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Abstract: Waste-concrete recycling processes using wet-based crushing methods inevitably generate
a large amount of alkaline concrete sludge, as well as wastewater, which contains abundant Ca ions.
The Ca-rich alkaline wastewater must then be neutralized for reuse in the waste-concrete recycling
process. In this study, the feasibility of a carbon mineralization process for the neutralization
of alkaline wastewater was considered from both environmental and economic perspectives.
The optimal reaction time, efficiency of Ca removal and CO2 sequestration as a function of the
CO2 gas flow rate were assessed. The carbon mineralization process resulted in sequestering CO2

(85–100% efficiency) and removing Ca from the solution (84–99%) by precipitating pure CaCO3.
Increasing the gas flow rate reduced the reaction time (65.0 down to 3.4 min for 2.5 L of solution),
but decreased CO2 sequestration (from 463.3 down to 7.3 mg CO2 for 2.5 L of solution). Optimization
of the gas flow rate is essential for efficient CO2 sequestration, Ca removal, CaCO3 production
and, therefore, successful wastewater neutralization following the wet-based crushing process.
The method presented here is an eco-friendly and economically viable substitute for dealing with
alkaline wastewater. It may also provide a practical guide for the design of carbon mineralization
processes for the neutralization of alkaline solutions containing large amounts of Ca.

Keywords: alkaline concrete sludge; carbon mineralization; carbonation; wastewater neutralization;
carbon dioxide

1. Introduction

The amount of construction waste produced in Korea increases yearly due to the significant
number of aged buildings requiring re-construction. Shortages in raw materials and available landfill
sites mean an improvement in construction waste recycling is required [1]. Currently, waste concrete
accounts for approximately 63% of construction waste; a total of 198,000 tons generated per day.
As a result, more than 95% of waste concrete is used as aggregate material in new concrete [2,3]. In the
intermediate-construction waste recycling process, crushing and screening produces a large amount of
concrete sludge composed of fine-grained concrete material. Water is used to wash down the concrete
surface and separate impurities [4].

This study assessed the recycling process of a local waste-concrete treatment plant. The wet-
based crushing method consisted of crushing/screening, classifying and flocculating concrete fines,
as illustrated in Figure 1. Dried sludge, precipitated using cationic-organic polymer coagulants was
discarded at a rate of 10 tons/day. The total amount of solid phase included in the concrete sludge
from recycled concrete-aggregate production was approximately 7%, increasing up to 40% for high
quality aggregate products.
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Figure 1. Photographs of a field waste concrete recycling process. 

The concrete sludge was strongly alkaline and rich in calcium (Ca) as a result of calcium 
hydroxide (Ca(OH)2) dissolution from the concrete particles [5]. The air-dried solids, generated from 
the solid-liquid separation and flocculation process, were discarded as they were considered to have 
insignificant economic value. The supernatant from the flocculation process was reused in the wet-
based crushing processes, without further treatment. The best practice, from both environmental and 
economic stand points, should include neutralization for discharge into streams or, ideally, 
neutralization and reuse to remove cement paste in the wet process of waste concrete production. 
Treatment using sulfuric acid (H2SO4) is commonly employed to neutralize alkaline wastewater, 
because of the simplicity of the process. However, it does increases the agent cost consumption [6]. 
This added cost is a significant barrier to the development of the whole waste-concrete recycling 
process. In addition, neutralization of the wastewater using acids, without Ca removal, is not effective 
in removing cement paste from the aggregates in the waste-concrete recycling process due to the 
over-saturation of Ca. 

Since the Kyoto Protocol in 1997, countries of the world have been actively working to reduce 
carbon dioxide (CO2) emissions, which are emitted from power plants and industry [7,8]. Among 
possible strategies for reducing atmospheric CO2 concentrations, carbon capture utilization and 
sequestration (CCUS) technologies are the most available and widely-applied strategies [9]. The 
carbon mineralization process is an attractive carbonate-based mineral production technique for 
industries. In addition, it is also a CO2 sequestration technique to reduce CO2 atmospheric levels 
through the consumption of flue gas [10]. It also neutralizes alkaline solutions [8,11,12] and results in 
the production of useful carbonate-based minerals such as calcium carbonate (CaCO3). The carbon 
mineralization process in a Ca-rich solution occurs according to the following Reactions (1)–(4) [13–17]. 

CO2(g) → CO2(aq)      CO2 solvation (1) 

CO2(aq) + H2O ↔ H2CO3(aq) ↔ HCO3− + H+ ↔ 2H+ + CO32−  CO2 dissociation (carbonation) (2) 

Ca(OH)2(s) ↔ Ca2+ + 2(OH)−    Ca(OH)2 dissolution (3) 

Ca2+ + 2(OH)− + 2H+ + CO32− →	CaCO3(s) + 2H2O  Carbon mineralization (4) 

In aqueous solution, protons and carbonate ions are generated through dissociation of CO2 
(Equations (1) and (2)). The dissolution of Ca(OH)2 in concrete by the solubility product constant (Ksp 
of Ca(OH)2 = 5.5 × 10−6) results in several alkaline solutions (approximately pH 12.6) and Ca saturation 
in solution (approximately 800 mg/L) according to Equation (3). In the field plant, the solution pH 
and Ca concentration conditions could fluctuate on a daily basis. Protons produced in the carbon 
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The concrete sludge was strongly alkaline and rich in calcium (Ca) as a result of calcium
hydroxide (Ca(OH)2) dissolution from the concrete particles [5]. The air-dried solids, generated
from the solid-liquid separation and flocculation process, were discarded as they were considered to
have insignificant economic value. The supernatant from the flocculation process was reused in the
wet-based crushing processes, without further treatment. The best practice, from both environmental
and economic stand points, should include neutralization for discharge into streams or, ideally,
neutralization and reuse to remove cement paste in the wet process of waste concrete production.
Treatment using sulfuric acid (H2SO4) is commonly employed to neutralize alkaline wastewater,
because of the simplicity of the process. However, it does increases the agent cost consumption [6].
This added cost is a significant barrier to the development of the whole waste-concrete recycling
process. In addition, neutralization of the wastewater using acids, without Ca removal, is not effective
in removing cement paste from the aggregates in the waste-concrete recycling process due to the
over-saturation of Ca.

Since the Kyoto Protocol in 1997, countries of the world have been actively working to
reduce carbon dioxide (CO2) emissions, which are emitted from power plants and industry [7,8].
Among possible strategies for reducing atmospheric CO2 concentrations, carbon capture utilization
and sequestration (CCUS) technologies are the most available and widely-applied strategies [9].
The carbon mineralization process is an attractive carbonate-based mineral production technique for
industries. In addition, it is also a CO2 sequestration technique to reduce CO2 atmospheric levels
through the consumption of flue gas [10]. It also neutralizes alkaline solutions [8,11,12] and results in
the production of useful carbonate-based minerals such as calcium carbonate (CaCO3). The carbon
mineralization process in a Ca-rich solution occurs according to the following Reactions (1)–(4) [13–17].

CO2(g) → CO2(aq) CO2 solvation (1)

CO2(aq) + H2O↔ H2CO3(aq) ↔ HCO3
− + H+ ↔ 2H+ + CO3

2− CO2 dissociation (carbonation) (2)

Ca(OH)2(s) ↔ Ca2+ + 2(OH)− Ca(OH)2 dissolution (3)

Ca2+ + 2(OH)− + 2H+ + CO3
2− → CaCO3(s) + 2H2O Carbon mineralization (4)

In aqueous solution, protons and carbonate ions are generated through dissociation of CO2

(Equations (1) and (2)). The dissolution of Ca(OH)2 in concrete by the solubility product constant
(Ksp of Ca(OH)2 = 5.5 × 10−6) results in several alkaline solutions (approximately pH 12.6) and
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Ca saturation in solution (approximately 800 mg/L) according to Equation (3). In the field plant,
the solution pH and Ca concentration conditions could fluctuate on a daily basis. Protons produced in
the carbon mineralization process can be very effective in neutralizing alkaline solution from concrete
sludge. In addition, CaCO3 by-products produced by this process can be used in other industries
for cement production, paper filling/coating additives and plastic/paint manufacturing according
to purity and varying particle sizes [18,19]. Numerous studies have been undertaken recently on the
carbon mineralization processes using Ca-rich alkaline solution from various sources, focusing on the
production and characterization of CaCO3 particles (e.g., rhombic calcite, orthorhombic aragonite,
spherical vaterite; µ-CaCO3) [15,20–23].

In comparison, this study focuses on the development of an eco-friendly, alkaline wastewater
neutralization process without the use of acids. It was designed to sequester CO2 with CaCO3 and
to recycle the neutralized water through the carbon mineralization process in wet-based crushing
procedures. To this end, a laboratory-scale carbon mineralization process was designed to neutralize
wastewater generated from concrete sludge during the waste concrete recycling process (Figure 2).
The neutralized water, from which Ca ions were removed, is expected to be effectively recycled to
remove the cement paste absorbed into aggregate surfaces in the wet-based crushing/screening of the
waste-concrete recycling process.
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Figure 2. A schematic flow diagram of the neutralization of Ca-rich alkaline wastewater from a waste
concrete recycling process by carbon mineralization.

2. Materials and Methods

2.1. Characterization of Concrete Sludge

Approximately 3600 m3 of concrete sludge and wastewater are generated daily through
the wet-based crushing/screening process. The concrete sludge sample used in this study was
collected from a field construction waste treatment plant (CWTP) in Incheon, Korea. Sludge
moisture content was analyzed by weight loss with oven-drying at 105 ◦C until the weight did
not change. The pH and electrical-conductivity (EC) of the sludge were measured using calibrated
pH (ORION VSTAR-PH, Thermo Fisher Scientific Inc., Waltham, MA, USA) and EC meters (HQ40d,
HACH, Loveland, CO, USA). The sludge particles were separated according to Korean Standard
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Testing Method (KS F 2309) based on wet sieving using 70, 100, 200, 325 and 400 mesh, with sludge
solution instead of fresh water used to avoid further dissolution of minerals such as Ca(OH)2.
The particle size distribution was determined by weight loss at 105 ◦C for 24 h after separation
by wet sieving. Significant impurities were present in the less than 70 mesh sieve fraction (0.212 mm),
so the collected sludge was further separated by vacuum filtration using filter papers with a pore size
of 0.45 µm. After filtration, the liquid phase was kept at room temperature to prevent precipitation
of natural CaCO3 through a reaction between Ca in solution and atmospheric CO2. The residual
solids were completely dried at 105 ◦C for 24 h. The concentrations of aqueous Ca, K and
Na were measured with an inductively-coupled plasma optical emission spectrometer (ICP-OES,
Agilent, 720-ES, Santa Clara, CA, USA). The qualitative and quantitative analysis of sludge particle
mineralogy was performed by X-ray diffraction (XRD, Philips, X’pert MPD, Almelo, The Netherlands).
The chemical composition of the sludge was measured by X-ray fluorescence (XRF, MXF-2400,
Shimadzu, Kyoto, Japan). The XRD and XRF analyses were performed on oven-dried samples sieved
through 200 mesh (0.075 mm) after vacuum filtration and pulverization with a mortar and pestle.

2.2. Carbon Mineralization

2.2.1. Apparatus of the Carbon Mineralization Processing Reactor

In this study, a carbon mineralization process was designed to neutralize wastewater generated
from concrete sludge, and a schematic experimental flow diagram is provided in Figure 3. A batch type
acrylic-material based experimental reactor was manufactured with a volume of 3.0 L (Φ: 140 mm,
H: 200 mm) and a system created for measuring the solution pH and EC during the carbon
mineralization process. In addition, the reactor was sealed in order to measure the volume of venting
gas that had not reacted in aqueous solution to the injected gas volume and to prevent the gas leaking
from the reactor. The exact volume of CO2 gas flow was controlled by a mass flow controller (MFC-CO2)
and a mass flow management system (MFM-CO2). The total volume of gas venting was continuously
analyzed using a gas flow and pressure controller (GMC1200, ATOVAC, Yongin-si, Korea).
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Figure 3. A schematic experimental flow diagram of the carbon mineralization process (MFC: mass 
flow controller; MFM: mass flow management system; EC: electrical-conductivity). 

2.2.2. Carbon Mineralization Experiment 

The experimental conditions for all carbon mineralization experiments were as follows: 2.5 L of 
wastewater were reacted using a magnetic stirrer until the pH dropped to 8.5 at room temperature. 
The 99.9% CO2 gas flow rates (Jungang Gas Co., Ltd., Daejeon, Korea) were varied from 8–200 cc 
CO2/min/L (0.014–0.360 g CO2/min/L). Solution pH and EC, as well as the accumulated volume of gas 
venting to the injected volume of gas were measured during the experiments. After the experiments, 
the solution containing precipitates was immediately passed through a 0.45-µm paper with a vacuum 
filter press (0.6 MPa). The weight of the residual precipitates was measured after oven-drying at 105 

Figure 3. A schematic experimental flow diagram of the carbon mineralization process (MFC: mass
flow controller; MFM: mass flow management system; EC: electrical-conductivity).

2.2.2. Carbon Mineralization Experiment

The experimental conditions for all carbon mineralization experiments were as follows:
2.5 L of wastewater were reacted using a magnetic stirrer until the pH dropped to 8.5 at room
temperature. The 99.9% CO2 gas flow rates (Jungang Gas Co., Ltd., Daejeon, Korea) were varied from
8–200 cc CO2/min/L (0.014–0.360 g CO2/min/L). Solution pH and EC, as well as the accumulated
volume of gas venting to the injected volume of gas were measured during the experiments. After the
experiments, the solution containing precipitates was immediately passed through a 0.45-µm paper
with a vacuum filter press (0.6 MPa). The weight of the residual precipitates was measured after
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oven-drying at 105 ◦C for 4 h. The mineralogy and morphology of the precipitates were analyzed
by XRD and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS, 6380LA,
JEOL Ltd., Akishima-shi, Japan), respectively. All experiments were carried out in duplicate for
quality assurance.

2.3. Neutralized Water Recycling

In this study, the removal efficiency of the neutralized waste water by carbon mineralization
was evaluated in wastewater neutralized by carbon mineralization and subsequently reused in the
wet-based crushing of the waste-concrete recycling process. The laboratory-scale experiments using
a batch-type stirring vessel were carried out as follows: 15 g of raw-concrete powder (<75 µm; crushed
using a jaw-crusher) were added to 150 mL of raw concrete sludge solution and neutralized water
by the carbon mineralization processes (8, 40 and 200 cc CO2/min/L). The result was compared
with that of as-received sludge solution. Tap water was also used as a control test. The mixture was
mixed using a magnetic stirrer at 300 rpm for 2, 5, 10, 30, 60, 120 and 180 min at ambient temperature
under atmospheric conditions. At the specified time, 10 mL of mixture were sampled and then passed
through a syringe filter (0.45 µm). Solution pH and Ca concentration were measured from the filtrate,
as per Section 2.1.

3. Results and Discussion

3.1. Physicochemical Characteristics of the Sample

The physicochemical characteristics of the sludge sample are summarized in Table 1. The sludge
pH was strongly alkaline (approximately 12.2) due to the hydroxide ions generated from dissolution
of Ca(OH)2 contained in the cement (Equation (3)) [24]. The dissolved Ca ions in the concrete sludge
were also sourced from Ca(OH)2 in the cement. Here, the pH and Ca concentration in solution were
determined by the solubility constant of Ca(OH)2 (Ksp: 5.5 × 10−6) [17,25]. The sludge in this study
was at pH 12.2 and contained approximately 330 mg/L of Ca. The high concentration of dissolved
Ca2+, Na+, K+ and OH− in the sludge solution increased the EC to approximately 8.9 dS/m [26,27].
Quartz (SiO2), calcite (CaCO3) and the feldspar mineral albite (NaAlSi3O8) were identified by XRD
in dried sludge particles (Figure 4a) [3]. Portlandite (Ca(OH)2), present in the original concrete
(Figure 4b), was not observed in the concrete sludge XRD spectrum, possibly due to dissolution during
the wet-based crushing/screening process. In addition, quartz and feldspar, including albite and
microcline (KAlSi3O8), were derived from the mortar, the concrete production process or both [28,29],
and lime had carbonated with the atmospheric CO2 [30]. Less calcium oxide was present in the
concrete sludge compared with the concrete powder due to the dissolution of C3S, C2S, C3A, C4AF
and Ca(OH)2 (Figure 4b and Table 2).
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Table 1. Physicochemical properties of concrete sludge used in this study.

Parameter Value

pH 12.2
EC (dS/m) 8.9
ORP a (mV) −108.0

Moisture content (%) 92.5
Particle size distribution (wt %) (KS F 2309 b)

>70 mesh (>0.212 mm) 1.3
70–100 mesh (0.212–0.150 mm) 0.4

100–200 mesh (0.150–0.075 mm) 7.9
200–325 mesh (0.075–0.043 mm) 9.5
325–400 mesh (0.043–0.038 mm) 7.7

<400 mesh (<0.038 mm) 73.1

Elements in aqueous solution (mg/L)

Ca 333.9 ± 2.0
K 257.1 ± 1.4

Na 317.5 ± 0.0
a ORP: Oxidation Reduction Potential; b KS F 2309: Korean Standard Testing Method.

Table 2. Chemical composition of dried-solid particles in concrete sludge (XRF analysis).

Oxide
Composition (wt %)

Dried Concrete Sludge Raw Waste Concrete

SiO2 45.9 38.5
CaO 20.2 30.2

Al2O3 9.4 6.9
Fe2O3 3.0 4.1
MgO 1.5 1.8
K2O 2.3 1.9
LOI a 15.4 14.5

Others b 1.8 1.6
a Loss of ignition; b Na2O, TiO2, MnO and P2O5 included.

3.2. Carbon Mineralization

3.2.1. Changes in Solution pH and EC

Figure 5 tracks the changes in solution pH and EC with gas flow rate during the carbon
mineralization process. Protons generated by the carbonation reaction (Equations (1) and (2)) decreased
the solution pH while consuming OH− ions [31]. The total reaction time required to neutralize alkaline
solution pH was strongly dependent on the amount of CO2 gas injected [15]. These trends can be
explained by the difference in the amount of protons generated from bicarbonate and carbonate
reactions, following the dissolution of CO2 gas in aqueous solution. Azdarpour et al. [32] also reported
that an increase in CO2 gas pressure (i.e., an increase in CO2 gas injection) enhanced the carbonation
efficiency. In this current study, the protons that led to the decrease in solution pH were generated
by the formation of CO3

2−, not HCO3
−, above a solution pH of 8.5 [33]. The generation of CO3

2−

cannot be accelerated under a solution pH of approximately 8.0 due to the equilibria of the carbonate
system (i.e., acid dissociation constant: pKa). This phenomenon can be explained by the changes in
solution EC during the carbon mineralization process and used to indirectly understand the changes
in conductive ions in solution. Interestingly, solution EC rapidly decreased with the consumption
of Ca ions due to the precipitation of CaCO3. Finally, solution EC was maintained at approximately
2.90 dS/m in all experiments due to the remaining conductive ions, including Na and K in solution,
except where the gas flow rate was 200 cc CO2/min/L. Jo et al. [34] also observed that solution pH and
EC simultaneously decreased with reaction time during the carbonation process in Ca-rich solutions.
They reported that the decrease in solution EC was terminated due to the consumption of Ca ions
through CaCO3 precipitation. In the 200 cc CO2/min/L experiment of the current study, however,
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the solution EC rapidly increased from 3.07 dS/m (the lowest EC value) to 3.47 dS/m at the end of the
reaction. Han et al. [35] reported that CaCO3 produced by CO2 injection in the carbon mineralization
process was converted to a soluble form of Ca(HNO3)2 at solution pH below 8.3, hence the slight
increase in solution EC. This phenomenon might be interpreted as a stabilization of the final solution
pH around 8.0, due to continuous proton production by a significant amount of un-solvated CO2 gas,
even though the gas injection was stopped at solution pH 8.5. Chang et al. [36] reported that a higher
CO2 flow rate decreased carbonation conversion due to poor CO2 mass transfer between gas and
liquid phases; hence, the increase in Ca ions in solution with the dissolution of CaCO3 at a pH of
approximately 8.0 [37]. Consequently, under high gas flow conditions, gas injection control is crucial
for targeting the final solution pH to avoid re-dissolution of CaCO3.
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3.2.2. CO2 Sequestration

The overall results of carbon mineralization experiments, with changes in the CO2 gas flow rate,
are presented in Table 3. The consumption of the CO2 gas was calculated as in the following equation:

CO2 sequestration = (1 − Vout−accumulated
Vin−accumulated

) (5)

where Vin-accumulated and Vout-accumulated refer to the total volume of accumulated CO2 gas, injection
and venting, respectively. The amounts of total CO2 injection and venting were calculated based on
conditions at atmospheric pressure and a temperature of 20 ◦C.

Table 3. Overall results of carbon mineralization processes with changes in CO2 gas flow rates (2.5 L
of solution).
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Total CO2
Injection (g)

Total CO2
Venting (mg)

CO2 Sequestration
(1 − (Vout/V in))

Conc. of
Ca (mg/L)

Precipitated
CaCO3 (g)

8 65.0 2.9 2.38 7.33 1.00 2.64 2.69
16 32.0 2.9 2.09 13.74 0.99 3.00 2.60
24 22.0 2.9 2.23 59.52 0.97 5.76 2.64
32 16.2 2.9 2.33 120.87 0.95 6.58 2.58
40 13.3 2.9 2.35 129.11 0.95 7.55 2.66
80 7.5 3.0 2.72 212.44 0.92 23.13 2.50

200 3.4 3.5 3.05 463.33 0.85 53.21 1.78
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More than 85% of the CO2 gas injected into the solution was consumed in neutralizing processes.
Despite the reduction in the total reaction time required for neutralizing the alkaline solution pH,
the increase in CO2 gas flow accelerated gas venting to the atmosphere instead of solvation within
the aqueous solution. The continuous injection of CO2 gas resulted in a gradual increase in the CO2

gas venting due to saturation of carbonate ions with the decrease in Ca concentration in solution
(Figure 6). Jo et al. [38] reported that the increase in carbonation time (i.e., with a lower CO2 gas
flow injection rate) enhanced CO2 sequestration by slowing the decrease in solution pH. Furthermore,
the increase of CO2 gas flow accelerated the gas venting with higher residual Ca concentrations in
solution; thus, the amount of precipitated CaCO3 was reduced. This indicates that excessive CO2 gas
flow (200 cc CO2/min/L) favors the precipitation of vaterite, due to the lack of reaction time [14,15].
Hence, Ca was re-extracted into solution from the vaterite with the decrease in solution pH [34].
This appears to agree with the rapid increase in solution EC from 3.1 dS/m–3.5 dS/m and the increase
in Ca ions in solution.
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An efficient carbonation process requires optimal neutralizing conditions to balance CO2

sequestration, reaction time and dissolved Ca concentration remaining in solution. The relationships
between these parameters are graphed in Figure 7. The fitting results reveal a good correlation between
CO2 sequestration (R2 = 0.9996), reaction time (R2 = 0.9317), Ca concentration remaining in solution
(R2 = 0.9928) and CO2 gas flow rates. According to equations calculated from each correlation result,
the CO2 sequestration had to be 97.7% per total CO2 injection to achieve both pH neutralization and
over 99% removal of Ca from the solution. The required reaction time for this CO2 sequestration was
calculated at 32.4 min.

The amount of concrete sludge generated from the field treatment plant was approximately
3600 m3/day. The amount of CO2 gas sequestered by pH neutralization in the field plant was calculated
for each gas flow rate selected in this study. Based on high purity CO2 gas (99.9%), the expected amount
of CO2 gas sequestered was between approximately 21.3–26.7 and 0.1–4.0 tons CO2/day, at gas injection
rates of 8–200 cc CO2/min/L, respectively. In comparison, based on the low CO2 content (15 vol %) of
the flue gas discharged from coal-fired power plants, the amount of flue gas sequestrated and vented
would be calculated between approximately 142.3–177.7 and 0.5–27.0 tons flue gas/day, respectively.
In addition to the CO2 sequestration benefits of the carbon mineralization process, approximately
99.2% purity CaCO3 material could be produced. Applying the carbon mineralization process to
the field-scale treatment plant (3600 m3/day), it was calculated to produce between approximately
2.6 and 3.9 tons CaCO3/day. At a higher rate of CO2 gas injection, spherical vaterite formed within the
shortened reaction time (Figures 8 and 9). In contrast, a longer application of the carbon mineralization
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process, with a lower gas flow rate, resulted in the vaterite transforming to more stable calcite crystals
by reacting with water in the aqueous phase under atmospheric pressure conditions [18,39].
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The increase in CO2 gas flow rate may have a positive effect on operating time and power
consumption for the field-scale neutralization of alkaline wastewater. However, the high gas flow rate
could cause problems such as a reduction in the amount of precipitated-CaCO3 and an increase in gas
venting. Thus, when neutralized-water with a high Ca content is re-used, it could lead to a reduction
in the efficiency of the wet-based crushing method in the waste-concrete recycling process. This study
focused on the feasibility of neutralizing and re-using wastewater generated from concrete sludge
without using acids; a detailed field-scale investigation is required to understand the overall economy
of the process.

3.3. Evaluation of Neutralized Waste Water

The removal efficiency of cement paste from aggregates was evaluated using raw concrete sludge
solution before and after the suggested neutralization processes; it was also compared with the tap
water control. The changes in solution pH and Ca concentration, with time, are presented in Figure 10.
The waste water neutralized by carbon mineralization showed much lower Ca content as it was
consumed in CaCO3 production. Solution pH and Ca concentration rapidly increased initially for
tap water and neutralized water due to the dissolution of Ca(OH)2 in cement. However, they then
slightly decreased with time, which means that a natural CaCO3 precipitate was produced through the
reaction between atmospheric CO2 and Ca in solution. In the case of raw sludge solution, however,
pH did not increase significantly, and Ca saturation was observed. In addition, the maximum solution
pH and Ca concentrations were, for the most part, constant across the treatments due to Ca saturation
of the solution. This indicates that with a higher gas flow rate the Ca remaining in water neutralized
by carbon mineralization and raw sludge solution may have a negative effect on the removal Ca(OH)2

in cement from aggregates. Therefore, it should be possible to significantly manipulate the gas flow
rate in the carbon mineralization process to enhance the removal of cement paste from the wet-based
crushing process during the waste-concrete recycling process.
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4. Conclusions

In this study, the carbon mineralization processes were investigated as a function of CO2 gas
flow rates (8–200 cc CO2/min/L solution) to neutralize (target solution pH of 8.5) the Ca-rich alkaline
concrete sludge solution generated from the recycling of waste concrete using a wet-based crushing
process. Higher gas flow rates accelerated the drop in solution pH and EC; protons were generated
by the carbonation reaction, while Ca ions precipitated out of solution as CaCO3. However, a high
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gas flow could lead to problems such as CO2 venting to the atmosphere and an increase in soluble
Ca, as CaCO3 dissolved with a solution pH drop below the target pH of 8.5. In addition, water
neutralized by a carbon mineralization process with a high gas flow rate, which remained Ca enriched,
may not be efficient in the removal of cement paste (Ca(OH)2) from the wet-based crushing process
of the waste-concrete recycling process. Therefore, the control of gas flow into the solution should
be systematically manipulated in the carbon mineralization process to neutralize alkaline solutions
containing large amounts of Ca. This process could make significant environmental and economic
contributions by:

(1) Providing an eco-friendly neutralization process for the treatment of alkaline wastewater.
(2) Improving the cement paste removal process through the reuse of neutralized wastewater in the

wet-based crushing process.
(3) Sequestering CO2 in CaCO3.
(4) Producing, as a by-product, a commercially viable pure source of CaCO3.
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