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Abstract: The quantitative contribution of twinning to hardening behavior and its effect on crystal
orientation need to be explored in greater depth for design and forming of twinning-induced-plasticity
(TWIP) steel products. To address this issue, the characteristics of twinning formation in the plastic
deformation of Fe-30Mn-3Si-2Al TWIP steel are investigated in terms of intergranular misorientation
distribution using electron back-scattering diffraction (EBSD), which reveals that most deformation
twins adhere to the high-angle grain boundaries (HAGBs) of the face-center-cube (FCC) type
TWIP steel. Texture measurements are conducted to show a stable volume fraction of major
components including Goss, S and A orientations, while Copper shifts towards Brass orientation.
A crystal plasticity finite element (CPFE) model based on virtual polycrystalline microstructure
adopting representative volume element (RVE) is employed to simulate the deformation to reveal
the correlation between misorientation-dependent twinning and hardening behavior of TWIP steel.
The results demonstrate that the proportion of twinning hardening to overall hardening is larger than
slip hardening. The stability of texture evolution is simulated to predict the anisotropy of TWIP steel.
This research substantiates the twinning induced hardening and texture evolution in deformation of
TWIP steel and thus is essential for accurate prediction of the mechanical behaviors.
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1. Introduction

In automotive industries, development of new steels with desirable strength, ductility and
toughness has been a hot research topic. Recently, low stacking fault energy (SFE) austenitic high
Mn steels, which is regarded as a very attractive alloying element, has attracted a great deal of attention
driven by the weight reduction and energy and materials saving in this industrial cluster [1–5].
Particularly, the application of a new generation of high Mn steels with Al and Si additions,
called twinning induced plasticity (TWIP) steel, has been confirmed to efficiently realize weight
reduction and energy saving due to their good mechanical properties to facilitate the down size of part
dimension and size [3,6,7]. Greatly influenced by the content of chemical composition including Mn,
Al and Si, various deformation mechanisms called TWIP and phase transformation induced plasticity
(TRIP) effect related to the evolution of microstructure and crystallographic texture components should
be considered as an important issue to be explored and addressed in the deformation process [3,8].

In terms of low-to-moderate SFE, Grässel et al. [9] observed that the extensive deformation
twins play a dominant role for the austenitic high Mn steels alloyed with Si and Al. It is proposed
that the TWIP effect significantly influences the hardening behavior at macroscopic level through
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the interaction of dislocations gliding hindered by twinning boundaries when the Mn content
is more than 25 wt %; the Al content is about 3 wt %; the Si content is between 2 wt % and
3 wt %; and the C content is low [9]. The impressive strain-hardening of TWIP steels is caused
by various strengthening mechanisms, mainly consisting of dislocations glide and twinning [9],
dynamic strain ageing [10] and TRIP-effect [11]. Among these mechanisms, twinning has been
seriously taken into account and quantified to explain the strain hardening of TWIP steels, including
the texture hardening [12], the dynamic Hall–Petch hardening [13] and the Basinski-type hardening [14].
However, there is still no consensus on the fundamental mechanisms of strain hardening in TWIP steels
and the abovementioned studies strongly depend on the microstructural characteristics of twinning,
but this issue is still under debate. Thus, it is essential to determine the location and distribution of
twinning first. On the other hand, the deformation twins, which are regarded as an important lattice
defect of TWIP steels, strongly affects the microscopic evolution especially for the crystallographic
texture development in plastic deformation [15]. From the perspective of deformation mechanism,
a remarkable characteristic associated with the deformation twins is the sudden reorientation of
crystallites, leading to the preferred crystallographic orientation or texture component. Subsequently,
the evolution of crystallographic texture contributes to strengthening generally via slip activities,
known as texture hardening, to enhance the mechanical properties such as high strength and good
ductility [16]. Through the thickness addition of nano-twins, the accumulation of the twin volume
fraction could make contribution to crystallographic texture evolution [10], but how the deformation
twins affect the strain hardening via the texture development in the course of deformation has not
yet been extensively explored. Consequently, it is necessary to investigate the texture components
and deformation twins’ nucleation position first in the large plastic deformation process to establish a
close connection among deformation twins, crystallographic texture components and strain hardening.
However, this relationship has not been explored in greater depth and needs an in-depth investigation
to correlate the microstructural characteristics of twinning and textural evolution with strain hardening,
particularly for the Fe-Mn-Si-Al TWIP steels.

Since the anisotropy associated crystallographic texture is important in plastic deformation
processing [5,17], it is indispensable to know more about the relation between crystallographic texture
evolution and the microstructure formation and evolution. Currently, most studies on TWIP steels are
focused on this relationship of Fe-Mn-C and Fe-Mn-Si-Al steels [18,19] and the investigations are more
on the effect of crystallographic texture on deformation twins. Earlier experimental investigations
detailing the uniaxial tensile loading of fine-grained Fe-Mn-C TWIP steel have revealed that the
development of the pronounced <111> fiber in the tensile direction facilitates the formation of
deformation twins and maintains the strain hardening rate at a high level [20]. However, the influence
of twinning on texture development needs to be paid more attentions. For the Fe-Mn-Al-C TWIP
steels, Souza et al. suggested that the texture transition from copper to brass texture was observed at
higher reduction influenced by deformation twins with strong similarity to that found in Fe-Mn-C
TWIP steels [21]. However, this issue should be investigated for Fe-Mn-Si-Al TWIP steels. Compared
with Fe-Mn-C TWIP steels, the texture of Fe-Mn-Si-Al TWIP steels shows a great difference in tensile
deformation process due to the lower magnitude of the activated twin systems [22]. Furthermore,
Saleh et al. proposed that the texture measurement of Fe-Mn-Si-Al TWIP steels subjected to the uniaxial
tension demonstrated the characteristic double fiber texture for FCC materials, with a relatively
stronger <111> and a weaker <100> partial fiber parallel to the tensile axis [23]. However, a detailed
explanation of texture transition affected by twinning has not been studied in these studies.

Based on the long-range interactions of individual grains with the polycrystalline aggregate [24],
another widely used approach for predicting crystallographic texture is the viscoplastic self-consistent
(VPSC) plasticity model. Through applying predominant twin reorientation (PTR) schemes [25] and
CP (crystal plasticity) model proposed by Kalidindi [26] to deal with the twinning evolution, a VPSC
model was presented by Prakash et al. [27] to investigate the influence of deformation twins on
the crystallographic texture development after tensile loading. However, compared with Kalidindi
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model, a limited correspondence between the experimental texture intensity and the simulated
one obtained by the simulation using VPSC model and considering PTR scheme was concluded.
Consequently, Saleh et al. [23] applied a modified VPSC model to assess the contributions of perfect
and/or partial slip, twinning and latent hardening to evolution of the crystallographic texture in
TWIP steels and overcame the limited correspondence between experiment and simulation via proper
description of hardening parameters of various deformation systems. However, this “mean-field”
approach for VPSC model has limitation as there is no sufficient information about the specific
interaction between the individual grain and its neighboring grains [28,29]. Considering this limitation,
a non-homogenization scheme based CPFE method was proposed to represent the intragranular
microstructure and grain orientations. Furthermore, this approach facilitates taking into account the
grain morphology of metallic materials in microstructural simulation [30,31]. To model the relationship
between crystallographic texture and deformation twins’ evolution, Dancette et al. [32] employed a
“full-field” and experimental dataset based CPFE analysis to provide an improved prediction of the
texture development in uniaxial tension at macroscopic scale, and the relation between the volume
fraction of twins inside the individual grains and crystallographic texture at the grain level were
confirmed via EBSD measurement and CPFE simulation. The introduced crystal plasticity (CP) model
proved that it gives an improved texture prediction compared to the Taylor model for the deformation
at higher strain.

In the present study, the grain morphology, crystal orientation and crystallographic texture
evolution of Fe-30Mn-3Si-2Al TWIP steel under the uniaxial tensile deformation was studied via EBSD
measurement, especially for the deformation twins’ nucleation position and intra- and intergranular
deformation. The corresponding CPFE model considering slip and twinning interactions was then
proposed. Subsequently, the simulations using Voronoi based polycrystalline RVE microstructure with
crystal orientations were conducted to investigate the evolution of hardening behavior associated
with slip and twinning activity and further to discuss the effect of twinning on hardening and crystal
orientation, as well as the stability of the crystallographic texture development. This study links the
mechanical behaviors with microstructural change and texture evolution during deformation thereby
provides an accurate prediction of the shape of forming parts in deformation processing of TWIP steels.

2. Experiments and Characterization

2.1. Material and Experimental Procedure

The kind of Fe-Mn-Si-Al TWIP steel was selected as the case study material. A vacuum induction
furnace was used to manufacture the investigated steel with the chemical composition as listed in
Table 1, detected by the spectral analysis. The tensile specimens with the gauge length of 20 mm,
the gauge width of 10 mm, and the thickness of 0.5 mm were prepared by electron discharge machining
of the fabricated steel sheets. The samples were then suitably annealed at the temperature of 800 ◦C
for a fixed duration of 1 h and then followed by air cooling.

Table 1. Chemical composition (in weight percent) of the Fe-30Mn-3Si-2Al TWIP (twinning-induced-plasticity)
steel sample.

C Mn Si Al S P Ti Fe

0.11 30.5 2.88 2.34 0.013 0.007 ≤0.01 Bal.

The tensile tests were conducted on a mechanical testing system with the pre-set constant
crosshead speed of 6.9 × 10−3 mm/s in the tensile direction parallel to the rolling direction (RD).
The tests were done with the engineering strain of 0.05, 0.1, 0.2 and 0.4. During the deformation
process, a contactless laser extensometer was used to calibrate and measure the deformation strain of
the testing samples.
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Grain morphology and crystal orientation were characterized before deformation by using optical
microscopy (OM, Olympus, Beijing, China) and EBSD techniques, respectively. The specimens were
mechanically polished using the standard method along the longitudinal section (the plane normal to
transverse direction) and etched in an alcoholic solution consisting of 5% nitric acid. OM morphologies
demonstrated the equiaxed austenite grains with the average grain size of 30 µm (excluding twins)
for the homogenized sample shown in Figure 1. The samples were electrochemically polished in
5% perchloric acid alcoholic solution for EBSD preparation. The EBSD scans were run over an
area of 190 µm by 170 µm with the step size of 1 µm using a field emission Zeiss Auriga scanning
electron microscope (SEM, Zeiss, Oberkochen, Baden-Württemberg, Germany) with a HKL camera.
The total number of grains is about 100. The working distance was set to be 16 mm. The number
of data points considered for the calculation of the ODFs is about 38,711. Grain boundaries from
both the un-deformed and deformed specimens were identified with misorientation greater than 5◦

by a cleaning procedure consisting of grain confidence index standardization, whereas the standard
Brandon’s criterion [33,34] was used to identify the coincident site lattice boundaries. Furthermore,
the high-angle grain boundaries (HAGBs) in EBSD orientation maps were defined to have the
misorientation larger than 15◦ and the low-angle grain boundaries (LAGBs) have the misorientation
between 2◦ and 15◦. The EBSD data were used for calculation of the pole figures (PFs), inverse pole
figures (IPFs), orientation distribution functions (ODFs), and texture components. The grain size
was measured according to the criteria of grain reconstruction provided by the HKL Channel 5
software (Oxford Instrument, Witney, Oxon, UK). These results were applied to understand the crystal
orientations evolution and the crystallographic texture development in deformation process.

2.2. Results

2.2.1. Misorientation-Dependent Twinning Characteristics

Figure 1 shows the OM of the as-annealed TWIP steel and a large number of annealing
twin lamellae could be clearly distinguished in the microstructure. Statistical analyses show
Fe-30Mn-3Si-2Al-0.11C steel has an average grain size of ~30 µm. The subsequently EBSD observations
were conducted on RD × TD plane of the initial-state sample, providing crystal orientations, grain size
distribution, and confirmed that the sample has fine-grained structure as shown in Figure 2a,b.
The morphologies of the annealing twins are lath-shaped characteristically (Figure 2a), while the
deformation twins often appear in lenticular and its boundaries in clusters. The experimental (111),
(110) and (100) PF plots in Figure 2c indicated that the initial crystallographic orientations of annealed
specimen are approximately stochastic distributed scatters, which represents that weak textures exist
in the annealed samples.
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To efficiently determine the position of twin lamellae, it is established that twin lamellae is
often originated from a statistical distribution of defects in the grain boundaries [35,36]. Particularly
the grain boundary misorientation angle exhibits a significant influence on the probability of twin
nucleation. Thus, the locations of twin lamellae could be determined approximately via recording
the distributions of the intergranular misorientations angle. For the EBSD analysis, as illustrated
in Figure 3c, the misorientation angles between the adjacent grains of specimen with the tension
strain of 0.1 are above 15◦, and mostly above 60◦, which illustrates the majority of grain boundaries
belonging to HAGBs, including the twinning grain boundaries (TGBs). A visualization of grain
boundary misorientation of the sample with the strain of 0.1 is shown in Figure 4c. Indeed, the number
of HAGBs represented by red color code is larger than that of LAGBs highlighted by blue color code.
In addition, it is observed that, for the uniaxial tensile loading condition, mostly twin lamellae in the
FCC-type phase were originated in the HAGBs above 25◦.
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With the increase of strain to 0.4, as shown in Figure 3d, the misorientation angles above 60◦

exhibit a decreasing tendency from 55% to 40%. It is noted that the deformation twins are attached to
the HAGBs of the distorted grains, as labeled with arrows in Figure 4d. It could qualitatively conclude
that twin lamellae mostly adhere to HAGBs for a FCC-type TWIP steel undergoing uniaxial tensile
deformation. During the plastic deformation process, the deformation compatibility of neighboring
grains could lead to the activation of accommodative slip systems, twinning and the reorientation
of the parent grains. The lattice rotation in the near-boundary zones is impeded by neighboring
grains, resulting in the formation of lattice curvatures between the near-boundary zones and the center
zones of grains [37]. Thus, the substructures such as the uneven distributions of twinning boundaries
and twinning variants would cause heterogeneity within the individual grains. The intragranular
misorientations thus evolved with the strain from 0.1 to 0.4, as shown in Figure 3a,b, respectively.
It is noted that the major distributions of intragranular misorientation at the strain of 0.1 are located
in low angles (below 15◦) by comparing Figure 3a,b. With increasing tensile strain to 0.4, it is noted
that a similar statistical distribution of the intragranular misorientation could be observed except
for a slight difference in quantity. The change in the intragranular misorientation corresponds to
the stored energy of cold deformation and the formation of LAGBs. The detailed discuss is given.
The intragranular misorientation reflects strain generated during deformation with dislocation glide,
particularly related to the density of geometrically necessary dislocations [38,39]. With the increasing
strain from 0.1 to 0.4, the dislocation accumulation would occur at the grain boundaries via dislocation
gliding, which generates local stress and leads to inhomogeneous deformation at the grain boundaries.
The LAGBs are thus supposed to emerge.

In addition, the strain-induced intragranular misorientation is strongly related to the grain
orientation which changes constantly with the increasing strain [40]. It is also well-known that the
stored energy depends on crystallographic orientation and plays a significant rule in the formation
of texture [39]. Thus, the intragranular misorientation corresponds to the stored energy indirectly.
Based on the above analysis, the change of intragranular misorientation is closely related to the
formation of LAGBs and the stored energy.
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2.2.2. Crystallographic Texture Evolution

To get a complete description of the crystallographic texture evolution, ODFs were calculated
based on the experimental PFs using the series expansion method [41]. For the cold-rolled FCC-type
metallic materials such as TWIP steel investigated in the present study, it is well-established that the
main texture components generally consists of Cu-{112}<111>, S-type {123}<634>, Goss-{110}<001>
and Brass-{110}<112> components. To present the gradual transition of texture of the polycrystalline
FCC materials, the partially ideal and important texture components are labeled schematically for the
sections of ODFs with φ2 = 0◦, 45◦ and 60◦ in Figure 5, as well as the corresponding experimental
ODFs with the tensile strain from 0.05 to 0.4, as well as the initial state.
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As seen in Figure 5 with the strain of 0.05, the starting deformation texture is comprised mainly of
A ({110}<556>) orientation, Brass (B) orientation along α-fiber, as well as Copper (Cu) and S ({123}<634>)
orientation. With the greater tensile strain of 0.1, a pronounced increase in the intensity of the
A {110}<556> orientation was found in the α-fiber of φ2 = 45◦ ODF figures. Meanwhile, the B orientation
also shows an apparent increase in the intensity with the increasing tensile strain. With the strain
larger than 0.2, the main textures consist of Goss ({110}<001>) and B orientations. This observation is
consistent with the texture evolutions in the conventional FCC materials after uniaxial tension [23].
In addition, a weakened {112}<111> component is also identified. With the increase of tensile strain to
0.4, the main texture components are similar to those observed in the specimen deformed to the strain
of 0.2. However, the intensity of several orientations becomes stronger. At this level, an important
feature is the remarkable enhancement of the intensity for {112}<111> copper orientation. In addition,
another feature is the further decreasing {110}<556> A orientation.

To quantify the stability of the main textures in tensile deformation, the volume fraction of each
texture component is plotted as a function of tensile strain, as shown in Figure 6. Indeed, the Cu
and A components show a large majority comparing with G and B textures. It is noted that the
volume fraction of A and G orientations were found to remain nearly stable during the uniaxial tension
although there is a slight decrease with the strain of 0.1. However, the Cu orientation exhibits a large
decrease in volume fraction while a smaller increase in volume fraction is illustrated for B orientation.
Actually, the evolution of such a texture is mainly attributed to the occurrence of deformation twinning,
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despite of the fact that slip also contributes to the development of B orientation [42,43]. The Cu
orientation could twin to form the Cu twin orientation (552)<115>, which is transformed to the
Goss orientation, and, finally, to the B orientation [44,45]. Based on thisanalysis, as for TWIP steels,
Bracke et al. [43] have proposed that the Cu twin is the result of the twinning of Cu orientation, and it
is not resulted from any other deformation mechanism. Therefore, the presence of the B orientation in
TWIP steel can be attributed to twinning. Moreover, it was proposed that twinning leads to planar slip
and contributes to formation of B orientation [46].
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3. Microstructure-Based CPFE Modeling

3.1. Crystal Plasticity Model Including Slip and Twinning

It is well established that dislocations slip is considered as the main physical mechanism of crystal
plastic deformation at room temperature, as well as deformation twinning. Developed based on
dislocations and twinning evolution in crystals, the crystal plasticity (CP) constitutive model is widely
adopted to represent the macro- and microscopic evolution of polycrystalline materials, particularly
for representing the crystallographic texture development.

The basic framework including kinematics and dynamics adopted in the CP model follows the
work of Kalidindi et al. [47]. In this paper, the plastic flow rule is established using rate-dependent
approach. In the rate-dependent CP model, the shear rate of slip systems can be obtained directly by
the decomposition of shear stress [48]:

.
γ
α
=

.
γ0

∣∣∣∣ταsα

∣∣∣∣1/m
sign(τα) (1)

where τα denotes the resolved shear stress (RSS) on the slip system α. sα is the slip resistance for the
slip system α. m is the strain rate sensitivity factor.

.
γ0 is a reference slip shear rate, which is considered

to be the same for all the slip systems [49].
The similar power law is adopted to describe the evolution of the shear rate of twinning systems:

.
γ
β
=

.
γ
β
0

(
τβ

sβtw

)1/n

, if τβ > 0;
.
γ
β
= 0, if τβ ≤ 0 (2)

where sβtw and τβ represent the twin resistance in a twin system and the RSS of that twin system,
respectively. n is the strain rate sensitivity factor.

.
γ
β
0 is a reference shear rate of all the twinning systems.

The formulation of the hardening relation modeling of the evolution of FCC-type TWIP steel is
presented. It is assumed the ratio between twin and slip resistance can be a constant which depends on
the twin morphology based on the Hall–Petch explanation. Consequently, in this study, the twinning
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resistance is considered proportionally to slip resistance. The evolution of slip resistance of the αth slip
system is formulated as follows:

.
sα = hαs

(
1 − sα

sαs

)Nslip

∑
α=1

.
γ
α (3)

where hαs and sαs represent the hardening rate and the saturated value associated with the slip system
α, respectively. The extended hardening equations to capture the complex interactions of slip and
twinning are given by [50]:

hαs = hs

(
1 + C

(
∑ fβ

)b
)

(4)

sαs = ss0 + spr

(
∑ fβ

)0.5
(5)

where hs indicates the initial hardening rate, b and C denote the hardening parameters of twinning
system. ss0 represents the saturated value of slip resistance without twinning, spr indicates the
parameter to reflect the effect of Hall–Petch mechanism, and fβ describes the twin volume fraction of
the twinning system β.

The introduced CP constitutive model and integration algorithms are implemented numerically
into the commercial finite element code ABAQUS standard via a user-defined material (UMAT)
subroutine. A detailed Newton–Raphson iteration scheme could be seen in [7].

3.2. Establishment of Virtual Polycrystalline Microstructure

To represent the macro-scale response of specimen, a RVE model containing 100 grains, which are
approximately consistent with the grain number in EBSD experiments, was employed to reconstruct
the polycrystalline microstructure which considers the crystallographic orientation and morphological
feature, as shown in Figure 7a. This virtual polycrystalline microstructure is generated using an
open-source software package: Neper construct as the Voronoi tessellation model [51]. In Figure 7b,
the FE model of this polycrystalline microstructure contains approximately 14,200 linear tetrahedral
elements (C3D4 in ABAQUS, Dassault Systemes SIMULIA, Providence, RI, USA) since the use of
higher-order elements does not have a significant influence on the stress–strain field and the prediction
of crystallographic texture [52–54]. The polycrystalline model is then subjected to uniaxial tension up to
the strain of 0.4. The initial un-deformed microstructure is illustrated in Figure 7b and the dimensions
of the simulation model with 10 mm × 10 mm × 0.5 mm are given. As shown in Figure 7b, the simple
tensile test was performed by imposing displacement in the X direction (the rolling direction, RD)
with the lateral YZ plane fixed. Using trial and error tests, a set of the model material parameters
are illustrated in Table 2, which summarizes the final values adopted for the material parameters of
crystallographic slip and twinning together with elastic tensors. The methods for determining the
elastic tensors (C11, C12, and C44) of TWIP steel are referred to the studies by Pierce et al. [55] and
Gebhardt et al. [56]. In addition, the plasticity parameters (hs, Ss0, Spr, b, C, Sα

0 , Sβ
0 ) are calibrated

based on the stress–strain response. In the absence of enough experimental data to determine the
plasticity parameters, a low strain rate sensitivity m = 0.02 and a reference strain rate

.
γ0 = 0.001 s−1

are assumed [49]. The large hardening in the experimental response reveals a large initial hardening
rate (hs = 180 MPa) and a large saturation hardness (Ss0 = 300 MPa). With the calibrated material
parameters obtained by fitting the stress–strain curves performed with the strain of 0.4, the crystal
orientations can be predicted to conduct the simulation.
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Table 2. Material parameters in the constitutive relations calibrated for TWIP steel.

Initial hardening rate of slip system hs (MPa) 180
Saturated value of slip resistance without twinning Ss0 (MPa) 300

Hardening index of twinning b 2
Hardening coefficient of twinning C 10

Effect of Hall–Petch mechanism Spr (MPa) 300
Initial slip resistance Sα

0 (MPa) 120
Initial twinning resistance Sβ

0 (MPa) 139.2
Elastic constant C11 (GPa) 198
Elastic constant C12 (GPa) 125
Elastic constant C44 (GPa) 122

Rate sensitivity coefficient m 0.02
Reference shear rate

.
γ0 (s−1) 0.001

3.3. Evaluation of the CPFE Model

It is noted that the conventional way to calibrate the CPFE constitutive parameters in simulation
is to establish a FE model which assumes that all elements consist of the same number of representative
crystallographic orientations. However, the grain morphology such as intra- and intergranular
misorientations could not well be reflected. Furthermore, the local deformation induced by individual
grain properties also could not be reproduced. In this research, individual grains with orientations is
generated and meshed in the FE model. Due to the limited computing power for simulations, modeling
of a macroscopic specimen containing millions of grains and is then implemented within a FE model
is difficult. Consequently, a RVE model containing grain morphology is proposed to represent the
mechanical behavior of the macroscopic testing samples.

In this RVE model, each grain represents a specific crystallographic orientation and is composed
of many elements. Instead of the conventional approach which directly assigning all the EBSD crystal
orientations into RVE grain set, the crystal orientations used in this research were generated from
discretizing ODFs using MTEX toolbox [57] in order to represent initial texture and to avoid the
difficulty of selecting appropriate experimental orientations [58]. Subsequently, these orientations
representing the texture were assigned to the RVE grains to describe an inhomogeneous material.
Based on the microstructure and texture, the RVE model could capture the anisotropy characteristics
of TWIP steel to bridge the gap between experiments and simulations.

To consolidate the simulated reliability, the comparison between the simulated and experimental
intergranular misorientation and intragranular misorientation at the strain of 0.4 are shown in Figure 8.
It is noted that a similar distribution of intergranular misorientation obtained by CPFE and EBSD could
be observed. Meanwhile, the major boundary misorientation angles are above 15◦, indicating there
are a large number of HAGBs, as shown in Figure 8a. However, in Figure 8b, both the simulated and
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experimental intragranular misorientation shows a high frequency of the low misorientation angle
below 15◦, which represents the approximate homogeneous orientation within the individual grain.
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Figure 8. Comparison between simulated and experimental: (a) intergranular misorientation;
and (b) intragranular misorientation at a strain of 0.4.

Based on the reliability of the established RVE model, as shown in Figure 9, it could be observed
there is a good fitting to the experiments in terms of the stress–strain curve. Although there is a slight
deviation with the true strain above 0.25, the hardening trend of the numerical simulation captures
the main features of the experimental measurement. In this research, the modeling of initial grain
orientations was simplified, but the experimental texture evolution indeed contributes to the hardening
effect. In addition, although the serrated stress–strain curve has not yet appeared until the strain of 0.3,
the dynamic strain aging might be taken place at larger strains probably. If so, the dynamic strain aging
might make contributions to the overall hardening, which leads to a deviation between simulation
and experiment. Finally, the coarse meshes and the calibrated parameters should be mentioned as the
probable factors which could result in the deviation for the curves.
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Figure 9. Comparison between simulation results by CPFE (crystal plasticity finite element) and
experimental results from EBSD.

It is well established that twinning is considered as a significant role in the forming process of TWIP
steels and its formation was dramatically influenced by the crystal orientations [20,22]. In addition,
the evolution of microstructure (e.g., twinning) and texture components strongly relies on the crystal
rotation. On the other hand, crystal orientations could be regarded as strong evidence to further
verify the developed microstructure-dependent CPFE model. Then, a comparison of the simulated
and measured PFs at different strains has been conducted in Figure 10. Figure 10 illustrates that the
proposed CPFE model captures the main features of grain orientations of TWIP steels after the uniaxial
tensile deformation to the strain of 0.4 well. It confirms that the macroscopic response and microscopic
grain orientation distributions can be predicted and simulated by the microstructure-dependent CPFE
model via introducing the initial experiment-based crystal orientations.
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with the strain of 0.4.

4. Simulation and Discussion

4.1. Effect of Twinning on Hardening Evolution

The FE simulations of uniaxial tension were employed to validate the CP model for describing
the twinning effect on hardening behavior and the evolution of slip and twinning in micro level,
respectively. The equivalent von Mises stress distribution was calculated by the proposed CPFE model.
It could be observed that there are non-uniform stress fields caused by various crystal orientations.
In order to articulate the contributions of slip and twinning to the hardening evolution in each grain
with experiment-based crystallographic orientation, the plot of the evolution of slip resistance is
compared with the evolution of twin volume fraction to represent the individual hardening effect
of slip and twinning to overall von Mises stress distribution in the simulated microstructure for the
specimen deformed to the strain of 0.4, as shown in Figure 11.
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The heterogeneous distribution of slip resistance exhibits a similar appearance compared with
that of twin resistance, while the twin resistance shows a higher average intensity than slip resistance,
shown in Figure 11b,d. It is noted that the similar distribution of von Mises stress and twin volume
fraction was observed in simulation, as seen within the white dashed line region in Figure 11a,c.
The proportion of twinned region to the overall RVE model is statistically 40% approximately
according to the ratio of twinned grains to whole grains. Particularly, in Figure 11c, the grain with
red color represents twin volume fraction shows a relatively higher value than other twinned regions,
which shows the stress concentration. It indicated that the deformation twinning plays a significant
role in the hardening effect of TWIP steel during uniaxial tensile process.

It is noted that, in Figure 12, the evolution of slip resistance and twin resistance represent an
approximately parallel increasing trend, but the magnitude of twin resistance with initial value is
larger than that of slip resistance. In Figure 12, the proportion of hardening due to twinning to overall
hardening shows a decreasing trend with the increasing strain. Twins are considered as undeformable
hard particles in austenitic matrix, acting as new obstacles for dislocation motions, leading to the
so-called dynamic Hall–Petch effect. The obstacles including twinning boundaries impeded the
dislocation slip so that the slip increment decreased and caused a reduced proportion of slip hardening
to overall hardening.

Initiation of deformation twinning contributes to strain hardening through a dynamic Hall–Petch
effect limiting the dislocation mean free path and consequently enhancing dislocation storage.
However, with the increasing strain, when the twin volume fraction reaches the saturated value,
this effect is not obvious. As shown in Figure 12, it is noted that a decreasing trend of the twinning
hardening curve appears with the increasing strain, exactly revealing that the twin volume fraction
gradually reaches the saturated value. Thus, the strengthening mechanism “dynamic Hall–Petch effect”
caused by twinning provide limited contributions to overall hardening. However, to accommodate
the further plastic deformation, the larger deformation resistance is needed, which leads to a higher
strain hardening. On the other hand, based on the analysis of texture evolution, the presence of
the Brass orientation in TWIP steel can be attributed to twinning. Generally, the twinned domain
crystal lattice orientation, namely Brass orientation, is harder from the parent grain crystal orientation
relative to the loading direction, which could be considered as the twinning induced texture hardening.
Thus, the strain hardening of the studied TWIP steel is dominated by the combined influences of
dynamic Hall–Petch effect at the initiation of deformation twinning and texture hardening when the
twin volume fraction reaches the saturated value.
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Based on the qualitative and quantitative analyses of the micro-deformation mechanisms and
hardening behavior, for polycrystalline materials such as TWIP steels, the plastic deformation induced
twinning leads to a decrease of the effective dislocation glide distance, which results in the “dynamic
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Hall–Petch effect”, leading to a pronounced increase of strain hardening. In addition, the intragranular
twinning evolution including twins’ nucleation, propagation and growth has a significant influence on
the strain hardening [59], which needs to be investigated in-depth in the further study. The mechanism
is given as follows. Twins are assumed to nucleate at grain boundaries, and then propagate rapidly
across the grain to form twin bands. At the end of propagation stage, the formed twin bands grow with
further deformation. It is noted that stress relaxation appears during propagation stage immediately
after twin nucleation and a linear strain hardening during twin growth process would occur [60].
The activity of the slip and twinning systems was performed to investigate the individual contribution
of slip and twinning to hardening, respectively. All the slip and twinning systems in the FCC-type
TWIP steels are shown in Table 3.

Table 3. Twelve slip systems and twelve twinning systems of TWIP (twinning-induced-plasticity) steel.

Deformation
Mechanism Symbol Plane Direction Symbol Plane Direction

Slip systems

a1 (111)
[
011
]

b1
(
111
) [

011
]

a2 (111)
[
101
]

b2
(
111
)

[101]
a3 (111)

[
110
]

b3
(
111
) [

110
]

c1
(
111
) [

011
]

d1
(
111
) [

011
]

c2
(
111
)

[101] d2
(
111
) [

101
]

c3
(
111
) [

110
]

d3
(
111
)

[110]

Twinning
systems

t1 (111)
[
112
]

u1
(
111
)

[112]
t2 (111)

[
211
]

u2
(
111
) [

211
]

t3 (111)
[
121
]

u3
(
111
) [

121
]

v1
(
111
)

[211] w1
(
111
)

[121]
v2

(
111
) [

121
]

w2
(
111
) [

211
]

v3
(
111
) [

112
]

w3
(
111
) [

112
]

As shown in Figure 13a, it could be observed that there is symmetric slip systems activation since
the resolved shear stress of each slip systems meets the critical value during the tensile deformation.
However, with the increase of strain up to about 0.3, the magnitude of slip activity of the slip systems
designated as d1, a1 and b1 remains at a low level. In Figure 13b, it is noted that the twinning systems
denoted as v2, v3, u1, u3, t1 and w3 play a dominative role in hardening evolution, and the hardening
is attributed to the fact that it is the twinning boundaries of system that impedes the movement of the
dislocations slip and results in the dislocations pile-up, leading to an increasing hardening effect.
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Figure 13. (a) Active slip systems; and (b) twinning systems of the testing sample predicted by
simulation with the engineering strain of 0.4.
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4.2. Effect of Twinning on Crystal Orientation

The influence of slip and twinning on hardening was investigated and demonstrated that twinning
has a larger effect on overall hardening. To determine whether microstructural evolution such as the
change of crystallographic orientation is influenced by twinning, a comparison of PF plots predicted
by CPFE model without twinning and considering the effect of twinning is given in Figure 14. It is
noted that with twinning effect, the scattered orientations in the (111), (110) and (100) PFs obtained
from CPFE model considering only slip rotated 90◦ clockwisely. The occurrence of twinning induced
crystals reorientations is shown in Figure 14b. A distinct texture occurred is also shown in the figure.
In TWIP steels, deformation twinning appears to transform the Cu component into the Brass-type
one. Through the thickness addition of nano-twins, the accumulation of the twin volume fraction
occurs. This contribution of twinning to crystallographic texture evolution stems from the effect of
twins on the {111} <110>-type slip [10]. In turn, the developments of Cu and Goss components favor
twinning. Additionally, twinning also affects the texture development through the generation of new
orientations. Therefore, to make a precise prediction of texture evolution, it is essential to introduce
twinning into CPFE modeling since twinning has a significant influence on texture evolution.
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4.3. Evolution of Texture Components

As is well known, the anisotropy associated with texture components consisting of Cu and
Brass components, influenced by the deformation twinning evolution, plays a significant role in
the plastic processing via texture hardening [61]. With the increasing tensile deformation at room
temperature, texture components would change significantly due to the evolution of twinning and
crystal orientations. To investigate the stability of texture, component evolution could provide a basis
for predicting the anisotropy of Fe-Mn-Si-Al TWIP steel. The simulated textures are presented in
terms of φ2 = 45◦ sections of the ODFs in the space of Euler angles (φ1, Φ) ≤ 90◦ via the proposed
CPFE model. The final texture components of the samples after uniaxial tension test are shown in the
Figure 15. In the ODF plots, it is noted that the strong A and Brass components along the α-fiber could
be noticed at the strain of 0.05 and 0.1 in the EBSD observation of TWIP steels, meanwhile, a weak
Goss component along the α-fiber could be seen in the simulation results at the strain of 0.05, as shown
in Figures 5 and 15. However, only the Brass texture component along the α-fiber is found at the strain
of about 0.4, since the Cu orientation rotates to Goss through Cu twin, and finally leads to an increasing
of B orientation with the straining. The Goss, Brass and A orientations are dramatically influenced by
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twinning formation and its evolution. In the ODF plots of each strain, the φ2 section at 45◦ exposes a
strong Copper component along the τ-fiber, which indicates that the Copper texture is the major part
among the deformation textures. Consequently, this CPFE model prediction captures the changing
characteristics of the textures named A, Brass and Copper components in measurement and this
prediction is similar to those reported previously for the Fe-24Mn-3Al-2Si-1Ni-0.06C TWIP steels [23].
Furthermore, the γ-fiber <111>//ND, with relatively low intensity about 3.0, could be observed in
simulation at the strain of 0.1 but disappear with the tensile strain up to 0.4. Thus, this weak γ-fiber
could be ignored in the analysis of texture evolution and, further, its influence seems little during the
forming process [62]. With the given crystal orientations, the CPFE model describes the main texture
components observed in the experimental results although the grain numbers are limited to represent
the complete textures. Furthermore, to simulate and predict the anisotropy under uniaxial tension via
the texture evolution more precisely, a complex polycrystalline structure with realistic grain properties
including grain boundaries must be incorporated in the CPFE simulations.
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5. Conclusions

By using SEM-based EBSD technique and CPFE model, the characteristics of twinning nucleation
and its influence on hardening behavior and crystallographic texture evolution of the Fe-Mn-Si-Al
TWIP steels in uniaxial tensile deformation were investigated. The following concluding remarks can
be drawn:

1. The formation of HAGBs detected by intergranular misorientation distribution could promote the
deformation twin lamella nucleation for a FCC-type TWIP steel in uniaxial tensile deformation.

2. Twinning promotes the crystal orientation rotation but has less impact on the intensity of crystal
distribution compared with no twinning effect. Furthermore, the texture components including
the Goss, S and A orientations show a stable volume fraction, while the Cu orientation shifted
towards Brass orientation.

3. The strain hardening of the studied TWIP steel is dominated by the combined influences of
dynamic Hall–Petch effect at the initiation of deformation twinning and texture hardening when
the twin volume fraction reaches the saturated value.
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