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Abstract: WC soft scrap, including Co used as a binder, thermally oxidized at 600 ◦C, was subjected
to grinding with NaOH in a mechanochemical reaction, followed by water leaching to establish
an effective recycling process. Na2WO4 was synthesized through a mechanochemical (MC) reaction
with oxidized scrap, and Na2CO3 was formed when the mixing ratio of NaOH increased. These
as-synthesized compounds were water-soluble. When the weight ratio of soft scrap to NaOH was
1:0.5, 99.2% W was extracted by water leaching, while the extraction yield of Co was limited to 3.57%
under the same conditions.

Keywords: WC soft scrap; thermal oxidation; mechanochemical reaction; sodium hydroxide;
water leaching

1. Introduction

Tungsten is one of the most important refractory metals, and tungsten carbide (WC) is used in
a variety of products, such as cutting tools, wear parts, and mining drill bits, because of its superior
toughness and hardness. Moreover, other refractory carbides, such as TiC and TaC, are frequently
combined with WC alloys along with a metal binder or cementing agent, typically cobalt (Co),
which holds the hard carbide grains together in a dense composite structure. In this regard, sustainable
hard metal production is important to and supports modern industry, especially as it expands with
global population growth and elevating standards of living. Concurrently, it is important to reduce
the environmental impact of industrial processes because emission remediation costs have escalated;
some harmful processes have been completely outlawed. The majority of tungsten (W) produced
is used to meet the demand for hard metals, so it is critical to consider the W supply chain. Over
the past decade, W precursor prices have undergone a dramatic escalation (an eight-fold increase)
and industrial electricity costs (a major production expense) have increased significantly (by 30%).
In this regard, W production via the recycling of hard-metal scrap, which allows for reduced cost,
energy consumption, and environmental impact, has been in the limelight. The recycling ratio of W
has increased continuously, but still is no greater than approximately 25% due to the physical and
chemical diversity of various types of scrap (e.g., materials that have reached the end of their life or
more prevalently those that are generated during the manufacturing of W materials (including WC)).
This scrap can be classified by shape; (1) powder (soft scrap) or (2) bulky (hard scrap) [1–10].

Worn tools, such as cutting and drilling bits made of WC hard metals, are generally classified
as hard scrap. Soft scrap does not have a defined shape and is composed mainly of unsintered WC
powder. Typically, this scrap is the waste product of W manufacturing, and it includes wires, coils,
powders, and turnings. Soft scrap contains more metallic impurities than hard scrap, but does not need
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to be crushed like hard scrap. To enhance the recycling efficiency and increase the selective recovery of
valuable metals, soft scrap should be treated with special care [11].

Researchers have investigated the recycling process of WC soft scrap via two main processes:
alkali treatment and acid treatment [12–14]. Alkali treatment is typically executed in one of two ways:
(1) transformation of WC to sodium tungstate, which is soluble in water, via an alkali fusion process
using sodium nitrate/nitrite and sodium carbonate, or (2) dissolution of the oxidized scrap using
a sodium hydroxide solution followed by the removal of impurities, the precipitation of tungstic
acid, and dissolution by ammonia. In acid treatment, cobalt (which is utilized as a binder material)
is extracted, first leaving an insoluble WC residue [15–18]. There are challenges to using both of
these methods in an industrial process for recycling WC soft scrap. The alkali treatment requires a
high-temperature fusion step and the separation of cobalt from the residue, which consume a large
amount of energy. In the case of the acid treatment, the purity of the recovered WC is often too low for
it to be reused as a raw material in hard metal manufacturing processes; high temperature alkali fusion
processes or oxidation are needed to augment tungsten recovery [19,20]. In addition, the tungsten
product may be contaminated by the incomplete leaching of cobalt. Moreover, after such treatments,
W and Co must be recovered from the solution. For these reasons, we have developed a new process
that involves a mechanochemical (MC) reaction and that enables us to recover tungsten selectively
from oxidized soft scrap.

Here, we provide information and the optimal conditions that can be employed for the effective
and economic recycling of WC soft scrap, enabling the facile recovery of tungsten.

2. Experimental Procedure

2.1. Starting Materials and Characterization

The soft scrap used in this study consisted of a hard metal sludge generated in the manufacturing
process of turning tools composed of WC, and it was provided by TaeguTec Co., Daegu, Korea.
This scrap contained not only the components generated as a byproduct in the manufacturing process,
but also foreign substances, such as paper and organic dust, introduced during collection. To separate
these substances, the scrap was screened with a #500 sieve (aperture size: 25 µm) for 1 h using a sieve
shaker (J-VSS, JISICO Co., Seoul, Korea). As a result, 77.33 wt % of the as-received scrap was acquired,
and this portion was used as the starting material. The chemical composition of the starting materials
was analyzed by X-ray fluorescence spectrometry (XRF, ZSX Primus II, Rigaku Co., Tokyo, Japan)
(Table 1). The major elements detected were as follows: tungsten (W, 54.3 wt %), oxygen (O, 16.6 wt %),
carbon (C, 15.7 wt %), cobalt (Co, 5.25 wt %), silicon (Si, 1.95 wt %), and iron (Fe, 1.56 wt %). For the
major components (W, Co) in the soft scrap, the leaching tendencies were surveyed, and a method to
selectively recover W was presented.

Table 1. Chemical composition of the soft scrap used as a starting material in this study.

Element Content (wt %) Element Content (wt %)

W 54.3 Al 0.19
Co 5.25 Cu 0.07
Si 1.95 V 0.05
Fe 1.56 Mo 0.05
Cr 0.28 C 15.7
Nb 0.24 O 16.6
Ni 0.23 Others (B, Na, P, K) 3.56

2.2. Experimental Procedure

The recovery of W from the soft scrap proceeded in three steps: (1) thermal treatment to
oxidize WC, (2) MC treatment with NaOH, and (3) water-leaching of the MC-treated scrap (Figure 1).
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The oxidation for the WC soft scrap should be carried out before the MC treatment because the WC
powder, which is characterized by strength and hardness, may cause excessive abrasion of the grinding
ports and media.
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Figure 1. Flow chart of experimental procedures.

The starting material (WC soft scrap) was thermally oxidized using an electric furnace. The scrap
(100 g) was placed in an alumina boat and heated for 1 h in air at temperatures ranging from 500 to
650 ◦C. Sodium hydroxide (NaOH) was used as an additive to induce the MC reaction (Junsei Chemical
Co., Ltd., Tokyo, Japan). The thermally treated scrap was mixed with sodium hydroxide (NaOH) in
different weight ratios (soft scrap: NaOH), ranging from 1:0.3 to 1:0.5, and these mixtures were stored
in a desiccator. A planetary mill (Pulverisette-7, Fritsch Gmbh, Idar-Oberstein, Germany) was used
to grind the mixture for the MC reaction. The mill contained a pair of pots composed of zirconia
installed on a rotating disc driven by an electric motor. The mixture (4 g) was placed in the port (45 cm3

inner volume) with seven zirconia balls (15 mm in diameter) and ground in air at 700 rpm for certain
periods of time. Subsequently, the ground mixture was leached in distilled water under the following
conditions: room temperature, 10 g/L slurry density, and stirring with a magnetic bar. During the
leaching procedure, 1 mL leaching liquor samples were taken between 5 s and 1 h. To acquire more
accurate data, the total content of the two components (W, Co) was calculated for each sample. For this
reason, the content of the components (W, Co) in both the leached solution and leached residue was
analyzed. To dissolve the residue completely, a chemical digestion method was used. The leachability
was determined via the following equation:

Leachability of M (%) =
M content (A)

M content (A) + M content (B)
× 100 (1)

where M denotes the two components (W, Co) in this study, M content (A) is the M mass calculated
from the M concentration in the leached solution, and M content (B) represents the M mass in the
leached residue after complete dissolution.

2.3. Characterization

Thermogravimetric and differential thermal analysis (TG-DTA, DTG-60H, Shimadzu Co., Kyoto,
Japan) using a heating rate of 10 ◦C/min in air flow (100 mL/min) scanning from room temperature up
to 800 ◦C was utilized to determine the optimal temperature for oxidizing the soft scrap. The starting
soft scrap and the treated mixtures were characterized by high resolution X-ray diffraction (HRXRD,
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X’pert-Pro MPD, PANalytical, Almelo, The Netherlands) using Cu-Kα radiation (λ = 1.5406 Å) to
identify how the phases changed after thermal and MC treatment. The leachability of the two major
components (W, Co) was measured using an inductively coupled plasma spectrometer (ICP, OPTIMA
7300DV, Perkin Elmer, Waltham, MA, USA).

3. Results and Discussion

3.1. Oxidation of the Starting Sample, Soft Scrap Passed by #500 Sieve

Figure 2 shows the XRD pattern of the starting sample, which was passed through a #500 sieve
(aperture size: 25 µm). Despite the various elements comprising this scrap (Table 1), only two
compositions, WC (JCPDs No. 73-0471) and CoCx (JCPDs No. 44-0962), were observed in the pattern.
Further, the main peaks were associated with WC and only a single weak peak associated with CoCx

was observed. Peaks corresponding to the other components were not detected, likely owing to their
relatively smaller particle size (≤25 µm) and lower crystallinity.
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Figure 2. X-ray diffraction (XRD) pattern of the starting sample used in this study.

To determine the oxidation conditions for the samples, TG-DTA analysis was carried out (Figure 3).
As shown in Figure 3a, the weight of the sample decreased by as much as 2.26% at approximately 320 ◦C.
Then, it increased gradually with increasing temperatures up to 650 ◦C by as much as 14.87%. As for the
differential thermal analysis (Figure 3b), three exothermic peaks were observed at approximately 310,
410, and 570 ◦C, corresponding to the combustion of the oil component in the sludge, the oxidation of
cobalt carbide, and the oxidation of tungsten carbide, respectively (recovery of WC from hard material
sludge). The weight loss observed via thermogravimetric analysis at temperatures lower than 318 ◦C
can be attributed to the removal of moisture and oil components; the weight gain observed between
320 and 650 ◦C can be attributed to the oxidation of WC-Co carbide. Thus, thermal treatment was
carried out for 1 h between 500 and 650 ◦C to oxidize and eliminate the combustible impurities so
that the optimal treatment temperature could be determined. XRD patterns of the thermally treated
scrap are presented in Figure 4. When the scrap was treated at 500 ◦C, the pattern of peaks was similar
to that of the starting scrap (except the intensities differed). However, when the scrap was treated at
550 ◦C, peaks corresponding to a new phase (WO3 and CoWO4) were detected and their intensities
increased with increasing treatment temperature. Peaks corresponding to the starting material were
not observed when it was treated between 550 and 650 ◦C, implying that the starting scrap should be
treated thermally at 550 ◦C or higher (for 1 h in air) to be changed from a mixture of WC and CoCx

into a mixture of WO3 and CoWO4 phases.
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3.2. MC Reaction of the Oxidized Scrap with NaOH

Scrap samples treated at 550, 600, and 650 ◦C were ground with NaOH to induce an MC reaction.
Each of these scraps was mixed with NaOH at a weight ratio of 1:0.4. Four grams of the mixture was
ground at 700 rpm for 2 h. After grinding, these mixtures were dried at 105 ◦C for 2 h to eliminate
moisture so that they could be analyzed using XRD.

The XRD patterns of the ground mixtures are shown in Figure 5. Peaks corresponding to WO3

and CoWO4 could not be found, and those of sodium tungsten oxide (Na2WO4) were seen regardless
of treatment temperature. However, a small WC peak was detected for the scrap treated at 550 ◦C.
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These results imply that the oxide (Na2WO4) shall be formed in the mechanochemical reaction as
expressed by Equation (2).

WO3 + 2NaOH → Na2WO4 + H2O (2)

Moreover, the peak for WC was indicative of incomplete oxidation (Figure 5a). Therefore, an MC
reaction and subsequent water-leaching should be carried out for the scrap treated at 600 ◦C or higher.
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Figure 5. XRD patterns of the ground mixture, NaOH, and the scrap thermally treated at (a) 550 ◦C,
(b) 600 ◦C, and (c) 650 ◦C.

For the scrap treated at 600 ◦C, its MC reactivity was investigated under various grinding
conditions (different mixing ratios (scrap: NaOH = 1:0.3–1:0.5) and grinding times (5–30 min)).
Figure 6(1) shows the XRD patterns of the scrap mixture treated at 600 ◦C with NaOH (1:0.3) for
various grinding times (5, 15, and 30 min). As shown in Figure 6(1-a), peaks corresponding to
the unreacted scrap, such as WO3 (JCPDS No. 43-1035) and CoWO4, (JCPDS No. 72-0479), were
observed. After 5 min of grinding, new peaks for Na2WO4 (JCPDS No. 70-1040) appeared. Upon
increasing the grinding time, the intensities of these new peaks increased, while the intensities of
the peaks corresponding to the unreacted compounds decreased gradually. For the scrap ground for
30 min (Figure 6(1-c)), only one CoWO4 peak was discernible, and the other peaks corresponded to
Na2WO4. For the samples with a mixing ratio of 1:0.4 (Figure 6(2)), peaks corresponding to Na2WO4

were identified regardless of grinding time, and the changes in the intensities of those peaks were
unperceivable. The peaks corresponding to Na2CO3 (JCPDS No. 77-2082) could be observed in the
XRD pattern of the ground mixture with a ratio of 1:0.5 (Figure 6(3)). For the mixture ground for 5 min
Figure 6(3-a), only peaks of Na2WO4 were found (similar to the pattern of Figure 6(2-a)), but with
noticeable differences in their intensities. With increasing grinding time (15 min or longer), the peaks
corresponding to Na2WO4 increased, and the peaks of Na2CO3 were also found. These results imply
that the mixing ratio of NaOH dictates the MC reaction with the oxidized soft scrap, and the reactivity
is improved with increasing NaOH. For the mixing ratio of 1:0.3 (the lowest amount of NaOH used
here), the MC reaction did not proceed until all of the scrap (CoWO4) had reacted. These peaks
corresponding to the unreacted scrap disappeared as the NaOH was increased through amorphization
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and MC reaction (Figure 6(2)). Moreover, Na2CO3 could be formed in the ground mixture (1:0.5) by
the progressive reaction between residual carbide/carbonate components and NaOH (Figure 6(3)).
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Figure 6. XRD patterns of the ground mixture: (1) mixing ratio of soft scrap: NaOH = 1:0.3, (2) 1:0.4,
(3) 1:0.5 with (a) grinding time: 5 min, (b) 15 min, and (c) 30 min.

3.3. Water-Leaching for the Ground Mixture of the Soft Scrap and NaOH

Figure 7 shows the leaching trends of W and Co according to the mixing ratio and grinding time.
For the ground mixture with a ratio of 1:0.3 (Figure 7a), the leachability of W increased proportionally
with grinding time and its dissolution mostly stopped within 2 min. Unusually, the extraction of W for
the mixture ground for 5 min barely increased during 60 min of leaching. More W was extracted with
the 1:0.4 (Figure 7b) mixture than with the 1:0.3 mixture, reaching a maximum of 98% within 60 min.
For the 1:0.5 (Figure 7c) mixture, the leachability of W was as high as 95% in the early stages of leaching
(within 1 min) and as much as 99.2% was extracted in less than 60 min of water-leaching. Co was
difficult to extract, and its leachability was rarely more than 3.5% under any of the conditions explored.
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Figure 7. Effect of mixing ratio (soft scrap: NaOH) and grinding duration on the dissolution of W and
Co via water-leaching: (a) 1:0.3, (b) 1:0.4, and (c) 1:0.5 (pulp density: 10 g/L, room temperature, stirring
speed: 400 rpm).

In summary, the leaching of W increased with increasing NaOH and increasing grinding time,
and Co could not easily be extracted regardless of the conditions of grinding or leaching that were used.
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4. Conclusions

We developed a new process that involves a mechanochemical (MC) reaction which enables
the recovery of tungsten with a high yield as well as the extraction of tungsten selectively from
oxidized soft scrap by using only water as a leaching agent. Soft scrap was screened with a #500 sieve,
then subjected to oxidation, MC reaction, and water-leaching in turn to provide information and the
optimal conditions to achieve effective recycling.

The oxidation of the soft scrap proceeded at 550 ◦C (for 1 h in air) to transform it into WO3 and
CoWO4 (according to TG and XRD analysis). It was essential for the scrap to be treated at 600 ◦C to
eliminate unreacted WC.

Sodium tungsten oxide (Na2WO4) was synthesized through a solid-state MC reaction between
oxidized scrap and NaOH with grinding under atmospheric conditions. The MC reaction proceeded
as grinding progressed and was bolstered by the addition of NaOH. With increasing NaOH, Na2CO3

and Na2WO4 were synthesized after only 10 min of grinding. This progression had a critical effect on
the subsequent room temperature water-leaching step.

The leachability of W in the ground mixture increased as the ratio of NaOH increased during the
MC treatment. Consequently, 99.2% of W was extracted from the ground mixture of oxidized scrap by
water-leaching for 60 min with a mixing ratio of 1:0.5 (scrap: NaOH), while the extraction of Co was
limited to 3.57% under the same conditions.
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