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Abstract: Orientation contrast microscopy (i.e., electron backscattered diffraction, EBSD) was
employed to monitor the plastic strain in loaded tensile samples of aluminium alloy Al6061 in
T4 condition. The kernel average misorientation (KAM) is known to be an appropriate parameter
in orientation contrast microscopy which has the potential to characterise the plastic strain by
monitoring the local misorientations. This technique was applied here to gauge the extent of the
plastic zone around a fatigue crack. To establish the magnitude of strain (which can be identified
by the KAM parameter), a series of tensile samples were strained in the range of 1% to 25%. KAM
maps were compared, and the average misorientations were related to the tensile strain values.
The KAM distribution functions for all the strained samples were derived from a large scanned area.
In addition, Vickers microhardness tests were conducted for these series of samples. This allowed
the comparison of the mesoscopic plastic strain measured by Vickers microhardness with the micro
plastic strain locally obtained by KAM. Noise was observed in the average KAM values up to a
plastic strain of 1.5%. For the plastic strain exceeding 1.5%, noise no longer dominates the KAM map,
and a positive—though not linear—correspondence between plastic strain and KAM was observed.
The observed plastic zone at the tip of the fatigue crack by micro-Vickers hardness measurements
was about an order of magnitude higher than the plastic zone observed on the KAM maps. In view
of the calibration of KAM values on the tensile samples, it could be concluded that in the larger area
of the plastic zone, the strain did not exceed the critical value of 1.5%.

Keywords: orientation contrast microscopy; electron backscattered diffraction (EBSD); kernel average
misorientation (KAM); aluminium; plastic zone

1. Introduction

When a cycling loading is applied to a cracked body, a monotonic plastic zone (MPZ) forms at the
crack tip in the first cycle. If linear elastic conditions apply during loading and ∆K stays as a valid
crack tip parameter, compressive stress develops within the plastic zone during unloading by elastic
unloading of the adjacent material. In a small region within the MPZ, the maximum compressive stress
exceeds the yield strength, resulting in a reversing plastic flow called the cyclic plastic zone (CPZ) [1].

A schematic view of the formation of a plastic zone at the tip of a progressing fatigue crack
showing the formation of the MPZ and CPZ is demonstrated in Figure 1a–d. As the crack grows, the
plastic zone forms a wake of plastically strained material along both flanks of the crack (cf. Figure 1d).
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Figure 1. A schematic view of the formation of a plastic zone at the tip of a progressing fatigue crack 

with (a) Formation of a monotonic plastic zone at the moment of reaching the maximum nominal 

stress level (for the first time after crack initiation); (b) Formation of the cyclic plastic zone after 

unloading of step (a); (c) Shifting of the position of the plastic zone, along with the progressing crack 

tip; (d) Resulting areas of plastic deformation in the wake of crack growth, being the remnants of 

former plastic zones, in the earlier stage of crack growth. 

An estimate of the MPZ for the plane stress condition made by Irwin [2] is given in the 
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in experiments. 
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However, the spatial resolution of hardness measurements is very poor, and hence such local 
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Etching is another microstructural method that can be used to reveal the plastic zone. In a 

remarkable work of Hahn et al. [5], the shape and size of the plastic zone in Fe-3%Si Steel was 

determined. They could also confirm the plastic zone size by theoretical calculations. In this 

technique, specimens containing cracks were etched with an appropriate etchant. Because of the 

high amount of deformation and high dislocation density at the crack tip and wake, the 
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Figure 1. A schematic view of the formation of a plastic zone at the tip of a progressing fatigue crack
with (a) Formation of a monotonic plastic zone at the moment of reaching the maximum nominal stress
level (for the first time after crack initiation); (b) Formation of the cyclic plastic zone after unloading of
step (a); (c) Shifting of the position of the plastic zone, along with the progressing crack tip; (d) Resulting
areas of plastic deformation in the wake of crack growth, being the remnants of former plastic zones, in
the earlier stage of crack growth.

An estimate of the MPZ for the plane stress condition made by Irwin [2] is given in the following
Equation (1):

2ry =
1
π

(
Kmax

σYS

)2
, K = σC

√
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whereby 2ry is the plastic zone size according to Irwin, Kmax is the maximum applied stress intensity
(at the peak of the fatigue load; σ = σmax), σYS is the materials’ yield stress, K is the applied stress
intensity, σ the applied bulk stress, C a geometry factor [3], and a the crack length.

The mechanical properties of the material and the state of stress govern the size and shape of the
plastic zone, as well as the distribution of stress and strain within the plastic zone itself. In general,
the cyclic plastic zone is approximately one quarter of the size of the monotonic plastic zone [4].

How to quantitatively describe the propagation of cracks has been one of the most significant
problems in fracture mechanics. The plastic zone size at the crack tip is a very important characteristic
of the crack behaviour; it has obvious physical meaning, and can be directly observed in experiments.

There are various techniques that have been used to characterize the plastic zone size [4,5].
The microhardness technique is perhaps the most widely used. It is applicable when the plastic zone
ahead of a fatigue crack is cyclically loaded, which leads to hardening or softening. This can be done
by taking hardness indentations in front of and around the crack tip. Depending on the density and
arrangement of dislocation and consequently on the strain history, hardness indentation can be used
to reveal the plastic zone size. The monotonic plastic zone can be identified by a nearly constant
hardness, while it increases parabolically in the cyclic plastic zone [4]. However, the spatial resolution
of hardness measurements is very poor, and hence such local hardness measurements do not give any
insight into the distribution of plastic strain around the crack tip.

Etching is another microstructural method that can be used to reveal the plastic zone. In a
remarkable work of Hahn et al. [5], the shape and size of the plastic zone in Fe-3%Si Steel was
determined. They could also confirm the plastic zone size by theoretical calculations. In this technique,
specimens containing cracks were etched with an appropriate etchant. Because of the high amount
of deformation and high dislocation density at the crack tip and wake, the microstructure responds
differently to etching, and therefore the plastic zone can be easily observed as a dark- or light-etched
region. One of the main challenges of this method is finding the proper etchant solution, and it is not
applicable for all alloys.
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Alternatively, orientation contrast microscopy can be used for gauging local plastic strain in the
microstructure [6]. It has been widely recognized that when averaged in a small volume of material,
dislocations can be categorized either as statistically stored dislocations (SSDs) with a net Burgers
vector close to zero, and geometrically necessary dislocations (GNDs), which give rise to a non-zero
closing vector when integrated over a local volume [7,8]. The GNDs are also known as non-redundant
dislocations and involve a local crystal rotation, which may be determined by orientation contrast
microscopy measurements, conventionally with an angular resolution of 0.5◦ to 1.0◦ (depending on
material characteristics and the measurement setup). Therefore, the density of GNDs can be estimated
by local orientation measurements on the condition that a material model is available that connects the
local orientation gradients with the dislocation density.

A number of models have been proposed in the literature [9–12] which associate the local
orientation gradient with the density of GNDs. This connection is generally based on the Nye
dislocation tensor αij, which bears a linear connection with the lattice curvature tensor κij = ∂θi/∂xj,
whereby θi is the misorientation in direction i. The total density of GNDs ρGND is given by
(1/b)∑ 3

i=1 ∑ 3
j=1

∣∣αij
∣∣. The in-plane components of the lattice curvature tensor κij (with j 6= 3) can

be derived from crystal orientation scans by electron backscattered diffraction (EBSD). Hence, EBSD
may provide the potential to map localized plastic deformation at the microstructural length scale
by monitoring the local orientation gradients [13,14]. It is the objective of the present paper to gauge
whether this potential can be employed to quantitatively identify the plastic zone size around the tip
of a fatigue crack in an aluminium alloy.

2. Materials and Methods

A 1-mm-thick sheet of Aluminium alloy 6061-T4 was used for this study. A static tensile test
was applied, revealing that the material exhibited a yield strength of 130 MPa, a tensile strength of
270 MPa, and an elongation at fracture of 25%. Double edge notched specimens with dimensions of
220 mm × 30 mm × 1 mm were cut from the sheet. Notches with a depth of 6 mm were inserted
halfway along the length of the sample to control the crack initiation point during a fatigue test.
A stress-controlled high cycle fatigue experiment was carried out with a frequency of 30 Hz, a mean
stress of 16.7 MPa, and a stress amplitude of 15 MPa.

After 43,000 cycles at the crack extension of 1.3 mm, the fatigue test was interrupted and the
crack tip area was selected for microstructural investigation. Vickers hardness indentations of 98 mN
were applied in the extension of the fatigue crack, starting at the crack tip with 16 µm spacing and
processed with Ecos Workflow™ software (V.2.5.0, EMCO TEST Prüfmaschinen GmbH, Kuchl, Austria,
2007). Though 16 µm spacing does not conform with ASTM E 384 standards, it can be applied here,
as absolute hardness values are not of interest, but rather the relative change in microhardness.

For metallographic purposes, conventional mechanical polishing up to 0.25 µm was applied with
OPS (oxide polishing suspension), followed by electropolishing with A2 Struers® electrolyte (Maassluis,
The Netherlands, 2011) with a voltage of 39 V and a flow rate of 9 for 15 s. Orientation contrast scans
were carried out in a selected region around the crack tip with an EDAX-TSL® EBSD tool (EDAX Inc.,
Draper, UT, USA, 2012) attached to an FEI Quanta 450TM field emission gun (FEG)-SEM. Several grids
with step sizes ranging from 0.3 to 2.0 µm were applied. The kernel average misorientation (KAM)
parameter was considered as a measure of local orientation gradient. This parameter is calculated by
considering for each pixel the average misorientation with the Nth neighbouring pixels (neighbouring
pixels for which the misorientation exceeds 5◦ are not included in the average). Only the perimeter
points of the kernel are included in the procedure (cf. Figure 2). The misorientation cut-off θc was set
to 5◦, as it is assumed that misorientations of more than 5◦ originate from grain boundaries, and were
not induced by (micro-)plasticity around the crack tip.
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Figure 2. Kernel average misorientation (KAM) parameter used to characterize the accumulated plastic
strain by monitoring the local orientation gradients [15].

3. Results

Figure 3 presents the hardness data along a line that extends along the crack tip. Each data
point is the average of 10 data points along a line that is perpendicular to the crack tip (cf. insert in
Figure 3). Based on these data, the plastic zone size was determined visually by two drops in Hv
values, indicated by the vertical lines in Figure 3. It must be noted that Hv = 85 ± 2 is the hardness of
the unstrained or base material. Vickers microhardness measurements indicate an MPZ and CPZ size
of ~0.6 mm and ~0.2 mm, respectively (cf. Figure 3).
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Figure 4 shows the orientation contrast scan of the crack tip area. In the inverse pole figure map of
Figure 4a, it can be observed that the crack is predominantly of a transgranular nature. The scan also
shows that there are many particles in the microstructure, which is normal for this type of aluminium
grade alloyed with Si and Mg. It appears that the crack path morphology is affected by these particles.
A similar phenomenon was observed in a previous study of cast iron with the graphite particles
embedded in a pearlitic metal matrix during thermo-mechanical fatigue (TMF) testing [16]. Similar to
the cast iron case, in the current material under investigation, the crack deviates towards the particles
that exhibit a characteristic stress field. The tip of the crack splits in two branches; the one on the
right-hand side (marked in white in Figure 4c) is more pronounced, whereas the one on the left-hand
side (marked in black in Figure 4c) is less developed but appears to exhibit some deformation lines
perpendicular to the crack path (cf. image quality (IQ) map of Figure 4b). However, it seems that this
branch of the crack was stopped by a particle in its front.
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map; (b) Image quality map; and (c) KAM map (colour legend in degrees).

As pointed out in the introduction, the kernel average misorientation approach has the potential
to characterize the accumulated plastic strain by monitoring the local orientation gradients, of which it
is well known that they bear a connection with the density of geometrically necessary dislocations
(GNDs). As can be seen in the KAM map of the crack (cf. Figure 4c), there is a small trace of a plastically
deformed zone in the immediate vicinity of the crack, with a size of approximately 30 µm. However,
a textbook-type elliptic plastic zone at the crack tip cannot be discerned, even though the hardness
data indicated a size of ~0.2 mm for the CPZ. It is interesting to note that the KAM map (cf. Figure 4c)
shows a plastic wake, which is left behind by the propagating fatigue crack as would be expected
from continuum fracture mechanics. This is due to the accumulation of plastic deformation by the
progressing crack.

4. Discussion

Vickers microhardness measurements indicate the MPZ and CPZ size of ~0.6 mm and ~0.2 mm,
respectively (cf. Figure 3). These values are in reasonable agreement with the theoretical estimated
values of MPZ and CPZ size of 0.53 mm and 0.13 mm, respectively, as derived from Equation (1) with
Kmax = 5.62 MPa

√
m and C = 1.17 [3], whereby CPZ = (1/4) *MPZ [4].
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The Nye tensor connects the density of GNDs to the lattice curvature tensor. In a simplified
one-dimensional (scalar) representation assuming only parallel edge dislocations of the same sign, this
tensor relation can be expressed as (cf. Figure 5) [7]:

κ = ρb (2)

whereby κ is the lattice curvature dθ/dx, ρ the density of GNDs, and b the Burgers vector. On the
simplified lattice geometry of Figure 5, it can be seen that the curvature κ = 1/R = dθdx. In a discrete
representation, the local dθ/dx value can be approximated as ∆ < θ > /∆x, whereby ∆ < θ > is the local
average misorientation as quantified by the KAM parameter in an EBSD measurement and ∆x is the
distance over which the misorientation is evaluated.
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Figure 5. Schematic representation of a one-dimension lattice curvature, inducing a shear strain dθ [7].

Figure 5 equally shows that the shear strain tg(dθ) ≈ dθ is approximately equal to the local lattice
misorientation dθ in the approximation of very small (shear) strains. If it is assumed that the angular
resolution limit of EBSD is approximately equal to 1.0◦ (0.0174 rad), then this corresponds to a plastic
shear detection limit of ~1.7%.

The misorientation corresponding to the plastic zone at the crack tip—as revealed by the KAM
parameter—is shown in Figure 4c. This map suggests a plastic wake size of less than 30 µm, which is
much smaller than the size obtained from the hardness measurements and theoretical calculations as
mentioned above. Therefore, this can suggest that the magnitude of strain in the plastic zone is not
high enough to be gauged with EBSD. Hence, the following experiment was performed to determine
if the noise dominates the misorientation maps for strain levels below a critical threshold.

A plastic strain was applied to a tensile test sample of the same aluminium alloy with tensile
strains ranging from 1% to 25% at fracture. Orientation contrast maps were measured with a step
size of 0.3 µm on each of the tensile samples in four different locations (scanned area 200 × 300 µm2),
and the scan average KAM value was extracted for each scan; thereafter, the average value and the
standard deviation was determined for the set of four scans. The procedure was repeated for different
values of nearest neighbours: 2nd, 3rd, 4th, 6th, 8th, and 10th nearest neighbours were considered.
The dependence of the KAM value on the tensile plastic strain is shown in Figure 6.
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Figure 6. Average KAM parameter vs. true strain observed in tensile experiments. The KAM parameter
was evaluated for different values of nearest neighbours.

According to the theoretical expectation, it was confirmed that no specific tendency could be
observed up to a plastic strain level of ~1.5%, indicating that the accumulated plastic strain at the crack
tip is less than the detectable limit. For plastic strains exceeding the critical value of ~1.5%, noise no
longer determines the average KAM value, and there is an ascending correspondence between the
KAM value and the plastic strain, which was also observed by Kamaya et al. [13].

The work of Besel et al. [17], in which they determined the plastic zone size with 3D numerical
finite element method (FEM) simulations and digital image correlation (DIC), shows that the main
part of the plastic zone also has strain values less than 1%. Therefore, the results of Besel et al. [17]
are consistent with the present EBSD results. In Figure 4c it can be observed that only a small part
(<30 µm) of the plastic zone exhibits intensified KAM values corresponding to strain values higher
than 1.5%.

It should be noted that—according to the simplified model of Equation (2)—there is a linear
relation between the GND dislocation density and the lattice curvature. Ignoring the simplifications
of this model, it can be observed that the slope of this curve is positive but with descending second
derivative, just as the predicted evolutions by theoretical dislocation balance equations [18,19].

5. Conclusions

The plastic zone size measured with Vickers microhardness was found to be in agreement with
the theoretical values. However, the magnitude of plastic zone size distinguished on EBSD maps was
not consistent with its real size, as the KAM parameter is not sufficiently sensitive to the strain level of
the plastic zone. Therefore, it is concluded that orientation contrast microscopy is not an appropriate
method to resolve the deformation structure of the plastic zone in the vicinity of a fatigue crack tip in a
ductile Al6061-T4 alloy. In tensile test experiments, it was determined that plastic strains of more than
1.5% could be identified on KAM maps. Hence, it can be concluded that the plastic strain at the crack
tip is lower than 1.5% in this material with the applied loading condition.
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