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Abstract: The structural, electronic and elastic properties of B2 structure Hafnium compounds
were investigated by means of first-principles calculations based on the density functional theory
within generalized gradient approximation (GGA) and local density approximation (LDA) methods.
Both GGA and LDA methods can make acceptable optimized lattice parameters in comparison
with experimental parameters. Therefore, both GGA and LDA methods are used to predict the
electronic and elastic properties of B2 HfX (X = Os, Ir and Pt) compounds. Initially, the calculated
formation enthalpies have confirmed the order of thermodynamic stability as HfPt > HfIr > HfOs.
Secondly, the electronic structures are analyzed to explain the bonding characters and stabilities in
these compounds. Furthermore, the calculated elastic properties and elastic anisotropic behaviors
are ordered and analyzed in these compounds. The calculated bulk moduli are in the reduced order
of HfOs > HfIr > HfPt, which has exhibited the linear relationship with electron densities. Finally,
the anisotropy of acoustic velocities, Debye temperatures and thermal conductivities are obtained
and discussed.

Keywords: Hf-based intermetallics; elastic properties; density functional theory; first-principles
calculations

1. Introduction

Hafnium and Hafnium compounds can be used as the tools and parts in the nuclear power
plants due to their high neutron cross sections [1], and medical implants and other medical industry
applications owing to their excellent mechanical properties, high corrosive resistant ability and
biocompatibility [2]. With the growing importance of Hafnium compounds, the studies on the
theoretical and experimental aspects of these compounds have increased [3–9]. Levy et al. [3] performed
a comprehensive study in the structural and thermodynamic properties of binary Hf compounds
using ab initio calculations. Among them, the B2 structure is one of the most typical crystal structures
for HfX compounds. For example, Novakovic et al. [4] studied the electronic structures, cohesive
energies and formation enthalpies of B2 structure HfTM (TM = Co, Rh, Ru and Fe) compounds using
ab initio full-potential linearized augmented plane waves calculations. Iyigör et al. [5] reported
the structural, electronic, elastic and vibrational properties of HfX (X = Rh, Ru and Tc) using the
plane-wave pseudopotential density functional theory via VASP codes. Xing et al. [6] investigated
the structural phase stabilities of B2 phases and formation enthalpies of HfM (M = Ir, Os, Pd, Pt, Ru,
Rh) using VASP codes. Wu et al. [7] studied the structural, elastic and electronic properties of HfRu
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compound theoretically. Although the structural features of B2 HfX (X = Os, Ir and Pt) compounds have
been achieved discussed experimentally [10–12] and theoretically [6,13,14], the elastic and electronic
properties of HfX (X = Os, Ir and Pt) compounds are rarely reported and assessed to our knowledge.

Therefore, this work has been organized as the following description. In Section 2, the computational
methods of binary HfX (X = Os, Ir and Pt) compounds are presented. In Section 3, the results and discussions
are exhibited and analyzed, including structural properties, electronic structures, elastic constants, elastic
properties, elastic anisotropy, anisotropic sound velocities, Debye temperatures and thermal conductivities.
In Section 4, the conclusions are made in detail.

2. Computational Information

The first-principles calculations based on the pseudopotential plane-wave within density
functional theory (DFT) were performed using CASTEP (Cambridge Sequential Total Energy
Package) codes [15,16]. The ultrasoft pseudopotential was adopted to simulate the ion-electron
interaction [17]. Both generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof
(PBE) functional [18,19] and the local density approximation (LDA) functional with the form
of Ceperley-Adler parameterized by Perdew and Zunger [20] were utilized to model the
exchange-correlation. The basis sets have included atom states of Hf5d26s2, Os5s25p65d66s2,
Ir5d76s2 and Pt5d96s1. With respect to cutoff energies and k-points, a series of convergence studies
were performed. Afterwards, the cutoff energies were set at 400 eV. Besides, the special points
sampling integration over the Brillouin zone was employed using Monkhorst-Pack method [21] with
determined k-point separation of 0.02/Å in three lattice directions for each compound. Furthermore,
the minimization scheme proposed by Brodyden-Fletcher-Goldfarb-Shanno (BFGS) was used during
geometric optimization [22]. The tolerances of the geometrical optimization has to meet conditions,
including the maximum ionic displacement ≤ 5.0 × 10−4 Å, maximum ionic force ≤ 0.01 eV/Å,
maximum stress ≤ 0.02 GPa, and the difference of total energy ≤ 5.0 × 10−6 eV/atom. Followed by
geometric optimization, the total energy and electronic structure were computed using self-consistent
field tolerance of 5.0 × 10−7 eV/atom. Correspondingly, the lattice constants and atom coordinates
were optimized via minimizing the total energy. At equilibrium structures, the corrected tetrahedron
Blöchl method was utilized to derive the total energies [23].

3. Results and Discussion

3.1. Structural Properties

HfX (X = Os, Ir and Pt) compounds are in the (CsCl type) Pm3m space group, correspondingly.
In an HfX unit cell, an Hf atom locates at 1a (0, 0, 0) and an X atom stays at 1b (0.5, 0.5, 0.5).
In order to obtain structural properties of HfX compounds, the geometric optimizations are made
firstly. The equilibrium lattice constants using both GGA and LDA methods are tabulated in Table 1,
along with the available experimental [10–12] and theoretical [6,13,14] values for reference. Generally,
the qualities for structural optimizations in HfX compounds using both GGA and LDA methods are
comparable and acceptable. In detail, the optimized lattice constants for HfOs and HfIr are in good
agreement with theoretical values [6,13,14], respectively. For HfOs and HfIr, the LDA computed values
are more approaching to the experimental value. On the other aspect, the GGA method can give better
optimized values than the LDA method in HfPt. Therefore, either method shows obvious superiority
in the structural optimization of HfX compounds. Resultantly, both GGA and LDA methods are used
in the following theoretical studies for HfX compounds.
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Table 1. The optimized (atheo) and experimental (aexp) lattice constants, calculated deviations, bulk
moduli (B0) and its pressure derivatives (B0’), and formation enthalpies (Hf) for HfX (X = Os, Ir and Pt).

Compounds atheo (Å) aexp (Å) Calculated Deviation (%) B0 (GPa) B0‘ Hf (eV/atom)

HfOs

3.291 a 3.239 c 1.600 a 234.3 a 4.43 a −0.474 a

3.236 b - −0.083 b 266.2 b 4.47 b −0.451 b

3.294 d - - - - −0.495 d

3.257 e - - - - −0.707 f

- - - - - −0.793 g

- - - - −0.484 ± −0.052 h

HfIr

3.311 a 3.21 i 3.143 a 220.9 a 4.66 a 0.807 a

3.253 b - 1.331 b 255.6 b 4.69 b −0.769 b

3.275 g - - - - −0.977 g

- - - - - −1.016 ± −0.016 j

HfPt

3.359 a 3.3623 k −0.096 a 191.6 a 4.64 a −0.903 a

3.298 b - −1.907 b 221.7 b 4.66 b −0.900 b

- - - - −1.063 g

- - - - - −1.175 ± −0.062 j

a Theoretical values from GGA method in current work; b Theoretical values from LDA method in current work;
c Experimental values from reference [10]; d Theoretical values from reference [14]; e Theoretical values from
reference [13]; f Theoretical values from reference [3]; g Theoretical values from reference [6]; h Experimental
values from reference [24]; i Experimental values from reference [11]; j Experimental values from reference [25];
k Experimental values from reference [12].

Under increasing pressures from 0 to 25 GPa with per step of 5 GPa, the relative changes of (a)
lattice constant and (b) unit cell volume for HfX compounds using GGA method are exhibited in
Figure 1. In Figure 1a, the relative change of lattice constant (a) for HfPt is alternated larger than HfIr
and HfOs under growing pressures. Similarly, the unit cell volume (V) changes larger in HfPt than
HfIr and HfOs under pressures (Figure 1b). Therefore, the obtained pressure volume curve for each
compound is formulated to a third-order Birch-Murnaghan equation of state (EOS) [26]:
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For HfOs, HfIr and HfPt, the fitted bulk moduli (B0) are 234.3 GPa, 220.9 GPa and 191.9 GPa,
and their pressure derivatives (B0’) are 4.43, 4.66 and 4.64, accordingly. As a result, the bulk moduli are
in the sequence of HfOs > HfIr > HfPt. Using LDA method, the bulk moduli are still in the order of
HfOs > HfIr > HfPt, as exhibited in Table 1.
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The thermodynamic stability is closely associated with formation enthalpy in binary compounds.
To evaluate the thermodynamic stability of a compound, the formation enthalpy (Hf) is expressed by
the following equation [27,28]:

HHfX
f =

EHfX
f − EHf − EX

2
, (2)

where EHfX
f is the total energy of an HfX unit cell including an Hf atom and an X atom with equilibrium

lattice parameters (X = Os, Ir and Pt); EHf and EX are the total energy per atom of pure element solids
at their ground states. Hf and Os are HCP metals, and Ir and Pt are FCC metals at ground state.

The negative formation enthalpy has denoted that the chemical process is exothermic, indicating
the stability of resulted compounds. Moreover, the larger negative formation enthalpy has signified
better stability of a compound [29]. In Table 1, the formation enthalpies of HfX compounds are
tabulated. Generally, HfX compounds should be stable owing to their negative formation enthalpies
derived from GGA and LDA methods. Furthermore, their thermodynamic stabilities are both in the
order of HfPt > HfIr > HfOs. This conclusion is the same with Xing’s work [6]. In detail, the Hf values
calculated by GGA method are typically more negative than LDA method. For HfOs, the calculated Hf
value by GGA method is in good consistency with experimental value [24] and theoretical value from
Liu’s work [14], but smaller than Xing’s [6] and Levy’s [3] reports. For HfIr and HfPt, our calculated
Hf values are both smaller than theoretical values from Xing’s work [6] and experimental values from
Gachon’s report [25]. Nevertheless, the crystal structures for HfIr and HfPt are not mentioned in this
experimental work [25], which has degraded the reference value of this experimental work.

3.2. Density of States

The analyses on the total and partial density of states (DOS) are performed to further study
the bonding characteristics and underlying mechanism of the structural stability of HfX compounds.
Therefore, the total DOS (TDOS) and partial DOS (PDOS) computed by GGA method are presented
and discussed herein. In Figure 2a, the Fermi level (EF) is plotted at zero energy in all TDOS and
PDOS spectra. Typically, there is not any energy gap identified near Fermi level for HfOs (Figure 2a),
HfIr (Figure 2b) and HfPt (Figure 2c) in the TDOS, suggesting their essence of metallicity.

In the TDOS for HfOs (Figure 2a), the bonding interactions are dominated by the hybridization of
Hfs and Oss states at −10 to −6 eV at the bonding states. Around the bonding states, the Osd states
as the major role have intensively hybridized with the Hfd states as the minor role below the Fermi
level. The two states have changed their roles in the hybridizations of above the Fermi level at the
antibonding states. Around the Fermi level, a valley referring as a pseudogap, which is symbolized as
the presence of covalent bonds [30,31], is considered to be the most observable feature in the TDOS.
The pseudogaps have existed in the TDOS for HfOs (Figure 2a), HfIr (Figure 2b) and HfPt (Figure 2c),
although their locations are different on energy scales. The pseudogap is located at the antibonding
states for HfOs (Figure 2a), at the bonding states for HfIr (Figure 2b), and at the bonding states with
the more negative energy states for HfPt (Figure 2c). Such differences should suggest HfOs has the
least bonding stability.

For the sake of judging the structural stability of HfX compounds, the number of bonding electrons
per atom is calculated based on the TDOS spectra. Since the charge interaction among bonding atoms is
the critical factor to material’s stability, the compound possessing higher number of bonding electrons
should be more structurally stable [32–35]. For HfOs, HfIr and HfPt phases, the number of bonding
electrons per atom are 6.013, 6.493 and 6.995, accordingly. Conclusively, the HfX phases have the
stability order of HfPt > HfIr > HfOs. This conclusion is in good accordance with the thermodynamic
analysis shown in Table 1.
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3.3. Elastic Properties

The elastic constants and elastic moduli are the critical information to study the mechanical
properties of compounds. A full set of elastic constant for cubic crystal, including C11, C12 and C44,
can be achieved using the stress-train method [36] (Table 2). Observably, the elastic constants obtained
by LDA method are larger than GGA method in HfX compounds. In HfOs, the elastic constants
derived from GGA method has agreed well with theoretical values from Arıkan’s [13] and Liu’s
work [14]. Meanwhile, the elastic constants for pure Hf metal are calculated and presented with the
published experimental values [37] for comparison, where the GGA computed elastic constants are in
better agreement with experimental values [37].

In order to analyze the elastic properties of HfX compounds, the elastic constants generated using
GGA method are used as the example. C11 is the symbol of compressive resistance along x axis. In each
compound, the calculated C11 has the largest value, indicating the incompressible essence of the
compound under the x direction uniaxial stress [38]. HfOs has the most incompressible ability owing
to the largest C11 (402.1 GPa). Moreover, a larger C44 (121.0 GPa) can reflect a stronger resistance to
monoclinic shear in (100) plane, suggesting HfOs also has the strongest ability to resist shear distortion
in (100) plane.
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Table 2. The elastic constants (Cij) for HfX (X = Os, Ir and Pt).

Compounds C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

HfOs

402.1 a 149.7 a - - 121.0 a

436.5 b 179.3 b - - 130.5 b

393.7 c 139.8 c - - 110.1 c

366.1 d 152.6 d - - 105.6 d

HfIr
285.7 a 239.5 a - - 103.2 a

255.7 b 202.9 b - - 90.7 b

HfPt
244.3 a 209.2 a - - 67.8 a

217.7 b 179.3 b - - 61.7 b

Hf
214.0 a 90.6 a 92.2 a 235.8 a 54.6 a

193.6 b 82.7 b 77.4 b 205.1 b 56.3 b

181.0 e 77.0 e 66.0 e 197.0 e 55.7 e

a Theoretical values from GGA method in current work; b Theoretical values from LDA method in current work;
c Theoretical values from reference [13]; d Theoretical values from reference [14]; e Experimental values from
reference [37].

Furthermore, the mechanical stability is evaluated by Born’s criteria [39] for cubic crystals:

C11 > 0; C44 > 0; C11 − C12 > 0; C11 + 2C12 > 0. (3)

HfX (X = Os, Ir and Pt) compounds are all found mechanically stable at the ground state by the
successful validation of Born’s criteria.

In the engineering application, the elastic properties, i.e., bulk modulus (B), shear modulus (G),
and Young’s modulus (E), are demanded in practice. Generally, the elastic properties can be derived
from Voigt-Reuss-Hill (VRH) methods using elastic constants [40]. For cubic crystals, the equations are
expressed as following [27,41,42]:

BV = BR =
1
3
(C11 + 2C12), (4)

GV =
1
5
(C11 − C12 + 3C44), (5)

GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
, (6)

B =
BV + BG

2
, (7)

G =
GV + GG

2
, (8)

As soon as the bulk and shear moduli are achieved, Young’s modulus (E) and Poisson’s ratio (ν)
can be predicted:

E =
9BG

3B + G
, (9)

ν =
3B− 2G

2(3B + G)
, (10)

The calculated elastic moduli, Poisson’s ratio and B/G ratio using the VRH method at the ground
state are tabulated for HfX compounds in Table 3, including the elastic moduli for pure Hf results for
comparison. Overall, the elastic moduli obtained using GGA method are smaller than those provided
by LDA method. Comparably, the calculated elastic moduli generated by the GGA method are in good
agreement with theoretical values for HfOs. In detail, the elastic moduli are all larger than pure Hf in
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HfOs. However, HfIr has the similar shear and Young’s modulus over pure Hf, and HfPt owns the
smaller values correspondingly. Therefore, HfOs should be a credible hardening phase in pure Hf.

Table 3. The bulk modulus (B), shear modulus (G), Young’s modulus (E), Poisson’s ratio (ν), B/G ratio
and hardness (HV) for HfX (X = Os, Ir and Pt) and pure Hf deduced from the VRH method.

Compounds B (GPa) G (GPa) E (GPa) ν HV (GPa) B/G

HfOs

233.8 a 123.1 a 314.1 a 0.276 a 13.4a 1.900 a

265.1 b 129.7 b 334.6 b 0.290 b 12.8b 2.043 b

224.4 c 116.5 c 298.0 c 0.279 c 12.7c 1.926 c

223.8 c 106.1 c 274.8 c 0.295 c 10.7c 2.110 c

HfIr
220.5 a 55.5 a 153.5 a 0.384 a 3.3a 3.977 a

254.9 b 57.2 b 159.6 b 0.396 b 3.0b 4.458 b

HfPt
192.1 a 38.7 a 108.8 a 0.406 a 2.0a 4.962 a

220.9 b 39.6 b 112.2 b 0.415 b 1.8b 5.572 b

Hf
118.6 a 57.2 a 147.8 a 0.292 a - 2.074 a

134.8 b 59.9 b 156.5 b 0.306 b - 2.251 b

108.5 e 55.8 e 142.9 e 0.28 e - 1.944 e

a Theoretical values from GGA method in current work; b Theoretical values from LDA method in current work;
c Theoretical values from reference [13]; d Theoretical values from reference [14]; e Experimental values from
reference [37].

Typically, the bulk modulus (B) suggests the resistant ability against volume change under
pressure of materials. In addition, the bulk moduli calculated by both methods using VRH principles
are in good agreement with those provided by the EOS equations (Table 1), confirming good
self-consistency of this work. From Table 3, it is seen that HfOs possesses the largest resistance to
volume change by applied pressure, while HfPt has the smallest. In order to illustrate the fundamental
factor on bulk moduli of HfX compounds, the relationship between electron densities and bulk moduli
are constructed in Figure 3a. Herein, the electron density (n) is the quotient of the bonding valence
(ZB) and the volume per atom (VM) in metal [43]. For example, the electron density (n) is evaluated
using the following equation in HfX compounds:

n(HfX) = ZB(HfX)/VM(HfX), (11)

where VM(HfX) is the volume (cm3/mol) of each HfX compound; ZB(HfX) is the bonding valence in
(el/atom) rationalized from Vegard’s law [44]:

ZB(HfX) = (ZB(Hf) + ZB(X))/2, (12)

where the bonding valence of pure element can be found in the reference [45].
In Figure 3a, the correlation between the electron density and bulk modulus can be constructed

using the computed values either by LDA or GGA method. In detail, the linear relationships between
the electron density and bulk modulus are clearly seen in HfX compounds.
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The shear modulus has reflected the resistance to reversible deformations under the shear
stress [27]. A larger shear modulus for HfOs suggests its higher resistance to reversible deformations.
Young’s modulus is a symbol of the stiffness of a solid [46]. The material with a larger Young’s modulus
is stiffer. Therefore, HfOs is much stiffer than any other considered HfX compounds due to its higher
Young’s modulus. Overall, Young’s modulus has linearly improved with the shear modulus in the
order of HfOs > HfIr > HfPt for both LDA and GGA methods (Figure 3b).

The B/G value [47] and Poisson’s ratio (ν) [32,48] have determined the brittleness and ductility of
the solid. A solid with B/G < 1.75 or ν < 0.26 is usually brittle. Otherwise, it is ductile. In Table 3, it is
found the HfPt is the most ductile compound with the largest B/G value and Poisson’s ratio, and HfOs
is the least ductile compound owing to the smallest B/G value and Poisson’s ratio. Notably, the HfX
compounds have similar ductile essence due to the small variations of B/G values and Poisson’s ratios
using both GGA and LDA methods.

The hardness (HV) is associated with the plastic and elastic properties of an intermetallic
compound. The hardness can be calculated by a semi-empirical equation [49]:

HV = 0.92(G/B)1.137G0.708, (13)

where B and G are the bulk modulus and shear modulus, respectively.
The hardness values (HV) of HfX (X = Os, Ir and Pt) compounds are tabulated in Table 3. Generally,

the hardness is related with the values of G/B and G that the high values of G/B and G correspond to
the high hardness. It is seen that the hardness value computed by GGA method is a bit larger than
LDA method. Overall, the hardness values (HV) have followed the order of HfPt < HfIr < HfOs in
both GGA and LDA methods.

3.4. Elastic Anisotropy

The degree of elastic anisotropy is a critical property related to the engineering application.
The universal anisotropic index (AU) [50] is a universal measure to quantify the single crystalline
elastic anisotropy in consideration of the contributions from both the bulk and the shear modulus,
i.e., [51],

AU = 5
GV

GR
+

BV

BR
− 6, (14)

where BV and GV are the symbols of the Voigt bounds for bulk and shear modulus, respectively.
BR and GR are the symbols of the Reuss bounds for bulk and shear modulus, respectively.

If AU = 0 for a crystal, the crystal should be isotropic. A larger deviation of AU from zero has
indicated a severer degree of anisotropy. In cubic crystals, BV/BR is always equal to 1. Therefore,
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the universal anisotropic index is governed by GV/GR. Therefore, the calculated universal anisotropies
by both LDA and GGA methods (Table 4) are reduced in the sequence of HfIr > HfPt > HfOs. In detail,
HfIr and HfOs have the largest and smallest universal anisotropies, respectively.

Table 4. The calculated Voigt and Reuss bounds for bulk (shear) modulus, and universal anisotropic
index (AU) for HfX (X = Os, Ir and Pt).

Compounds BV BR GV GR BV/BR GV/GR AU

GGA method

HfOs 233.8 233.8 123.1 123.0 1 1.000 0.0022
HfIr 220.5 220.5 65.0 45.9 1 1.415 2.077
HfPt 192.1 192.1 44.7 32.7 1 1.367 1.830

LDA method

HfOs 265.1 265.1 129.7 129.7 1 1.000 0.00026
HfIr 254.9 254.9 71.1 43.2 1 1.646 3.229
HfPt 220.9 220.9 47.7 31.6 1 1.494 2.470

In order to describe the elastic anisotropic behavior more directly and effectively, the three-
dimensional (3D) surface constructions of the directional dependence of reciprocal of Young’s modulus
have also been studied by following equations [52]:

1
E
= S11 − 2(S11 − S12 −

S44

2
)(l2

1 l2
2 + l2

2 l3
2 + l2

1 l2
3), (15)

where Sij is the usual elastic compliance constant, which can be obtained from the inverse of the matrix
of elastic constants; l1, l2 and l3 are the direction cosines in the sphere coordination.

If the 3D directional dependence of Young’s modulus exhibits a spherical shape, the crystal is
ideal isotropic. Practically, the deviation extent from the spherical shape has reflected the degree of
anisotropy. In Figure 4a, HfOs shows a quite spherical shape, signifying its near isotropic behavior.
Furthermore, HfIr exhibits the largest deviation from the sphere shape with the strongest deviation
along the <111> directions, confirming its intensive anisotropic behavior. Generally, the degree of the
elastic anisotropy for HfX has followed the increasing order of HfOs < HfPt < HfIr. This conclusion is
in good compliance with the result generated from the universal anisotropic index.
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3.5. Anisotropy of Acoustic Velocities and Debye Temperature

In the crystalline material, the sound velocities are related to the crystal symmetry and the
propagation direction. In cubic crystals, the pure transverse and longitudinal modes can be found
in [111], [110] and [001] directions. With respect to other directions, the sound propagating modes
have included the quasi-transverse or quasi-longitudinal waves. Therefore, the sound velocities can be
derived from elastic constants using following expressions [53]:

[100]vl =
√

C11/ρ; [010]vt1 = [001]vt2 =
√

C44/ρ, (16)

[110]vl =
√
(C11 + C12 + C44)/(2ρ), (17)

[110]vt1 =
√
(C11 − C12)/ρ, [001]vt2 =

√
C44ρ, (18)

[111]v1 =
√
(C11 + 2C12 + 4C44)/(3ρ), (19)

[112]vt1 = [112]vt2 =
√
(C11 − C12 + C44)/(3ρ), (20)

where ρ is the density; vl is the longitudinal sound velocity; vt1 and vt2 refer to the first and the second
transverse mode of sound velocity, respectively.

Generally, C11 has determined the longitudinal sound velocity along [100] direction. C44 is related
to the transverse modes along [010] and [001] directions. C11, C12 and C44 can influence the longitudinal
sound velocities along [110] and [111] directions in combination.

The longitudinal and the transverse sound velocities by both LDA and GGA methods along
[100], [110] and [111] directions for HfX compounds are exhibited in Table 5. For the sound velocities
obtained from LDA method, the longitudinal sound velocity vl of each compound is reduced in the
order of [111] > [110] > [100]. The anisotropic properties of sound velocities have also confirmed the
elastic anisotropies in these cubic crystals. Meanwhile, the sound velocities derived from GGA method
have shown the similar tendencies with those from LDA method.

Table 5. The calculated anisotropic sound velocities (m/s) for HfX (X = Os, Ir and Pt).

[111] [110] [100]

Crystal
orientations [111]vl [112]vt1,2 [110]vl [110]vt1 [001]vt2 [100]vl [010]vt1 [001]vt2

GGA method

HfOs 4796.0 2691.9 4425.2 3833.6 2653.8 4838.3 2653.8 2653.8
HfIr 4487.1 1679.3 4024.3 1763.5 2313.0 3882.6 2313.0 2313.0
HfPt 4094.4 1427.9 3743.5 1531.8 1941.7 3647.2 1941.7 1941.7

LDA method

HfOs 4930.2 2674.7 4545.3 3773.4 2687.7 4916.0 2687.7 2687.7
HfIr 4684.4 1668.4 4191.3 1607.1 2401.7 3996.8 2401.7 2401.7
HfPt 4243.2 1408.4 3882.7 1424.5 1980.3 3758.8 1980.3 1980.3

The theoretically calculated structural properties (i.e., density) and elastic properties (i.e., Bulk
modulus, shear modulus and Poisson’s ratio) can be used to deduce Debye temperature (Θ), as shown
in the following equation [26,54]:

Θ =
h
k
[
3n
4π

(
NAρ

M
)]

1
3
vD, (21)

where h is Planck’s constant (h = 6.626× 10−34 J/s); NA is Avogadro’s number (NA = 6.023× 10−23/mol);
k is Boltzmann’s constant (k = 1.381× 10−23 J/K); M is the molecular weight; n is the number of atoms per
formula unit.
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vD is the average sound velocity in polycrystalline materials, as exhibited using the equation:

vD = [
1
3
(

1
v3

L
+

2
v3

T
)]
− 1

3
, (22)

where vT and vL are the transverse and longitudinal sound velocities, including:

vT =

√
G
ρ

, (23)

vL =

√
B + 4

3 G
ρ

, (24)

Table 6 shows the sound velocity (m/s) and Debye temperature (K) for HfX (X = Os, Ir and Pt)
calculated by GGA and LDA methods. Generally, these values calculated by LDA method have the
larger values than those computed by GGA method. Specifically, the following reduced orders have
shown as HfOs > HfIr > HfPt in Debye temperatures.

Table 6. Sound velocity (m/s) and Debye temperature (K) for HfX (X = Os, Ir and Pt).

Compounds vL (m/s) vT (m/s) vD (m/s) Θ (K)

GGA method

HfOs 4812.7 2676.5 2978.3 339.5
HfIr 4166.6 1808.2 2040.8 231.2
HfPt 3859.0 1538.0 1741.1 194.4

LDA method

HfOs 4924.5 2679.9 2987.0 346.2
HfIr 4303.0 1788.1 2021.4 233.1
HfPt 3979.1 1514.3 1716.5 195.2

3.6. Thermal Conductivity

The thermal conductivities (k) is a useful physical parameter for practical applications.
The thermal conductivity is reduced with elevating temperature to a limiting value known as the
minimum thermal conductivity (kmin), which can be evaluated according to Cahill’s model [55]:

kmin =
k

2.48
n

2
3 (vl + vt1 + vt2), (25)

where k is Boltzmann constant; n is the number of density of atoms per volume. vl and vt are the
longitudinal and transverse sound velocities, respectively (Table 7).

Table 7 exhibits the calculated kmin values using Cahill’s model. Generally, the lattice thermal
conductivity and the electronic thermal conductivity are the main compositions to the total thermal
conductivity. At lower temperature, the effect from electron-phonon scattering is considered limited.
Therefore, the thermal conductivities of HfX (X = Os, Ir and Pt) are ascribed to the lattice thermal
conductivities at the ground state. The derived thermal conductivities are found small thereby.
Based on Callaway-Debye theory [56], the lattice thermal conductivity is proportional to Debye
temperature. It means a higher Debye temperature should correspond to a larger lattice thermal
conductivity. Therefore, HfOs has the larger thermal conductivity than HfIr and HfPt in order. It is
seen that the values offered by the GGA method are always smaller, but own the similar tendency with
the LDA method. These HfX compounds show the relatively lower thermal conductivities, indicating
that they are poor thermal conductors at the ground state.
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Cahill’s model is suitable to discuss the anisotropic behavior of compounds on the thermal
conductivity, since it has involved with treating the total thermal conductivity in association with
each acoustic branch. For instance, it is seen that the calculated thermal conductivities have exhibited
anisotropic behaviors owing to the differences of vl, vt1 and vt2 along [100], [110] and [111] directions.
In detail, kmin[111] is always smaller than kmin[100] and kmin[110], suggesting that the dependence
of thermal conductivities along [111] direction is less prominent than those along [100] and [110]
directions. Although there is lacking experimental values for comparison, our theoretical results
should prove the guidance for future studies.

Table 7. Calculated minimum thermal conductivities kmin (W/m/K) for HfX (X = Os, Ir and Pt).

Compounds n (10303) [100] kmin [110] kmin [111] kmin kmin

GGA method

HfOs 0.0561 0.828 0.890 0.391 0.829
HfIr 0.0551 0.686 0.653 0.362 0.627
HfPt 0.0528 0.590 0.565 0.321 0.543

LDA method

HfOs 0.0590 0.868 0.929 0.416 0.868
HfIr 0.0581 0.735 0.685 0.391 0.658
HfPt 0.0558 0.627 0.592 0.345 0.569

4. Conclusions

The structural, electronic and elastic properties of B2 HfX (X = Os, Ir and Pt) compounds have
been studied using first-principles calculations. Initially, the structural optimizations are comparable
and acceptable for HfX compounds using both GGA and LDA methods. The calculated formation
enthalpies by GGA and LDA methods have confirmed that the thermodynamic stability is in the order
of HfPt > HfIr > HfOs. Secondly, the calculated electronic structures are derived, and similar features
are identified in DOS spectra for HfX. The results show the sequence of structural stability should
be HfPt > HfIr > HfOs, which is in good agreement with thermodynamic analyses. Mechanically,
the elastic moduli obtained by GGA method are typically smaller than LDA method. In detail,
the calculated bulk moduli using VRH method are in good agreement with those provided by EOS
equation. Besides, the calculated bulk moduli are in the order of HfOs > HfIr > HfPt, where the bulk
moduli can be correlated with electron densities in compounds. Additionally, Young’s modulus has
augmented linearly with the shear modulus. HfOs has the Young’s modulus of 314.1 GPa and hardness
of 13.4 GPa by GGA method, which should be a credible hardening phase in pure Hf. Then, the ductile
essence is in the sequence of HfPt > HfIr > HfOs according to the analyses on Poisson’s ratio and B/G
ratio. Based the universal anisotropic indexes and 3D surface constructions, the elastic anisotropy
has followed the increasing order of HfIr > HfPt > HfOs. Finally, the anisotropy of acoustic velocities,
Debye temperatures and thermal conductivities are obtained and discussed. Our results are hoped to
inspire future experimental and theoretical investigations on these Hf-based compounds.
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