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Abstract: Changes in surface topography reflect the state of fatigue damage. In this paper, a new
method to characterize metal surface topography during fatigue has been proposed. Firstly, we
acquired surface topography images based on machine vision and separated them into roughness,
waviness, and form error images through a shearlet transform. Secondly, we constructed gray
co-occurrence matrixes of the obtained surface topography images and calculated the characteristic
parameters, such as contrast, correlation coefficient, energy, and entropy for all the original and
separated images. Then, taking a Q235 steel specimen as an example for testing, the experimental
results and theoretical analysis demonstrate that the parameter contrast increases while energy,
correlation coefficient and entropy decrease gradually with number of loading circles, which reach
their maximum and minimums before fracture, respectively.
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1. Introduction

Surface topography as an important part of machining accuracy not only reflects the surface
quality, but also the application performance of components [1]. The evolution of surface topography
known as persistent slip bands (PSBs) formation, to which crack nucleation and microcrack propagation
are strongly related, could constitute 90% of the fatigue life for some materials. Thus, it is considered
as one of the most important tasks to develop a quantitative understanding in studying fatigue.

For metals, fatigue damage is sensitive to surface topography [2]. The surface topography also
affects fatigue behavior due to micro- or nano-scale stress levels, stress concentration, and fatigue
crack initiation often induced at the bottom of surface profiles [2–4]. In the fatigue damage process
accompanying plastic deformation, the internal microstructure of a metal component is distorted.
Cyclic hardening or softening changes the microstructure significantly and produces irreversible lattice
defects, such as cavity and dislocation. Meanwhile, the surface inclusions and initial holes, slip of
the crystal surface, and rotation of grains form surface defects, surface footsteps, and concave convex
on the surface, manifesting the changes in surface topography through real-time observation [5–8].
However, it is very difficult to obtain accurate real-time surface topography data, for it evolves
slowly and subtly when fatiguing. A scanning electron microscope (SEM) can provide more insight
into surface topography and early damage evolution in fatigue, but it cannot provide quantitative
information. Using an atomic force microscope (AFM), three-dimensional topographic images of PSBs
can be provided, however the imaging area and vertical range of an AFM are limited and it is difficult
to operate continual high-speed measurements and apply them to real engineering applications [9].
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According to surface filtering theory, the surface topography of a component can be separated
into three parts of roughness, waviness, and form error from high to low frequency, whose individual
effects can be analyzed [10–12]. As such, surface topography changes during fatigue process can be
characterized by using machine vision and texture analysis [13–15].

In this paper, we proposed a method to characterize the relation between material surface
micro topography and fatigue properties, through obtaining a high-definition metal surface
topography image during fatigue damage and extracting surface texture features by constructing gray
co-occurrence matrixes with a fast finite shearlet transform (FFST).

2. Principle of the Shearlet Transform

A shearlet transform is a multiscale signal geometric analysis tool constructed by Guo and
Easley et al. through synthesizing expansion affine systems with special forms [16]. By generating a
basis function through scale and translation, the shear transformation can produce an optimal sparse
representation of multidimensional data with many characteristics, such as multi-resolution analysis,
localization, and the directionality and anisotropy of base functions.

2.1. Continuous Shearlet Transform

A two-dimensional continuous shear transform can be written as [17]:

SHφ f (a, s, t) =
〈

f ,φa,s,t
〉

(1)

where
{
φa,s,t(x) : s.t.a ∈ R+, s ∈ R, t ∈ R2} is a shearlet base function, which can be represented as:

φa,s,t(x) = |detAa,s|−
1
2φ
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)
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where Aa is named as parabolic matrix to control the scale and Bs is named shear matrix to
control direction, where a, s, t are the parameters of the transform denoted as scale, direction,
and displacement respectively.

If φa,s,t(x) satisfying admissible conditions can be localized and f ∈ L2(R2) can be expanded
with the shearlet base functions, like Equation (3) [18]:

‖ f ‖2 =
∫

R2

∫ ∞

−∞

∫ ∞

0

〈
f ,φa,s,t
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a3 dsdt (3)

When ϑ = (ϑ1, ϑ2) ∈ R2, ϑ1 6= 0 and ϕ̂(ϑ1, ϑ2) = ϕ̂1(ϑ1)ϕ̂2(ϑ1/ϑ2), in which ϕ̂ is the Fourier
transform of ϕ, ϕ1 and ϕ2 are continuous shearlet smooth functions, and the supremums of ϕ̂2,
ϕ̂1 satisfy the conditions of suppϕ1 ⊂ [−2, 1/2] ∪ [1/2, 2], suppϕ2 ⊂ [−1, 1], then ϕa,s,t(x) can be
represented as Equation (4) in the frequency domain: ϕ̂a,s,t(ϑ1, ϑ2) = a

3
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(4)

Thus, the shearlet support composes a pair of trapezoids with different scales in the direction of
the relative origin, as shown in Figure 1.
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Figure 1. Shearlet frequency domain decomposition (a) and support base (b). 

2.2. Discrete Shearlet Transform 

By discretizing the parameters of 𝑎, 𝑠, 𝑡  in the space of 𝐿2(𝑅2) , the continuous shearlet 

transform of SHφf(a,s,t) constructs a Parseval frame: 

𝑓(𝑥) =

{
 

 
𝑎𝑗 = 2

−𝑗 , 𝑗 = 0,… , 𝐽 − 1

𝑠𝑗,𝑘 = 𝑘2
−𝑗 , 2−𝑗 ≤ 𝑘 ≤ 2𝑗

𝑡𝑚 = (
𝑚1

𝑀
,
𝑚2

𝑀
) ,𝑚 = (𝑚1, 𝑚2) ∈ 𝑍

2

 (5) 

where 𝐽 =  
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2
⌊𝑙𝑜𝑔2𝑁⌋  is a considerable scale. Thus, the continuous shearlet function can be 

represented in a discretized form:  
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Converting Equation (6) to the frequency domain, it can be rewritten as: 
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In this paper, we used fast finite shearlet transform (FFST) to improve the computational 

efficiency by fast Fourier transform [19]: 
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2.2. Discrete Shearlet Transform

By discretizing the parameters of a, s, t in the space of L2(R2), the continuous shearlet transform
of SHφ f (a, s, t) constructs a Parseval frame:

f (x) =
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where J = 1
2blog2Nc is a considerable scale. Thus, the continuous shearlet function can be represented

in a discretized form:
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In this paper, we used fast finite shearlet transform (FFST) to improve the computational efficiency
by fast Fourier transform [19]:

SH( f )(l, j, k, m) =



i f f 2
(
∅̂(ϑ1, ϑ2), f̂ (ϑ1, ϑ2)

)
, l = 0

i f f 2
(
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(
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)
, f̂ (ϑ1, ϑ2)

)
, l 6= 0, |k| = 2j

(8)

where f f 2 and i f f 2 are the 2D fast Fourier transform (FFT) and the inverse fast Fourier transform
(iFFT), respectively, and l is the index of areas corresponding to different frequencies, as shown in
Figure 2: 

Ch =
{
(ϑ1, ϑ2) ∈ R2, |ϑ1| ≥ 1

2 , |ϑ2| < |ϑ1|
}

Cv =
{
(ϑ1, ϑ2) ∈ R2, |ϑ2| ≥ 1

2 , |ϑ2| < |ϑ1|
}

C× =
{
(ϑ1, ϑ2) ∈ R2, |ϑ1| ≥ 1

2 , |ϑ2| ≥ 1
2 , |ϑ2| = |ϑ1|

} (9)
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Defining ϕ̂h×v
j,k,m = ϕ̂h

j,k,m + ϕ̂v
j,k,m + ϕ̂×j,k,m, the discretized shearlet transform can be represented as:

SH( f )(l, j, k, m,) =


〈 f ,∅m〉, |l = 0〈

f ,φl
j,k.m

〉
, |l = {h, v}〈

f ,φh×v
j,k.m

〉
, |l = ×, |k| = 2j

(10)

where ∅m is the scale transform function.

3. Separation of Surface Topography Based on FFST

3.1. Decomposition of Surface Topography

Based on the shearlet transform, to separate the surface topography requires two steps: surface
decomposition with the shearlet transform, and reconstruction with an inverse transform based
on FFST.

As shown in Figure 3, an N-layer decomposition is done to obtain the shearlet coefficients of
various frequencies at different scales through the original image data. Figure 4 shows the basic process
for two-layer surface decomposition by FFST.
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In Figure 4, f i
h and f i

l , d f i
h, and di

l denote the decomposed images and the coefficients with high
and low frequencies, respectively. With more decomposed layers, the frequency of the decomposition
coefficients increases, thereby including more fine information about the surface texture.

3.2. Reconstruction of Surface Topography

According to surface filtering theory, the surface topography S(x, y), in order from high frequency
to low frequency, can be decomposed into roughness C(x, y), waviness W(x, y), and form error F(x, y)
with the equation expressed as:

S(x, y) = C(x, y) + W(x, y) + F(x, y) (11)

Therefore, during the second stage of separating the surface topography, the coefficients obtained
by image decomposition in the first stage must be selected on a corresponding scale, on which the
images of roughness, waviness, and form error can be reconstructed as follows:

C(x, y) = iFFST
(

d f i
h,1, . . . , d f i

h,J , d f K
h,1, . . . , d f K

h,J

)
W(x, y) = iFFST

(
d f 2

h,1, . . . , d f 2
h,J , d f K

h,1, . . . , d f K
h,N

)
F(x, y) = iFFST

(
d f i

l,1

) (12)

3.3. Simulation of Decomposition and Reconstruction for Separating Surface Topography

To validate how separation with a shearlet transform affects surface topography, we simulated a
three-dimensional surface with a width of 40 mm and a length of 40 mm, whose surface topography
was represented as:

S(x, y) = 0.005x + 0.001 sin(0.4πy) + 0.003e(n) (13)

In Equation (13), the first term on the right side is the form error, while the second and
third terms are the waviness and Gaussian random roughness, respectively. By decomposing the
surface topography image simulated with Equation (13) into five scales by FFST, we obtained the
decomposition coefficients of the low-frequency and high-frequency bands with 4, 8, 16, 32, and
64 directions.

After that, images of form error, waviness, and roughness were, respectively, reconstructed with
the coefficients of the low-frequency and high-frequency bands according to Equation (12). Figure 5
shows the reconstructed images, revealing that the FFST shearlet transform can separate the form error,
waviness, and roughness very well.
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4. Feature Extraction of Topography Images by a Gray Level Co-Occurrence Matrix

An image of surface topography contains texture characteristics, and the texture that is formed by
the gray levels appear repeatedly at the spatial position in the image. Therefore, there exists a certain
gray relation among the pixels with a certain distance. The gray level co-occurrence matrix (GLCM),
which was proposed by Haralick et al., which reflects the image brightness distribution characteristics,
is a common method used to describe the relation mentioned above and can provide more image
information about the gray distribution, variation direction, change magnitude, and local region [20].

4.1. Principle of the Gray Level Co-Occurrence Matrix

Suppose the gray level of a pixel MP(x, y) is i, and the gray level of another pixel NP away from
MP with distance (Dx, Dy) is j, we define the probability of these two pixels with the gray level (i, j) as:

P(i, j, d, θ) =

(x, y)

∣∣∣∣∣∣∣∣∣
f (x, y) = i,

f (x + Dx, y + Dy) = j,
x = 0, . . . , M− 1, y = 0, . . . , N − 1,

i, j = 0, . . . , L− 1

 (14)

where L is the level number of the image, and θ is the match orientation angle between the pixels,
which is often selected as 0◦, 45◦, 90◦, or 135◦ relative to the reference direction. P is the GLCM,
a symmetric matrix whose order number is determined by the number of gray levels in the image.

4.2. Feature Extraction of Image Texture

The GLCM indicates the rule that the two pixel levels appear at a certain match direction within a
certain distance and reflects some information of image texture. In the region with coarse texture, the
element of the GLCM with greater number in the vicinity of the diagonal for the pixels of coarse texture
tend to be the same gray. In the area of fine texture, the elements of the GLCM with a larger number
spread to the whole image and away from the diagonal. Until now, researchers have put forward
14 representative parameters to describe GLCM, in which energy, contrast, correlation coefficient and
entropy are commonly used in many applications for the fact that they are not correlative [21].

(1) Energy:

Energy =
L−1

∑
i=0

L−1

∑
j=0

p2(i, j) (15)

where p(i, j, d, θ) is the normalized value of P(i, j, d, θ). The image energy increases with texture size,
and vice versa, which reflects the gray distribution uniformity of the image texture.

(2) Contrast:

Contrast =
L−1

∑
n=0

(i− j)2
L−1

∑
i=0

L−1

∑
j=0

p(i, j) (16)

The deeper the texture groove, the greater the image contrast, reflecting image clarity.

(3) Correlation coefficient:

Correlation =

(
L−1

∑
i=0

L−1

∑
j=0

ijp(i, j)− µxµy

)
/σ2

x σ2
y (17)

where µx, µy and σx, σy are the mean and variance of the GLCM elements in the rows and columns.
The more obvious the direction texture, the larger the correlation coefficient, which reflects the similarity
of texture in a direction.
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(4) Entropy:

H =
L−1

∑
i=0

L−1

∑
j=0

p(i, j) log p(i, j) (18)

The more abundant the texture, the greater the entropy, which reflects the information content of
the image and can be used to describe minor variations in the image texture.

5. Experiment

5.1. Description

Figure 6 shows the dimensions of the sample used in experiments:
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Figure 6. Dimensions of sample (units: mm).

The material of the sample is Q235. The chemical composition was obtained by X-ray fluorescence
spectrum analysis (Innov x-5000, INNOV-X, Woburn, MA, USA) and listed in Table 1. The sample
was treated by annealing to eliminate residual stress before testing and its yield was about 291.7 MPa,
obtained by an electrohydraulic servo fatigue testing machine (SDS-200, Changchun Research Institute
for Mechanical Science Co., Ltd., Changchun, China).

Table 1. Chemical composition of the tested Q235 material.

Fe Mn Cr Co P S

93.608% 0.147% 0.044% 0.081% 0.042% 0.045%

Before the experiment, both surfaces of the specimen were grinded with sandpaper and cleaned.
During the test, the specimen was fixed on an electrohydraulic servo fatigue testing machine, in front
of which a high-resolution microscope Celestron 44302 (150×, Celestron, Torrance, CA, USA) was
installed, and subjected to a sine load 10 Hz frequency, a maximum amplitude of 192.5 MPa, and mean
amplitude of 157.5 MPa.

5.2. Analysis and Discussion

During the experiment operated in a darkroom considering the consistency of illumination,
the surface topography of the loaded specimen was imaged every 250 fatigue cycles, and
30 images, including the original image of the unloaded specimen before fracture were obtained,
when 7350 fatigue cycles had been loaded.

Accounting for vibration accompanying loading during the fatigue test, a registration procedure
has been put into effect on the 30 images to reduce errors before analysis. Each of the images was
decomposed into five layers by FFST in turn, and the decomposition coefficients of the low-frequency
and high-frequency bands with 4, 8, 16, 32, and 64 directions for various scales were obtained. Similar to
the study in Section 2.2, we reconstructed the image of form error, waviness and roughness at different
numbers of fatigue cycles with the coefficients of the first scale and low-frequency area, second
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and third scales, and fourth and fifth scales, respectively, and the images of the measured surface
topography were separated. Figures 7–10 show some results of the decomposition and reconstruction.
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Figure 10. Images of original and decomposed morphologies after loading 7250 fatigue cycles
(before fracture).

Figures 7–10 show that with the increase of fatigue loading cycles, the texture of the surface
topography image becomes detailed while the existing grooves become deeper, but the correlation
coefficients of the image texture along a certain direction decreases. This might be due to the slip band
causing the continuous changes of surface texture during the process of fatigue damage.

To further clarify the changes of surface topography during fatiguing, we built and calculated
GLCMs for the reconstructed roughness, waviness, form error images, and the corresponding
characteristic parameters such as the contrast, correlation coefficient, energy, and entropy, as shown in
Figures 11–14.

It can be seen from Figures 11–14 that:

(1) As fatigue load is applied, the contrast of the surface topography image increases to a maximum,
and then decreases before fracture. This occurs mainly because the stress concentration initiates
microcracks on the surface and deepens pre-existing crack grooves. As fatigue loading continues,
the specimen gradually draws closer to failure, the internal elastic energy releases, and the
contrast of the surface topography image decreases.

(2) With fatigue loading, the image correlation coefficient, energy, and entropy decrease and reach
their minimums before fracture. The reason perhaps is that the surface grooves deform and
the surface texture becomes finer due to “intrusion-extrusion” effects, weakening the texture
similarity in all directions and changing it from striped to non-striped.

(3) The decomposition images of roughness obtained by FFST are more similar to the raw images of
texture than to the images of waviness and form error. The reason might be that the experimental
images are taken of a surface topography in which the surface roughness is more prominent
and the fatigue damage manifested firstly as changes in roughness. Moreover, the images of
waviness and form error can provide more data useful in recognizing fatigue damage, revealing
certain heuristics.

(4) The features of 0◦ change are more remarkable than those in the other directions. This behavior
illustrates that the changes in surface topography with fatigue damage are related to not only the
gripping points at the two ends of the specimen, the modes of telescope vertical fixation, and the
push-pull impact fatigue testing, but also the direction of fatigue damage.

In order to illustrate the performance of the method proposed in the work, we compare the results
with those obtained from a conventional approach using TRscan301 white light confocal microscope
made by Swiss Trimos TR Scan (TRIMOS, Renens, Switzerland). Since online real-time monitoring
cannot be carried out with this instrument, we selected 10 groups of samples with good consistency
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and conducted the fatigue experiments with the samples one by one. Then the samples with the
different fatigue damage extent were obtained. By scanning the same areas of the testing samples,
a flurry of surface topography data, being defined in ISO 25178, were acquired. It was found that
the three-dimensional surface parameters (including amplitude, space, function, and comprehensive
parameters) were changed with the increase of the fatigue damage degree, but the change rules of
the parameters were not clear, due to the complexity. These change rules will be explored in further
study late. In addition, both the 3D surface topography information of white light confocal images
and that of the gray image features obtained by the method proposed in this paper, are related to the
extent of fatigue damage, but the essence of these two concepts is different. The results of preliminary
comparison experiments showed that the gray level image processing method has a high efficiency and
is convenient for real engineering applications, for the topography parameters are easy to be extracted
and the corresponding consuming time is only 1/60–1/100 of that for the white light confocal method,
which is not suitable for online detection for many parameters and a very large amount of data must
be processed.
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6. Conclusions

The state of fatigue damage can be reflected by the changes in surface topography. In order to
characterize the metal surface topography during fatiguing processes, a new method was proposed.
In this method, the machine vision was used to obtain the surface topography, which was then
separated by FFST. After that, the images of roughness, waviness, and form error were reconstructed.
The gray level co-occurrence matrices and the corresponding characteristic parameters of the above
images and the original ones were built and calculated.

The results obtained from this investigation showed that the increase of the loading cycle number
caused the finer texture of the metal surface, as well as deeper grooves. For the surface topography, the
image contrast increased to its maximum and the energy, correlation coefficient, and entropy decreased
to their minimum values before fracture failure.

This investigation will provide an early warning way to the real-time state for the fatigue damage
of metal components. In the future, further investigations will be conducted to find the relationships
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among the above results through the method of surface image processes with fatigue mechanisms and
fatigue damage.
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