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Abstract: Mechanical Spectroscopy (MS) tests have been performed on a high nitrogen (0.8 wt %) 
austenitic steel (HNS) with resonance frequencies in the range of kHz. Two sets of samples have 
been examined: the first set in an as-prepared condition, the second one submitted to a heat 
treatment of 2 h at 800 °C, which induces a discontinuous precipitation of Cr2N phase. In both sets, 
the damping spectrum shows a broad peak whose position and shape is changed by the 
precipitation of Cr2N phase. The results are explained by considering interstitial-substitutional (i-s) 
interactions. 
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1. Introduction 

In austenitic steels, nitrogen induces solid solution strengthening, increases corrosion resistance, 
and stabilizes the γ phase [1–5]. The difficulty of producing High Nitrogen Steels (HNS) is due to the 
thermodynamic limit of the solubility of nitrogen in a liquid or solid state [6,7]. Nitrogen solubility 
in austenite does not exceed 0.4 wt % [2,8], and in the temperature range between 700 °C and 1000 °C 
[9,10], the discontinuous precipitation of chromium nitrides occurs, according to the reaction: 

γ → γ* + Cr2N. (1) 

The excellent properties of HNS are partially compromised by nitride precipitation in thermal 
processes (welding, heat treatments, hot forming, etc.), therefore, in the last decade, a lot of work has 
been devoted to this topic (see e.g., [11–18]). 

The mechanical properties of HNS strongly depend on the interstitial (carbon and nitrogen) 
content, even in dilute concentrations. The evolution of interstitial systems is governed by 
interactions induced by stress due to the volume misfit between the octahedral sites in austenite and 
the size of the interstitial atoms occupying them. Evidence of clustering and ordering of nitrogen 
under the effect of stress interactions in 316LN austenitic stainless steel was given by Shankar et al. 
[19] through High Resolution Electron Microscopy (HREM), however a quantitative description of 
atomic structures like interstitial systems is a hard task. 

Mechanical Spectroscopy (MS), based on damping and dynamic modulus measurements, is a 
technique that provides information on atomic mechanisms that cannot be otherwise investigated. 
Gavriljuk and co-workers [20–24] employed MS to highlight different physical phenomena connected 
to interstitials in austenitic steels. 

Banov et al. [25,26] measured a relaxation peak in the austenitic steel Fe-18Cr-4Mn-0.4N (wt %) 
with activation energy H = 1.47 eV, and attributed the peak to the re-orientation of atom pairs formed 
by one nitrogen atom and one substitutional atom. Gavriljuk et al. [20] found two peaks with 
activation energies H1 = 1.41 eV and H2 = 1.10 eV in the alloy Fe-18Cr-16Ni-10Mn-0.21N (wt %), which 
were explained by the same physical mechanism. 
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The aim of the present paper is to describe the anelastic effects arising from different interstitial 
systems present in a HNS in an as-prepared condition and after annealing for 2 h at 800 °C, which is 
a treatment inducing the discontinuous precipitation of chromium nitrides. 

The microstructure has been investigated through X-ray diffraction (XRD), optical microscopy 
(OM), and scanning electron microscopy (SEM). 

2. Material and Experimental 

The examined material is a high nitrogen austenitic steel prepared by Pressurized Electroslag 
Remelting (PESR) with the following nominal chemical composition: 20 Cr, 2.5 Mo, 17 Mn, 0.2 C, 0.8 
N, and Fe to balance (wt %). Two sets of samples have been examined: the first set in an as-prepared 
condition, the second one submitted to a heat treatment of 2 h at 800 °C. 

Damping and dynamic modulus measurements have been carried out on bar-shaped samples 
(60 mm × 7 mm × 0.5 mm) using the method of frequency modulation; the Vibrating Reed Apparatus 
VRA 1604 (CANTIL Srl, Bologna, Italy) employed in the experiments was previously described in 
detail in [27–29]. 

The damping factor Q−1 was determined from the logarithmic decay δ of flexural vibrations:  
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where An and An+k are the amplitudes of n-th and n + k-th vibrations, respectively. 
The dynamic modulus E was calculated from the resonance frequency f: 
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where m is a constant depending on the specific sample geometry (for a reed m = 1.875), ρ is the 
material density, and L and h are the length and thickness of the sample, respectively. The resonance 
frequencies were in the range of kHz, and the strain amplitude was kept lower than 1 × 10−5. In all of 
the experiments, the samples have been heated up to 800 °C with a heating rate of 1.7 × 10−2 °C·s−1. 

After mechanical polishing, the material has been etched in a water solution of 10% HCl, K2S2O5 
(10 g/L), and NH4HF2 (24 g/L), then examined by means of OM (Union Optical Co., Ltd., Tokyo, 
Japan) and SEM (Hitachi S-2460N, Tokyo, Japan). 

The samples have been analyzed by XRD (Philips, Eindhoven, The Netherlands) using Co Kα 
radiation (λ = 0.1789 nm). XRD spectra were collected in step-scanning mode with 2 steps of 0.05°, 
and a counting time of 2 s per step in the angular range of 40°–95°. High precision peak profiles of 
the most intense reflections were recorded with 2 steps of 0.005° and a counting time of 20 s per 
step. 

The precipitates were extracted from the matrix, examined by XRD, and identified by comparing 
the spectra with the files of the Joint Committee on Powder Diffraction Standards - International 
Centre for Diffraction Data (JCPDS-ICDD) database. The steel was dissolved through an 
electrochemical method: solution (20% methylic alcohol + 80% HCl), stainless steel cathode, and 
potential of 1.5 V. Filters with pores of 0.1 μm have been employed for the extraction of the residue 
from the liquid. 

3. Results and Discussion 

3.1. As-Prepared Steel 

The steel in an as-prepared condition is fully austenitic (see XRD spectrum in Figure 1a). 
Figure 1b shows the structure of the material. The image analysis has been performed on 20 

micrographs (500 ×) through the software LUCIA (Version 4.51, Za Drahou, Praha, Czech Republic, 
1991–2000): the grain size is ~50 μm (sdv = 4.6), and some twins (indicated by red arrows) are 
observed. The surface also exhibits small pores arising from the preparation route. 
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(a) (b)

Figure 1. (a) XRD spectrum of the as-prepared material. (b) Microstructure of the steel. 

Figure 2 displays the trends of Q−1 and E, normalized to E0, vs. temperature; the value E0 of an 
elastic modulus at room temperature is 196 GPa. 

The Q−1 experimental data (full blue circles) are the superposition of an exponentially increasing 
background (black line) and a broad peak (open red circles). It is observed that the modulus (green 
squares) slope changes in correspondence of the Q−1 peak. 

 
Figure 2. Q−1 and E, normalized to the room temperature value E0, are reported vs. temperature. The 
Q−1 curve (full blue circles) is the superposition of a broad peak (open red circles) and an exponentially 
increasing background (black line). Resonance frequency f = 750 Hz. 

Tests carried out with different resonance frequencies display the shift of Q−1 s peak position (see 
Figure 3) indicating that its origin is connected to relaxation processes, as confirmed by the slope 
change of the dynamic modulus E in correspondence of the peak. 

 
Figure 3. Q−1 peaks obtained in tests with three different resonance frequencies. 

The temperature TP of a relaxation peak depends on the resonance frequency f: 
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where H is the activation energy and R is the gas constant, while the relaxation time τ is given by: 

PRT
H
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where τ0 is the pre-exponential factor that depends on the distribution of substitutional atoms in the 
nearest atomic shells around the pairs reorienting under the externally applied stress. 

Tests with six different resonance frequencies (445 Hz, 750 Hz, 1033 Hz, 1786 Hz, 3010 Hz, and 
5545 Hz) were carried out to determine H and τ0. From the Arrhenius plot in Figure 4a, H = 1.76 eV 
and τ0 = 2.23 × 10−16 s have been obtained. However, the Q−1 peak displayed in Figure 2 is too broad 
and cannot be fitted by a single Debye peak, described by the relationship: 
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where ∆/2 is the peak maximum. This means that the peak is not due to a single relaxation process, 
and H = 1.76 eV represents a pseudo activation energy. 

 

(a) (b)

Figure 4. Arrhenius plot obtained from tests with six different resonance frequencies (a). Interstitial-
substitutional (i-s) pairs in an fcc lattice of High Nitrogen Steel (HNS) (b). 

The steel consists of a nitrogen supersaturated austenitic phase where carbon is also present, 
thus the origin of the peak has been ascribed to the re-orientation of interstitial-substitutional (i-s) 
pairs under the periodic externally applied stress [30]. Figure 4b displays a sketch of the i-s pairs in 
an fcc lattice of HNS steel. 

The main substitutional elements are Cr and Mn, thus both of them could form pairs with the 
interstitial atoms (N and C). However, for resonance frequencies of the order of kHz used in the 
present experiments, the activation energy of C-Cr and N-Cr pairs [31] gives rise to peaks in a 
completely different range of temperatures. Therefore, only C-Mn and N-Mn pairs contribute to the 
energy dissipation giving rise to the observed peak. 

On these grounds, a further attempt to fit the Q−1 peak was made by considering two Debye 
peaks due to the re-orientation of N-Mn and C-Mn pairs. For the re-orientation of N-Mn pairs, the 
values H = 1.76 eV [31] and τ0 = 2.23 × 10−16 s have been used. For the second process, namely the re-
orientation of C-Mn pairs, the values H = 1.50 eV and τ0 = 2.69 × 10−15 s, determined by Kê and Tsien 
[30] in the Fe-18.5 Mn alloy with a Mn content similar to that of the steel examined here, have been 
taken. 
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Since this fitting attempt also failed it has been assumed that each process is characterized by a 
single activation energy and a discrete distribution of relaxation times. The assumption reflects 
variations in the environment of the i-s pairs responsible for the relaxation, in particular the 
distribution of substitutional atoms in the nearest atomic shells around the i-s pairs reorienting under 
the externally applied stress. 

For each relaxation process due to the reorientation of N-Mn and C-Mn pairs, instead of a single 
relaxation time τ, a series τn has been considered, which according to Equation (4) leads to n Debye 
peaks centered at different (TP)n. Therefore, the Q−1 peak was fitted as the sum of two contributions, 
Q−1 (T)N-Mn and Q−1 (T)C-Mn, due to N-Mn and C-Mn pairs, respectively. Each contribution is the sum 
of n Debye peaks related to different relaxation times τn: 

1 1 1
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The central values τ0 of each relaxation times’ distribution are those used in the previous attempt 
of fitting, namely 2.23 × 10−16 s for N-Mn pairs and 2.69 × 10−15 s for C-Mn pairs. The other τn and the 
corresponding heights (Δ/2)n of the Debye peaks have been treated as adjustable parameters to get 
the best fit displayed in Figure 5a. The height of each Debye peak is proportional to the number of 
relaxing units, i.e., the i-s pairs involved in that single process. The specific i-s pair fraction involved 
in processes with relaxation time τn is obtained by dividing the height (Δ/2)n of the nth peak by 
Σn(Δ/2)n. The distributions of relaxation times τn and the pair fractions of the Debye peaks used to get 
the best fit in Figure 5a are shown in Figure 5b. 

(a) (b)

Figure 5. (a) Fitting of the broad Q−1 peak of as-prepared steel. (b) Distributions of relaxation times τn 
used to get the best fit displayed in (a). 

The spread of relaxation times τn of C-Mn yields results quite larger than those of N-Mn. To give 
a tentative explanation of such difference, the specific characteristics of carbon and nitrogen have 
been considered. When dissolved in austenite, nitrogen and carbon atoms have nearly the same 
effective size, even if a little higher γ lattice dilatation due to nitrogen as compared to carbon was 
observed by some investigators (e.g., see [31]). More importantly, the electron density is increased in 
the vicinity of the interstitial sites occupied by nitrogen, whereas at the carbon sites their density is 
decreased [22]. As is well known, this involves important consequences on the mechanical behaviour 
and microstructure of austenitic steels: 

 The increased density of free electrons due to nitrogen atmospheres near dislocations decreases 
the stress for activating dislocation sources and the line tension, thus nitrogen causes the early 
start of plastic deformation and increases dislocation mobility. The effect of carbon on plasticity 
is the opposite. 

 Nitrogen does not segregate substantially at grain boundaries, hence HNS exhibit good 
toughness and excellent resistance to intercrystalline corrosion, because the precipitation of 
chromium nitride at grain boundaries is very low when compared to that of chromium carbides. 
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It is reasonable that the remarkable increase of free electrons concentration near the nitrogen 
atoms located in the octahedral sites of the γ phase, and a more symmetrical distribution of electron 
density observed in the Fe-N austenite as compared to that in the Fe-C one [32,33], could affect the 
specific lattice positions occupied by the interstitials. In fact, the results displayed in Figure 5b are 
consistent with nitrogen atoms located at the centre of atomic shells with lower deviations of chemical 
composition than those of carbon. 

3.2. Heat Treated Steel 

As shown in Figure 6a,b, chromium nitrides, chromium carbides, and a transformed austenite 
γ* with a lower nitrogen content formed from the γ phase after the heat treatment at 800 °C. The 
typical discontinuous precipitation of the Cr-Mn-N system is described by Equation (1). Alternate 
lamellas of γ* and Cr2N form and grow in the advancing interface between the transformed and 
untransformed zones, and the mean spacing between lamellas is ~190 nm (Figure 6b). In the 
transformed γ* austenite, precipitates of round shape are also observed. The precipitates, extracted 
from the matrix of heat treated steel, have been examined by XRD (Figure 7) and identified as: CrN 
(JCPDS-ICDD 11-65), Cr2N (JCPDS-ICDD 35-803), and Cr23C6 (JCPDS-ICDD 35-783). 

 
 

(a) (b)

Figure 6. Cellular precipitation after the heat treatment (a). Arrows indicate transformed (T) and 
untransformed (U) zones. SEM micrograph showing details of the lamellar structure made of γ* and 
Cr2N (b). 

 

Figure 7. XRD spectrum of the precipitates extracted from the steel heat treated 2 h at 800 °C. 
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From an image analysis of the 30 OM micrographs taken at the same magnification (400×), the 
fraction of transformed material was estimated to be ~15%. The microstructure is characterized by 
two austenitic phases (γ and γ*) plus carbides and nitrides. 

Figure 8 shows the precision peak profile of the (111) austenite reflection: the contributions of γ 
and γ* are clearly distinguished, because the γ* reflection is shifted to a higher angle. The lattice 
parameter of the secondary γ* austenite is smaller (0.3615 nm) than that of the supersaturated 
austenite γ (0.3636 nm), thus its nitrogen content is smaller. 

 

Figure 8. Contributions of γ and γ* to the precision (111) peak profile. 

Figure 9 shows the trends of Q−1 and E/E0 vs. temperature. 

 
Figure 9. Q−1 and E/E0 vs. temperature of the steel heat treated for 2 h at 800 °C. Resonance frequency 
f = 750 Hz. 

Also in this case, the Q−1 curve is the superposition of a broad peak and an increasing 
background. The intensity of the background remains substantially unchanged while the peak 
temperature is about 80 °C higher than that of the untreated material. Background strongly depends 
on grain size and dislocation density, thus, since the heat treatment substantially does not change 
these factors [14], the background level is stable. 

From tests with different frequencies, a pseudo activation energy of 1.92 eV was determined. 
The peak shift to a higher temperature with respect to the as-received steel depends on the 

presence of the transformed austenite, therefore the re-orientation of N-Mn pairs in the γ* phase have 
also been considered. The same procedure used to get the fitting shown in Figure 5 has been 
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employed. The heat treatment induces a strong precipitation of Cr23C6 carbides (Figure 7), and as a 
consequence the carbon atoms free of contributing to relaxation processes decrease. We were able to 
fit the curve without considering the C-Mn pair in the γ* contribution. The results are displayed in 
Figure 10. 

(a) (b)

Figure 10. (a) Fitting of the Q−1 peak of the heat treated steel. (b) Distributions of relaxation times τn 
used to get the best fit displayed in (a). 

The area under the C-Mn and N-Mn pair contributions is proportional to the number of specific 
relaxation processes, namely the number of i-s pairs. Table 1 reports the area values of the i-s 
contributions, normalized to that of the Q−1 peak of the as-prepared material. 

Table 1. Areas under specific i-s pair contributions, normalized to that of the Q−1 peak of the as-
prepared material. 

Material N-Mn in γ Phase C-Mn in γ Phase N-Mn in γ* Phase Total Area
As-prepared 0.5870 0.4130 - 1.000 

Heat treated 2 h/800 °C 0.2724 0.1941 0.1571 0.6236 

After heat treatment, the area of the C-Mn pairs’ contribution decreases to about half of the 
original value. This is due to the formation of carbides that capture carbon, thus it is no longer 
available for relaxation processes. The N-Mn pairs are present in both austenitic phases (γ and γ*), 
but also in this case, the total contribution is quite lower than that in the as-prepared material owing 
to the formation of Cr nitrides. 

As expected, the spread of relaxation times τn of C-Mn pairs is always larger than those of N-
Mn pairs in both the γ and γ* phases. The distribution of τn for N-Mn pairs is quite similar to that of 
as-prepared steel, while the distribution in γ* is strongly peaked around τ0. The result seems to 
indicate that the spread of τn depends on the state of the supersaturation of nitrogen, and decreases 
as nitrogen content approaches the value of thermodynamic solubility. 

The origin of anelastic phenomena observed in present experiments is the re-orientation of i-s 
pairs, namely the same physical phenomenon giving rise to the Q−1 peaks found by Gavriljuk et al. 
[20] and Banov et al. [25,26] in similar steels with high nitrogen content. This work evidenced that the 
Q−1 peak is not a Debye peak due to a single relaxation process, but in fact it is the superposition of 
specific contributions from different types of i-s pairs. Moreover, each contribution consists of many 
relaxation peaks with a common activation energy and different relaxation times. The analysis we 
have carried out seems to be a useful tool to describe the states of not homogeneous chemical 
distribution on an atomic scale that can change following phase transformations occurring during 
heat treatments. 

4. Conclusions 
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The Q−1 curves of HNS are the superposition of an exponential background and a broad peak. 
The microstructure of steel consists of a nitrogen supersaturated γ phase, and the Q−1 peak is the 

sum of two contributions due to the re-orientation of N-Mn and C-Mn pairs. Each contribution has 
been analysed as the sum of a series of Debye peaks with the same activation energy but different 
relaxation times, reflecting variations in the distribution of substitutional atoms in the nearest atomic 
shells around the pairs reorienting under the externally applied stress. 

After the heat treatment of 2 h at 800 °C, which leads to the partial transformation of the material, 
two austenitic phases γ and γ* are present. γ* is the transformed austenite with lower nitrogen 
content, therefore there is a further contribution to the Q−1 spectra due to the re-orientation of N-Mn 
pairs in the γ* phase. 
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