbers.

Number 1 2 3 4 5 6 7 8
. 1-10)  {1-10)  {10-1}  {10-1}  {01-1}  {01-1} {110} {110}
Slipsystem 1170 101> <111> <1-11>  <111>  <111>  <111>  <1-11>
Number 9 10 11 12 13 14 15 16
. 1101} {101} {011} 011} {112} {121} {211}  {1-12}
Slipsystem 1900 11> <1-11>  <11-1>  <111>  <I11>  <111>  <-111>
Number 17 18 19 20 21 22 23 24

. (12-1} {211} {1-1=2} {121} {211} (-1-1-=2) |-121)  {2-11}
Slipsystem _"1000 < 111>  <1-11>  <1-11>  <1-11>  <l1-1>  <11-1>  <11-1>

Due to the differences in the Schmid factor, the shear stress of each slip system is different.
In addition, the shear strain rates of the slip systems can be calculated by the corresponding shear
stress, based on the kinetic law of the slip systems. For the grains corresponding to the texture center
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orientation of DP800, the strain rates of the slip systems under rolling-direction stretching are shown

in Figure 13.
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Figure 13. The strain rate of each slip system with different overall strain. (a) Ferrite strain rate of Rt-C.
(b) Martensite strain rate of Rt-C. (c¢) Ferrite strain rate of {111} <112>. (d) Martensite strain rate of {111}
<112>. (e) Ferrite strain rate of ~S. (f) Martensite strain rate of ~S. (g) The average ferrite strain rate for
all grains. (h) The average martensite strain rate for all grains.



Metals 2018, 8, 782 15 of 20

Comparing the slip strain rates in different orientations, the initial orientation has a decisive
influence on the activity of the slip system during deformation. Under stretching, the strain rates of
the ferrite slip systems are decreased with increasing macro strain, and the corresponding strain rates
of the martensite slip systems are increased. However, the absolute values of the ferrite strain rates
remain higher than those of martensite. From the distribution of average strain rates, the main active
slip systems of DP800 steel are {112} <111>. In addition, the absolute values of the strain rates of the
{112} <111> slip systems are similar, indicating that the textures of the steel are weak and the crystal
orientations close to random, consistent with the results of the pole figures (Figure 5). As can be clearly
seen in Figure 13, the strain rates of the {112} <111> slip systems are significantly larger than the strain
rates of the {110} <111> slip systems. This could be caused by the higher strain rate sensitivity index
amplifying the difference in the Schmid factors of the different slip systems.

Figure 14 presents the strain distributions of all slip systems. Corresponding to Figure 4, the strain
partitioning of the same orientation of ferrite and martensite is consistent with the phase strain.
In comparing Figure 14g,h, the strain of ferrite is much higher than that of martensite in the early
stage of deformation. However, the martensite strain increases rapidly with increased macro strain.
It is speculated that the rapid increase in ferrite slip strain in the early stage of stretching is the cause
of the rapid hardening of ferrite, which leads to a high hardening rate of DP800 steel in the initial
plastic stage.

In order to analyze the evolution of dislocation density of different slip systems, the dislocation
densities of grains with different orientations were extracted, with the results shown in Figure 15.
The dislocation densities on the active slip systems are very large, while those of the inactive slip
systems retain their initial values. Compared with the strain distribution and the dislocation density
data, it can be seen that the dislocation densities of the large-strain slip systems are higher than those
of the smaller-strain slip systems. In addition, all the dislocation densities of the active slip systems are
much higher than the overall average values. However, for all active slip systems, the differences in
dislocation density among slip systems is not as disproportionate as the differences in corresponding
strains. This arises from the fact that the dislocation evolution law includes an annihilation mechanism,
and as the dislocation density increases, the annihilation rate increases. Hence, the overall dislocation
density tends to become saturated. According to the results of dislocation evolution, the active slip
systems are decisive in the hardening of grains, and the inactive slip systems do not contribute to
strain hardening.
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In this study, a multiphase mixed hardening model incorporating the strain partitioning of each
phase was proposed to describe the mechanical behavior of DP800 steel. For establishing this model,
the single-crystal material parameters of each phase were first set, and then the strain partitioning

dislocation density of Rt-C. (b) Martensite dislocation density of Rt-

average martensite dislocation density for all grains.

Figure 15

5. Summary and Conclusions
equation of each constituent phase was determined by in situ stretching experiments. This hardening

model was used to analyze the macro
behavior of DP800 steel, and the results were analyzed and discussed. The calculated results are

consistent with the experimental results and existing literature. According to the analysis of hardening

and deformation behavior of DP steel, the following conclusions can be drawn:
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For DP800 steel, the initial strain of the soft ferrite phase is greater than the overall strain,
which leads to the rapid hardening of the ferrite. This hardening phenomenon of ferrite promotes
a higher overall hardening rate in early deformation, and this mechanism can explain the initial
high hardening rate of DP steels.

Probing the evolution of texture, the initial texture of DP steel is weak and grain orientations
tend to be random. However, as the deformation increases, the DP steel tends to enhance the
Rt-C texture.

The plastic deformation of DP800 is mainly concentrated in the {112} <111> slip systems, and the
activities of the slip systems are closely related to the crystal orientations. The average strain of
each slip system is significantly different, but the average dislocation density is similar.
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