

Supplementary Materials: Synthesis of Metastable Au-Fe Alloy Using Ordered Nanoporous Silica as a Hard Template

Paskalis Sahaya Murphin Kumar, Thiripuranthagan Sivakumar, Takeshi Fujita, Ramasamy Jayavel, and Hideki Abe

Content

Synthetic procedures, characterization techniques and catalytic performance tests
Figure S1: Scanning Electron Microscope (SEM) images of the nanoporous AuFe and Silica template
3
Figure S2: Hard X-ray Photoemission Spectroscopy (HAXPES) in a wide range of binding energy

4Figure S3: HAXPES in the Au 4f region5Figure S4: HAXPES in the Fe 2p region6

Figures S5 and S6: Energy-dispersion Spectroscopy (EDS) analyses on the nanoporous Au-Fe 7

Synthetic procedures

Reagents used for the synthesis were used as purchased without further purification: anhydrous Au(III) chloride (AuCl₃, Aldrich), iron acetylacetonate (Fe(II)acac, Aldrich), diethylene glycol dimethyl ether (anhydrous, 99.5%, Aldrich), LiBH(C₂H₅)₃ (super-hydride, 1M in THF, Aldrich), hexane (anhydrous, 95%, Aldrich), poly (ethylene glycol)-block-poly(propylene glycol)-blockpoly(ethylene glycol) (EO₂₀PO₇₀EO₂₀, average molecular weight 5800, Aldrich).

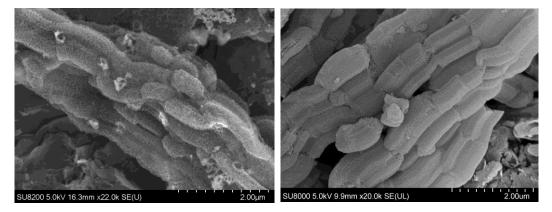
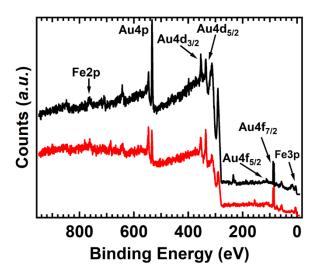
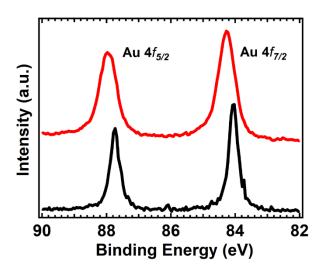
In a typical synthesis of SBA-15 (reported by Vinu et al [17]) as illustrated below: 4 g of the amphiphilic triblock copolymer was dispersed in water (30 g) and HCl solution (120 mL, 2 M) and stirred for 5 h. Thereafter, tetraethylorthosilicate (TEOS, 9 g) was added to the homogeneous solution under stirring. The collected gel was aged at 40 °C for 24 h and finally heated to 100 °C for 24 h. After that, the synthesized solid was calcined in flowing air at 540 °C to decompose the triblock copolymer.

Characterization

Powder X-ray diffractometry (*p***XRD):** The pXRD measurements were performed using Cu K α radiation (λ = 0.15418 nm; X'Pert Powder Diffractometer, Panalytical) with an increment of 0.02 degrees in a range of diffraction angles from 10 to 90 degrees. An obliquely finished Si crystal (non-reflection Si plate) was used as a sample holder to minimize the background.

Hard X-ray photoemission spectroscopy (HAXPES): HAXPES measurements were performed using X-rays with a photon energy of 5.95 keV, at the undulator beamline BL15XU of SPring-8, Japan. The core-level states of the samples were examined at room temperature in UHV using a hemispherical electron energy analyzer (VG SCIENTA R4000). The total energy resolution was set to 220 meV. The binding energy was referenced to the Fermi edge of an Au thin film.

Transmission electron Microscopy: We used a 200kV transmission electron microscope (TEM and/or STEM, JEM-2100F, JEOL) equipped with two aberration correctors (CEOS GmbH) for the image- and probe-forming lens systems and an X-ray energy-dispersive spectrometer (JED-2300T, JEOL) for elemental mapping. The samples for TEM were prepared by dropping an ethanol suspension of the sample powder onto a commercial copper TEM grid coated with a collodion film. The sample was thoroughly dried in vacuum prior to observation.

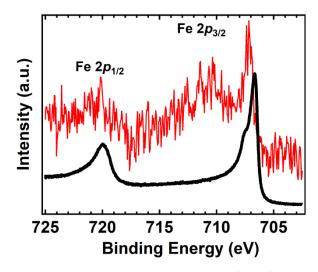

Figure S1. SEM images of the prepared nanoporous AuFe (left) and silica template (right).

Figure S2. Hard X-ray photoemission spectroscopy (HAPES) profiles of the nanoporous Au-Fe (red) and AuFe nanoparticles (black) in a wide range of binding energy.

Figure S3. Hard X-ray photoemission spectroscopy (HAPES) profiles of the nanoporous Au-Fe (red) and Au nanoparticles (black) in the Au 4*f* region.

Figure S4. Hard X-ray photoemission spectroscopy (HAPES) profiles of the nanoporous Au-Fe (red) and Fe powder (black) in the Fe 2*p* region.

The Au to metallic Fe (Fe0) ratio was determined from Figures 2S-24: The XPS peak area for the Au $4f_{7/2}$ emission = 11090 ± 1100. The cross section for the Au $4f_{7/2}$ emission = 1.614. The Au $4f_{7/2}$ peak area/cross section = 11090/1.614 = 6870 ± 690. The XPS peak area for the Fe⁰ $2p_{1/2}$ emission = 11435 ± 1100. The cross section for the Fe⁰ $2p_{1/2}$ emission = 4.026 [1]. The Fe⁰ $2p_{1/2}$ peak area/cross section = 11435/4.026 = 2840±280. The Au/Fe⁰ ratio = 6870/2840 = 2.42±0.24.

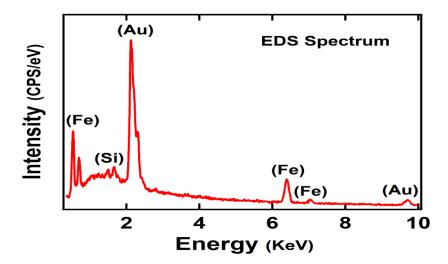


Figure S5. Energy dispersve spectroscopy (EDS) profile for the nanoporous Au-Fe.

Table S1. Chemical composition of the nanoporous Au-Fe determined by EDS.

Element	Line type	Wt%	Wt% Sigma	Atomic %
Si	K Series	2.12	0.23	0.49
Fe	K Series	27.13	0.81	57.75
Au	M Series	70.75	0.82	41.76
Total	-	100.00	-	-