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Abstract: This paper proposes a pulse-echo Ultrasonic Testing (UT) methodology to quantify the 
damage of hysteretic dampers subjected to cyclic loadings. Energy dissipation is known as an 
innovative strategy for the protection of buildings against earthquakes. It consists of installing 
special devices called dampers in the construction, which are entrusted to dissipate most of the 
energy input by the earthquake, thus keeping the main structure basically undamaged. In 
particular, the hysteretic dampers dissipate the input energy through plastic deformations in their 
metallic parts. Several moderate ground motions would not exhaust the capacity of the dampers, 
but they cause damage—plastic deformations in the device. Therefore, continuous or periodic 
inspections of the damper are required in order to decide upon its eventual replacement. In this 
particular work, several hysteretic dampers made of stainless steel were subjected to different 
patterns of  
low-frequency cyclic loads that caused diverse levels of damage. Each damper underwent pulse-
echo UT before and after the cyclic loading. Spectral energy of the echo signals was properly 
calculated at each damage level in order to define a reliable damage index. The new index has been 
compared with a well-established mechanical damage index, ID, previously proposed by the 
authors. A successful correlation was observed, making the pulse-echo UT technique promising for 
this particular application. 

Keywords: non-destructive testing; ultrasound; seismic engineering; dampers 
 

1. Introduction 

The energy dissipation strategy for the passive protection of buildings and infrastructures 
against earthquakes has been growing during recent decades. It consists of installing special devices 
called dampers designed to dissipate most of the energy input by the earthquake. Figure 1 provides 
a general scheme of the installation of dampers in a building with a frame structure. 
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Figure 1. Basic configuration of a building structure with dampers. 

The effectiveness of energy dissipation systems for improving the response of buildings, while 
increasing their robustness and resilience, is now widely recognized. In particular, the so-called 
hysteretic dampers or metallic dampers are based on the plastic deformation of metals (commonly 
steel) as the source of the energy dissipation. Hysteretic dampers do not necessarily need to be 
replaced after minor/moderate ground motions or even after a large earthquake. However, deciding 
whether or not the dampers need to be replaced is essential, and calls for reliably and non-destructive 
evaluating the level of damage and determining the remaining energy dissipation capacity (life) of 
the damper after an earthquake. This evaluation cannot be based on simple visual inspection because 
it is a cumulative process, not visible until the element is on the brink of failure. Past research has 
proven that the level of damage and the failure of steel elements subjected to plastic deformations 
caused by arbitrarily applied cyclic loading can be reliably estimated by decomposing the  
force-displacement curves endured by the element into the so-called skeleton part and Bauschinger 
part [1]. This decomposition is the basis of a phenomenological mechanical damage index called ID 
that has been extensively validated with static and dynamic tests. Yet measuring the force and the 
displacement of dampers during an earthquake entails installing expensive instrumentation (load 
cells or strain gages and displacement transducers) that would offset one of the main advantages of 
hysteretic dampers—low cost.  

This paper focuses on a particular type of hysteretic damper developed by the authors that uses 
stainless steel plates with slits, as shown in Figure 2. The strips of steel between slits behave like small 
columns whose ends undergo plastic flexural and shear deformations when the steel plate with slits 
is subjected to the shear force V seen in Figure 2. This damper will be referred to as the “slit damper” 
hereafter.  

 
Figure 2. Hysteretic damper (steel plate with slits). 
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An alternative to the visual inspection of dampers to evaluate damage is the use of sophisticated 
Non Destructive Testing (NDT) methods. Vibration tests have been widely used in the literature [2] 
to perform modal analysis and to relate the damage to relative variations of modal damping and 
natural frequencies. In the past, the authors investigated a NDT method consisting of vibration  
tests [3–8] conducted with piezoceramic sensors attached to the hysteretic damper. In this context, 
the present paper investigates the application of pulse-echo Ultrasonic Tests (UT) as an alternative to 
the vibration method, to quantitatively assess the level of damage in a “slit plate” damper. Some 
previous investigations regarding the damage of steel components have involved the Ultrasonic 
Testing [9,10]. However, no other work has applied the ultrasonic testing for the inspection of seismic 
dampers with a validation by means of a reliable mechanical index.  

Based on the elastic waves obtained by means of the pulse-echo UT inspection along the entire 
thickness of the plate, a new damage index referred to as UT index hereafter, is proposed. The UT 
index is based on quantitative evaluation of changes in the energy of the transmitted-wave spectrum 
induced by the presence of damage in the strips of the plates. The new UT index is compared with 
the mechanical ID index developed in previous investigations, demonstrating a very good correlation 
at all the considered levels of damage. To calculate the ID index, it is necessary to know the  
load-displacement relationship experienced by the damper during the cyclic loading, and this 
requires expensive instrumentation. In contrast, the new UT index can be reliably used to evaluate 
the level of damage on “slit plate” dampers with no need to know the load-displacement relationship 
endured by the damper. 

2. Description of the Hysteretic Dampers 

Figure 2 shows the “slit plate” hysteretic damper investigated and its typical geometry. It is built 
from a steel plate by cutting a number of slits that leave a number of strips between them. The slit 
plate is fixed to the main structure in such a way that when the building is subjected to seismic 
loadings, the two exterior flanges of the slit plate are forced to move together in the same direction, 
but in the opposite sense from the interior flange. The exterior and interior flanges are fixed to the 
structure of the building in such a way that each strip between slits can be described as a small 
“column” with both ends clamped. When the plate is subjected to the forces V/2, V/2 and V, these 
“columns” undergo in-plane flexural and shear deformations. Plastic deformations take place at both 
ends of each strip, where the bending moment attains maximum values. One way to materialize this 
type of hysteretic damper is to use the walls of a steel tube as the slit plate, as in the brace-type 
hysteretic damper developed by the authors in reference [11]. 

3. Test Specimens, Experimental Setup and Loading Patterns 

In order to investigate the process of damage in the slit damper, ten test specimens designed and 
manufactured in University of Granada (Granada, Spain), called as Dissipative Component (DC), 
similar to that shown in Figure 3, consisting of two strips, were tested. They will be referred to here 
as DC1 through DC10. The slit plates were made of hot-rolled stainless steel, grade 304-AISI. The 
holes in the exterior and central flanges served to fix them through bolts to the testing apparatus 
shown in Figure 4. The apparatus consists of two hollow structural rectangular sections, one inside 
the other, forming a tube-in-tube configuration. The central flange of the slit plate was fixed with 
bolts to the interior tube through a longitudinal slit cut in the exterior tube. The exterior flanges of 
the slit plate were also fixed with bolts to the exterior tube. Thick end plates were welded to the tubes 
and clamped solidly by bolts to the loading head and to the base of a displacement-controlled 
universal testing machine SAXEWAY T1000, from the company MOOG Inc. (East Aurora, New York, 
NY, USA), with a maximum load capacity of 1000 kN. The exterior tube was clamped to the head, 
and the interior tube to the base of the testing machine.  

Forced vertical displacements were applied quasi-statically by the loading head. A load cell 
installed in the servopulser measured the applied force and two displacement transducers measured 
the relative displacements of the ends of the strips in the direction of the applied load. The test 
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specimens were subjected to displacement-controlled cyclic tests that induced different levels of 
damage in the strips. 

 
Figure 3. Dissipative Component (DC) of dampers: parts of test specimens, nominal dimensions in 
mm and measurement points (1–4). 

 
Figure 4. Experimental setup used during the cycling tests. 

Figure 5 shows the typical deformation pattern of a test specimen. The shaded area indicates the 
approximate region where plastic deformations take place, and where the seismic energy is released. 

 
Figure 5. Relative displacement between external and central flanges.  
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Two different patterns of loading were used: cycles of increasing amplitude and cycles of 
constant amplitude, as shown in Figure 6. Specimens DC1 to DC5 were subjected to cycles of 
increasing amplitude, 0.4 mm in each cycle. Each of the specimens DC1 to DC5 was subjected to a 
different number of cycles in order to induce a different level of damage Di, as indicated in Table 1. 
Thus, test specimen DC1 was subjected to two cycles and reached the damage level referred to as D1; 
test specimen DC2 was subjected to six cycles and reached the level of damage D2, and so on. 

 
Figure 6. Load patterns applied to specimens DC1 to DC5 (left) and DC6 to DC10 (right). 

Table 1 Number of cycles and maximum displacement reached by specimens DC1 to DC5. 

Number of Cycles 1 2 3 4 5 6 7 8 9 10 11 12 13
Maximum displacement (mm) 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 

DC1 (D1) X X            
DC2 (D2) X X X X X X        
DC3 (D3) X X X X X X X X      
DC4 (D4) X X X X X X X X X X    
DC5 (D5) X X X X X X X X X X X X X 

Test specimens DC6 to DC10 were subjected to cycles of constant amplitude equal to 0.8 mm. 
Each specimen was subjected to a different number of cycles, ranging from 30 to 150, in order to 
induce a different level of damage (Di), as shown in Table 2. 

Table 2 Number of cycles and maximum displacement reached by specimens DC6 to DC10. 

Number of Cycles 30 60 90 120 150
Maximum displacement (mm) 0.8 0.8 0.8 0.8 0.8 

DC6 (D1) X     
DC7 (D2) X X    
DC8 (D3) X X X   
DC9 (D4) X X X X  
DC10 (D5) X X X X X 

4. Pulse-Echo Ultrasonic Test 

First, pulse-echo UT was performed with an undamaged specimen (i.e., not subjected to cyclic 
loading) in order to arrive at the baseline damage level referred to as D0 hereafter. Next, the specimens 
were subjected to cyclic loading and UT was performed after applying the cyclic loads to characterize 
each damage level Di. Measurements obtained in both situations, D0 and Di, were compared to each 
other for each Di.  

In pulse-echo ultrasonic test, an incident ultrasound wave emitted from a transducer on the 
surface of the specimen and its echo, i.e., a reflection from another surface, is detected by the same 
transducer at a later time, after the wave has passed through the specimen and returned, as shown 
in Figure 7 [12,13]. Pulse-echo is especially effective when only one side of the material is accessible. 
A V1091 Olympus 5 MHz transducer and silicone grease for acoustic coupling was used in all cases.  



Metals 2017, 7, 26  6 of 14 

 

A pulse of 3 V peak and 0.4 μs of duration generated by the pulse generator 5072PR from 
OLYMPUS was used as the input signal. It was amplified by 40 dB. A frequency of 10 kHz was used 
for input pulse repetition, which means a pulse every 100 μs, and a sampling frequency of 250 MHz. 
Both echo and input signals were registered by an oscilloscope Tektronix DPO4034B for ulterior 
analysis. Figure 7 shows the UT experimental setup. 

 
Figure 7. Experimental setup of the experiment used during UT. 

For each specimen, UT was performed at the 4 points (see Figure 3), at which plastic deformation 
is expected according to Figure 5. Similarly, three trials were carried out at each point. 

After pulse-echo UT experiments, echo signals were suitably preprocessed in order to isolate the 
first part of the waves, which is supposed to be free of reflections and less affected by distortions 
produced by other secondary propagation effects. Basically, preprocessing entailed three steps:  

1. Input signal detection. A threshold of 700 mV was established for picking the arrival time of the 
wave, designated as t0. 

2. Echo signal detection. The arrival of the echo signal was calculated as t = d/v; where time t is 
measured with respect to t0, d is the distance traveled by the wave along the thickness (twice) 
and v is the P-wave velocity in stainless steel extracted from literature. These values were 
respectively stated as 8 mm and 5.74 mm/μs. Thus, the output signal arrival time is 1.4 μs, which 
is in good agreement with experimental observations (Figure 8). 

3. Windowing of echo signal. A window from 1.5 μs to 1.7 μs was applied to the echo signal. Only 
this portion, called the main wave (MW) and shown in Figure 8 left, was used for the calculation 
of the damage index. Beyond 1.7 μs, the signal distorts due to the influence of attenuation, 
scattering, diffraction, reflections, etc. 
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Figure 8. UT signals versus time, corresponding to 1st test on point 1 of undamaged specimen (D0). 
(Left) Pulse and echo of full signal, (Right) Main Wave (MW). 

Figure 9 shows an example of main waves extracted from UT measurements on specimens  
DC6–DC10, corresponding to D1 to D5, respectively, and the undamaged state D0. It is clearly 
observed that amplitude of the echo decreases as damage level increases. 

 
Figure 9. Main Waves extracted from 2nd trial on point 2 of undamaged state D0 and damaged states 
D1–D5. Second loading pattern. 

5. Proposed Damage Index  

The MW extracted from the echo signals was carefully processed in order to calculate a proposed 
UT damage index. Firstly, the Fast Fourier Transform (FFT) was applied to the MW in order to obtain 
its frequency spectrum [14,15]. In the case of MW signals, spectrums show a central frequency around 
5 MHz, and a spectral energy between 0 and 12 MHz named Es, as Figure 10 schematized. 
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Figure 10. Spectrum of the MW, with schematic definitions of spectral energy Es. 

Once the parameter Es is extracted as: ܧ௦ = න |ܻሺ݂ሻ| ݂݀୤୫ୟ୶
଴  (1) 

where f is the frequency and |Y(f)| is the magnitude of FFT of the echo signal, its respective value is 
averaged for all 4 points and 3 trials at each point. According to Figure 10, fmax was selected as  
12 MHz.  

Using the parameter Es, a UT damage index called ΔE is proposed, as follows: ∆ܧ௜ = ௦,଴ܧ −  ௦,௜ (2)ܧ

where Es,0 is the respective value for the undamaged specimens, and Es,i the value for the inspected 
ones. 

6. Mechanical Damage Index ID 

Figure 11a shows the typical load-displacement, V-δ, relationship obtained from the cyclic tests 
of the hysteretic damper. Here, V is the shear force applied to the damper and δ is the relative 
displacement between the exterior and central flanges of the damper (Figure 4) caused by the force V 
and measured in the same direction. The V-δ curve exhibited by the test specimen up to a given level 
of damage Di defined by point i of coordinates (Vi-δi) can be decomposed into the so-called skeleton 
part and the Bauschinger part [1].  

The skeleton part (Figure 11b) is formed by sequentially connecting the segments 0-1, 5-6, 11-12, 
17-18 in the positive domain, and 2-3, 8-9, 14-15 in the negative domain. These segments are the paths 
that exceed the load level attained by the preceding cycle in the same domain of loading. Segments 
1-2, 6-7, 12-13, 18-19, 3-4, 9-10 and 15-16 are the unloading paths. For each domain of loading, the 
area enveloped by the skeleton curve up to a given point (Vi,δi) will be called +

iWS  and −
iWS . 

Segments 4-5, 10-11 and 16-17 in the positive domain, and 7-8, 13-14 in the negative domain of loading 
—which begin at V = 0 and terminate at the maximum load level previously attained in preceding 
cycles in the same loading domain—are the so-called Bauschinger part (Figure 11c). For each domain 
of loading, the sum of the areas enveloped by the Bauschinger part up to a given point (Vi,δi) will be 
referred to as +

iBW  and −
iWB . The sum ++ + iBi WWS  in the positive domain, and −− + iBi WWS  in 

the negative domain, constitute the total plastic strain energy dissipated by the damper in each 
domain of loading. These energies are expressed next in non-dimensional form by the ratios +

iSη , 
+
iη , −

iSη , −
iη  defined as follows: 
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The mechanical damage in an hysteretic damper subjected to arbitrarily applied cyclic loading 
up to a point (Vi,δi) can be accurately predicted using the following index proposed in past research 
[1]: 
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In Equation (5), +
uη  and 

−
uη  represent the ultimate energy dissipation capacity of the 

damper. This capacity depends on 
+
isη , 

+
iη , 

−
is η , 

−
iη  and on two empirical parameters a and b. 

Parameters a and b depend on the material properties of the steel and on the geometry of the damper. 
A detailed explanation of these parameters and their value for the type of hysteretic damper 
investigated can be found in reference [1]. The value IDi = 0 indicates no damage, while IDi = 1 means 
failure. 

Failure of the damper is assumed to occur when the strength starts to decrease steadily under 
increasing forced displacements. The ultimate energy dissipation capacity of the damper is defined 
as the total energy dissipated by the damper until failure. After the point of failure, the damper is still 
able to physically absorb energy. 

 

a)

b)

c)

V

V
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Figure 11. Decomposition of a typical V-δ curve: (a) initial V-δ curve; (b) skeleton part; (c) Bauschinger 
part. 

7. Results 

7.1. Evaluation of the Mechanical Index of Damage ID 

Figures 12 and 13 show the force-displacement curves, V-δ, obtained from the cyclic tests carried 
out in this work. The V-δ curves of the specimens subjected to cyclic loads of incremental amplitude 
(specimens DC1 to DC5) are shown in Figure 12, the only difference being the number of V-δ loops. 
They have in common the fact that the maximum force opposed by the specimen increased in each 
consecutive cycle, due to the strain hardening of the material. Figure 13 shows the V-δ curves for the 
specimens subjected to cyclic loads of constant amplitude (specimens DC6 to DC10). Similarly, the 
maximum force attained by the specimen increased in each consecutive cycle. Table 3 summarizes 
the mechanical index of damage ID obtained as explained in the previous section. 

 
Figure 12. Typical hysteresis curves obtained from the tests of specimens DC1 to DC5. 
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Figure 13. Typical hysteresis curves obtained from the tests of specimens DC6 to DC10. 

Table 3 Mechanical index of damage ID. 

Specimen DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10
Damage level D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 

ID index 0.016 0.166 0.352 0.646 1.034 0.34 0.64 0.85 0.99 1.00 

7.2. Results and Interpretation of UT Inspection 

The mean and standard deviation of the parameter Es measured at the four points shown in 
Figure 3 were calculated for each test specimen. The results are shown in Figure 14 for both loading 
patterns. In this figure, the abscissa represents the level of damage induced in each test specimen. 
The values of Es for the undamaged case (D0) are also plotted. 

 
Figure 14. Mean and standard deviation of parameter Es. (Left) specimens subjected to incremental 
cyclic loading (DC1–DC5), (Right) specimens subjected to constant cyclic loading (DC6–DC10). 
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It can be seen that the mean value of Es decreases as the damage level increases, which confirms 
its sensitivity to the presence of damage caused by plastic deformations in the steel strips of the slit 
plate, which is in a good agreement with previous investigations about amplitude attenuation of 
ultrasonic waves [16,17]. It is also observed that the variability over the four measurement points is 
large for some specimens. This can be due to minor variations in the position of the sensors, or to the 
fact that although the stress and strain levels at the four points are nominally the same, spurious 
inaccuracies in the test setup could cause the actual level of plastic deformations to not be 
homogeneously distributed throughout the specimen. 

Figure 15 shows the UT damage index ΔE proposed in this paper and defined in Equation (2). 
The mean values of the four measuring points are represented with the square symbol versus the 
mechanical damage index ID for the specimens subjected to both loading patterns (DC1–DC5 and 
DC6–DC10). 

 
Figure 15. Comparison of ID and ΔE indices. (Left) specimens DC1–DC5, (Right) specimens  
DC6–DC10. 

It is observed that for UT magnitudes, a good correlation is found between the UT damage index 
and the mechanical damage index. Two parts can be observed, however:  

(i) A first part for low values of ID, where UT indexes are very sensitive and increase rapidly 
with damage 

(ii) A second part where the relation between UT indexes and ID damage index is approximately 
linear. The equation of the line ID-ΔE that best fits the experimental results is given in Figure 15. 
Correlation coefficients between UT indexes and ID are close to one in both cases. More precisely: 
0.8297 for specimens subjected to cycles of incremental amplitude; while for case of constant 
amplitude pattern, the value is 0.84996.  

Specimens were also inspected using the classical UT transmission method (i.e., using two 
transducers, one as emitter and another as receiver), at the same measuring points, in order to 
compare both UT methodologies. Figure 16 shows ΔE values obtained through transmission and 
pulse-echo methods, and their correlation with the index ID. 
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Figure 16. ΔE values corresponding to Transmission and Pulse-Echo methods. (Left) specimens DC1–
DC5, (Right) specimens DC6–DC10. 

It is worth noting that the linear fitting of the (ID-ΔE) points shows a similar trend for 
transmission and pulse-echo methods, i.e., the ΔE value increases at the same rate as level of damage 
increases. It is also observed that ΔE values for pulse-echo method are higher, according to significant 
attenuation effects taking place in this method mainly because the elastic wave cross the thickness of 
specimen twice. 

8. Conclusions  

The work validates the use of the ultrasonic pulse-echo technique for the quantitative damage 
evaluation in metallic hysteretic energy dampers used as seismic protection of buildings and 
infrastructures. In particular, a new damage index based on the variation of the spectral energy of 
the main portion of the echo signal recorded with a single piezoelectric transducer has been proposed. 
Two load histories applied to a special type of stainless steel dampers designed by the authors have 
been compared. The new index has been validated by comparison with a traditional mechanical 
index (ID) based on the load and displacement record. Basically, the most important conclusions of 
the work are as follows: (1) The proposed damage index is highly correlated linearly with the ID 
index from small damage levels; (2) The correlation equation depends on the load history applied; 
(3) The results using the pulse-echo technique (using a single transducer) are similar to those obtained 
by the transmission method (using two transducers). 

The proposed pulse-echo UT methodology has been validated with dampers subjected to quasi-
static loads and under simple histories of imposed deformations (i.e., cycles of constant amplitude 
and cycles of incremental amplitude). However, real earthquakes subject the dampers to dynamic 
loadings and to complex and arbitrarily changing histories of deformation. These are two limitations 
of the present study, which will be addressed by the authors in future experimental works. This 
methodology will be validated in more realistic seismic loading scenarios, with the dampers installed 
on models of large-scale structures tested on the 3 × 3 m2 shaking table of the University of Granada. 
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