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Abstract: The biocompatibility of Magnesium-based materials (MBMs) is critical to the safety of
biodegradable medical devices. As a promising metallic biomaterial for medical devices, the issue of
greatest concern is devices’ safety as degrading products are possibly interacting with local tissue
during complete degradation. The aim of this review is to summarize the biological responses to
MBMs at the cellular/molecular level, including cell adhesion, transportation signaling, immune
response, and tissue growth during the complex degradation process. We review the influence of
MBMs on gene/protein biosynthesis and expression at the site of implantation, as well as throughout
the body. This paper provides a systematic review of the cellular/molecular behavior of local tissue
on the response to Mg degradation, which may facilitate a better prediction of long-term degradation
and the safe use of magnesium-based implants through metal innovation.
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1. Introduction

The degradability of magnesium-based materials (MBMs) makes these biomaterials a great choice
for clinical devices, especially for orthopedic and cardiovascular applications. The biocompatibility of
MBM refers to their ability to interact with the body organic tissues without causing an unacceptable
degree of harm. From a biological perspective, human tissue can not only tolerate, but can even
benefit from the interaction with MBM implants by proper responses. On the other hand, the
interaction between MBMs and organic tissue in vivo has also been shown to cause phenomena
that are not observed in vitro. In an aqueous environment, whether that be organic tissue or in vitro
cell culture, Mg reacts with water, generating magnesium hydroxide (Mg(OH)2) and molecular
hydrogen (H2). The biological responses of Mg-based materials have been studied both in vivo and
in vitro [1–5]. In vivo, MBM implantation results in the formation of gas pockets in tissue containing
different concentrations of H2, O2, CO2, and/or N2; a high deposition of calcium phosphate (Ca-P),
which acts as a mineral layer between tissue and MBM implants; and an increase in the local pH
of body fluid [2,6–8]. In contrast, there is no formation of gas pockets in vitro since it is freely
released, while in vivo, the gas pockets are trapped by local tissue. Instead, molecular hydrogen
escapes to the atmosphere, and cell-adhesion behavior on the surface of MBM implants indicates
biocompatibility [1,3]. As a product of MBM corrosion, H2 was also found to be a potential antioxidant
that is involved in cell signaling and has a novel role in preventive and therapeutic applications [9–11].
Furthermore, the Ca-P mineral layer that is associated with magnesium can promote osteoinductivity
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and osteoconductivity, which aids in the biocompatibility of magnesium alloys as a bone regenerative
material [12]. The increase in pH has a positive correlation in hemoglobin picking up oxygen in the
blood based on the Bohr effect and a negative correlation in cell-mediated bone resorption by rat
osteoclasts in vitro [13,14]. To better understand the biological response to MBMs both in vivo and
in vitro, the mechanism of these phenomena should be investigated on the molecular/cellular level.

Like many non-degradable biomaterials, the surface of MBMs is adhered to via protein integrins
(heterodimeric receptors in the cell membrane) from the extracellular matrix, within nanoseconds
after contact with tissue. Integrins are also involved in intracellular signaling and thus participate
in a diverse range of cell functions [15–17]. For cardiovascular applications, MBMs are subject to
the Vroman effect, which is exhibited by the absorption of blood serum proteins to the biomaterial
surface [18]. However, unlike non-degradable biomaterials, at the time of protein adhesion, Mg reacts
with the aqueous environment to generate hydrogen gas (H2) and Mg(OH)2, thus increasing the
concentration of Mg2+. It is known that the physiologically active form of Mg2+ serves as a catalyst
for over 300 enzymes, including those for ATP synthesis, as well as those that use other nucleotides
to synthesize DNA and RNA [19]. Both MBMs and permanent biomaterials, such as Titanium-based
alloys, are mixed with biocompatible elements (e.g., rear earth, Nb) [20,21]. However, the biological
responses to the added elements and the molecular mechanisms that need to be determined by in vitro
and in vivo cytotoxicity evaluation.

When MBMs are implanted into the lesion area, a layer of proteins rapidly adsorbs from the blood
(or serum). These proteins effectively translate the structure and composition of the foreign surface
into biological signals. The signals that are generated by the recognition of the foreign MBM implant
are then transmitted from the extracellular environment to the interior of the cell to regulate gene
and protein expression; thus, initiating and mediating cellular behaviors like migration, proliferation,
differentiation, and apoptosis in different cell types [22–24]; in addition to stimulating constructive
responses that favor wound healing and tissue integration. This layer of proteins determines the
activation of the coagulation cascade, complements system, platelets, and immune cells, and guides
their interplay, which results in the formation of a transient provisional matrix and the onset of
an inflammatory response from the immune system [25,26]. Further research should be done on this
protein layer and its expression profile to better understand its involvement in the biological response
to MBMs.

Finally, the immune response leads to an encapsulation of the implants, which also indicates the
growth of tissue. The regular foreign body reaction process of encapsulation includes inflammation,
granulation and regeneration, and fibrosis. It has been shown that Mg2+ on bioceramic surfaces
substantially affects the phenotype of osteogenic cells in vivo and in vitro [27–30]. A number of studies
have demonstrated that Mg2+ plays a critical role in bone remodeling and skeletal development [31].
The mechanism of these phenomena is not yet known, but the function of Mg2+ in protein synthesis
and molecular regulation is a possible explanation. Knowing which genes and proteins are expressed
differently due to the influence of MBM implants and how these molecules are affected will not only
give further insight into the biocompatibility of MBMs, but will also indicate whether MBMs influence
other biological functions involving these proteins. This is of great importance to modern MBM
implant design, which should make full use of these differentially expressed molecules to improve
implant integration [32]. In this article, these molecules from local molecular/cellular response to the
degradation of Mg-based alloys are categorized and reviewed based on their involvement in four
functions: cell adhesion, transportation signaling, immune response, and tissue growth.

2. Degradation of Mg-Based Alloys

The degradation behavior of MBMs has been studied and reviewed [33–36]. The mechanism of
MBMs degradation involves the reaction of magnesium with its aqueous environment, which produces
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magnesium hydroxide (Mg(OH)2) and hydrogen gas (H2). A general summary of the corrosion reaction
kinetics that takes place is given below [34,37]:

2Mg→ 2Mg+ + 2e− (anodic reaction) (1)

2H2O + 2e−→ H2 + 2OH− (cathodic reaction) (2)

2Mg2+ + 2H2O→ 2Mg2+ + 2OH− + H2 (chemical reaction) (3)

Mg + 2H2O→Mg2+ + 2OH− + H2 (overall reaction) (4)

Mg2+ + 2OH− →Mg(OH)2 (product formation reaction) (5)

Mg(OH)2 →Mg2+ + 2OH− (product dissolution reaction) (6)

Mg degradation is a dynamic process, including (1) degradation initiation, (2) degradation
rate, (3) degradation product formation, (4) the composition of degradation products, (5) removal
of the product from flow-induced shear stress, and (6) localized pitting with hydrogen evolution.
This complex process is constantly interacting with local tissue, which involves a typical foreign body
reaction composed of macrophages and foreign body giant cells formation [38]. A local physiological
environment, such as loading and flow affects Mg degradation and finding the most important factors
that influence degradation is the key. These dynamic reactions not only produce corrosion products,
such as solid Mg(OH)2 and H2 gas, but also generate charged molecules that might affect cellular and
molecular responses. For example, it has been studied that responding to different concentrations
of Mg2+, osteosarcoma (U2OS) cells have different gene expression related to cell growth, apoptosis,
inflammation, and migration [39]. While Mg degrades in the body, the neighboring tissue is expected
to regenerate and sustain normal functions. The active interface between degrading MBMs’ surface
and regenerating local tissue should be monitored and controlled to address the medical concern of
biocompatibility [40].

3. Protein-Mediated Cell Adhesion

The MBM implants enhance the adhesion of surrounding cells that are mediated by proteins in the
extracellular matrix. It is known that cell adhesion and morphology influence their proliferation and
differentiation [41]. The ability of biomaterials to adsorb the proteins from serum in a favorable
conformation determines their ability to support cell adhesion and spreading [42]. The MBMs
have this ability, indicating an important aspect of their relative biocompatibility with adjustable
biodegradation [43]. For example, α5β1- and β1-integrin were found to mediate cell adhesion to
biomaterial surfaces. The expression of α5β1-integrin receptor was increased in human bone-derived
cells (HBDC) responding to Mg2+-enriched substrates [44]. It has also been shown that the presence of
Mg in bioceramics can significantly increase the expression of β1-, α5β1-, and α3β1-integrins that are
vital for osteoblast activity [44,45]. Mg2+ promotes cell adhesion via 5β1- and β1-integrin-associated
signal transduction pathways, which are involved in the enhanced activation of the key signaling
adaptor protein Shc (Src homology collagen), resulting in the enhanced gene expression of extracellular
matrix proteins [46,47]. In our recent studies, we found that platelets have a different adhesion rate on
different MBMs surfaces in dynamic conditions [5]. The major platelet integrin αIIbβ3 in relation to
MBMs has not been studied. This integrin is required for platelet interactions with proteins in plasma
and the extracellular matrices (ECM) that are essential for platelet adhesion and aggregation during
hemostasis and arterial thrombosis [48].

Surface chemistry modification with Mg2+ also plays an important role in focal adhesion kinase
(FAK; pp125FAK)-mediated signal transduction via cell surface integrin-ECM interaction [44]. It has
been shown that FAK expression is enhanced in osteoblasts growing on Al2O3-Mg2+, suggesting
that tyrosine phosphorylation of signaling proteins was enhanced by binding to Mg2+-supplemented
bioceramics [44]. In addition to Shc and FAK, other key proteins, such as collagen type 1, vitronectin,
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and fibronectin, are also highly expressed by osteoblast cells in the presence of Mg [47]. In vitro,
osteoblastic cells and other cell types have been shown to depend primarily on adsorbed vitronectin or
fibronectin for initial adhesion and spreading on various materials, including tissue culture polystyrene,
titanium, stainless steel, and hydroxyapatite [49–51]. Furthermore, vitronectin and/or fibronectin
have been detected among the proteins adsorbed from whole blood and plasma in vitro and in vivo
by implanted surfaces [52–55]. According to the Vroman effect, under stagnant conditions, initial
protein deposition takes place in this sequence: albumin, globulin, fibrinogen, fibronectin, factor XII,
and HMWK [18]. It has been studied that Mg2+ improves smooth muscle cells adhesion at 10 mM
with certain interaction time. This study revealed some genes that related the influence of Mg2+ to
cell adhesion (SERPINE 1) and inflammation (HMOX1, IL-1β) functions [56]. One exception to the
adhesion-promotion effects of Mg2+ is the rapid formation of hydrogen bubbles that accumulated
next to the MBM surfaces [57], which physically occupy the position for cell attachment [5]. However,
this effect can be moderated by the Ca-P mineral layer coating the surface of MBM implants, which
has been shown to enhance cell attachment and spreading [58]. It has also been demonstrated that
pH-related proteins near isoelectric pH adsorb more on uncharged biomaterial surfaces [59–61]. Thus,
the increasing pH of the surroundings and surface ion change caused by MBM corrosion might
decrease cell adhesion.

4. Transportation Signaling

MBM implants increase the concentration of Mg2+, which may modify its transportation signaling
pathway between intracellular and extracellular space. Intracellular Mg2+ concentration incorporating
with Mg2+ channels is related to cell growth [62–65]. Mg2+-related functions in the nucleus and
mitochondria, such as ATP synthesis, will change due to the increased amount of Mg2+ transported by
cell membrane magnesium transporters (Figure 1): transient receptor potential melastatin (TRPM) 6
and 7, SLC41A1, CNNM2, and Claudin-16 and 19 (CLDN 16/19). Calcium homeostasis may also be
altered (Figure 2).

TRPM6 and TRPM7 were characterized as magnesium “gatekeepers” on the cell membrane
that monitor cellular magnesium homeostasis [66]. TRPM7 is responsible for intracellular Mg ion
homeostasis in osteoblast cells and plays an important role in osteoblast proliferation and survival [67].
Thus, tight regulation of magnesium homeostasis is crucial for bone health. Another Mg2+ transporter
is SLC41A1, which was found to be expressed in all of the human tissues tested, but at varying
levels, with the heart and testis having the highest expression of the gene [68]. No explanation of
the expression pattern has been given with regard to Mg2+-related physiology, though it has been
suggested that SLC41 proteins are likely to be the metazoan equivalent of the Mg transporter E
(MgtE) that is found in bacteria [68]. This will need to be verified using one of the now standard
experimental systems for examining transport, especially in terms of the interface between tissue and
MBM implants. Ancient conserved domain protein 2 (ACDP2) is encoded by CNNM2 and regulates
physiological magnesium homeostasis in humans [69]. It belongs to the ACDP family and is widely
expressed in human tissues, with the highest levels of expression in the brain, kidney, and placenta [70].
Furthermore, studies provide evidence for its involvement in magnesium transport [71,72]. Claudins
allow for Mg2+ transport via the paracellular pathway; that is, that they mediate the transport of
Mg ions through the tight junctions between cells that form an epithelial cell layer. In the claudin
family, Claudin-19, which is encoded by the CLDN19 gene, has been implicated in magnesium
transport [73,74]. Claudin-16 allows the selective re-uptake of Mg2+ in the kidney [75]. Defects in
CLDN16 and CLDN19 can cause primary hypomagnesemia, which is characterized by massive renal
magnesium wasting and hypercalciuria, resulting in nephrocalcinosis and renal failure [76].

Federica I. Wolf et al. suggested that the magnesium-deficient condition led to the increased cells
percentage in the G0/G1-phase and the decreased cells percentage in the S-phase of the cell cycle [77].
Hypermagnesemia is uncommonly reported because the kidney is very efficient in excreting excess
magnesium, thus we believe that patients with renal dysfunctions may not be suitable candidates
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for MBM implants. Besides this, hypomagnesemia and increased pH also affect cell morphology.
Echinocytes (red blood cells with a spike-like cell membrane) can be seen with mild hemolysis in
hypomagnesemia and are caused by an increase in pH in vitro [78]. At the site of MBM implantation,
the Mg2+ concentration and pH are increased, and it has not been clearly reported whether MBM
implants will increase the number of echinocytes [79], thus causing acanthocytosis. It seems that host
tissue has regulation on the magnesium transporters overcompensate for the increase in magnesium
ion concentration during the corrosion. However, evidence, such as channels behaviors before, during,
and after Mg-based alloys implantation need to be studied.
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The layer of Ca-P deposition formed between the host tissue and MBM implants indicates the
transportation of Mg2+ has a tight connection with Ca2+ transportation. TRPM7 by itself appears to be
a Ca2+ channel [80], but in the presence of TRPM6, the affinity series of transported cations places Mg2+

above Ca2+ [67,81]. It has been found that the intestinal absorption and the renal excretion of the two
ions are interdependent [82]. Furthermore, the Ca-P layer is the direct cause of vascular calcification [83].
Studies have shown that magnesium reduces calcification in bovine vascular smooth muscle cells
(BVSMC) in a dose-dependent manner. Higher magnesium levels prevented BVSMC calcification
and inhibited the expression of osteogenic proteins, apoptosis induced by β-glycerophosphate (BGP),
and further progression of already established calcification [84]. It has been demonstrated that Mg2+

interferes with calcium homeostasis and Ca-P deposition in vascular smooth muscle cells (Figure 2) in
the following ways: (1) Mg2+ can stabilize the Ca-P complex and inhibit the apatite transformation from
Ca-P, instead forming more soluble magnesium-substituted whitlockite [85–87]; (2) Mg2+ suppresses
apoptosis resulting in the formation of fewer apoptotic bodies; (3) Mg2+ blocks the entry of Ca2+ into the
cells by being transported into cells as a Ca2+-channel antagonist [88], and then impedes the formation
of Ca-P particles and Ca-P particle matrix vesicles; (4) Mg2+ enters cells through TRPM7 to balance the
expression of calcification promotors and inhibitors by suppressing the negative effect of Pi (inorganic
phosphate, transported by Pit-1 and Pit-2) on calcification inhibitors (MGP and BMP7) and regressing
the activating effect of phosphate on calcification promotors (RUNX2 and BMP2) [89]; (5) Due to
the effect of Mg2+ on these two calcification promotors, vascular smooth muscle cells are prevented
from undergoing osteogenic differentiation and vascular calcification by the same pathway [84];
and, (6) Mg2+ activates calcium-sensing receptor (CaSR), which inhibits vascular smooth muscle cell
calcification [90,91]. Theoretically, Mg2+ should prevent the formation of the Ca-P layer. In reality,
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however, a Ca-P layer is still formed between MBM implants and host tissue and its deposition to
tissue depended on the Mg degradation rate [4].Metals 2017, 7, 514  6 of 13 
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5. Immune Responses

As an implantation biomaterial, MBMs should induce injury, blood-material interactions,
provisional matrix formation, inflammation, chronic inflammation, granulation tissue development,
foreign body reaction, and fibrosis/fibrous capsule development [38,92–95]. Immune cytokines,
such as IL-4 and IL-13, may be involved to induce monocytes adhesion on MBMs surface and
monocytes/macrophage fusion to form foreign body giant cells [38]. However, because of the
degradability of MBMs, the immune responses are affected by the corrosion products and surface
changes of MBMs. Magnesium ions participate in immune responses in numerous ways: as a cofactor
for immunoglobulin synthesis, C'3 convertase, immune cell adherence, antibody-dependent cytolysis,
IgM-lymphocyte binding, macrophage response to lymphokines, T helper cell-B cell adherence, binding
of substance P to lymphoblasts, and antigen binding to macrophage RNA [96]. As biocompatible
materials, MBMs do not elicit a detrimental immune response. In fact, some of the immunological
responses that are generated by MBMs reflect their beneficial properties.

In one in vitro study, the expression of inflammation-related genes (IL-8, PDGF, TGF-β1, Angio1,
βFGF, VEGF, ET-1, CXCR-1, HIF-1α) was either increased or decreased with different magnesium
ion concentrations [39]. In magnesium-deficient rodents, TNFα, IL-1, and IL-6 are increased in
both the serum and bone marrow microenvironment [97]. Low extracellular magnesium increases
endothelial secretion of growth factors and cytokines, such as interleukin 1 (IL-1), which perpetuates
cell dysfunction and affects smooth muscle cell functions [98]. These factors have important
roles in the immune system. For example, IL-1α and IL-1β are cytokines that participate in the
regulation of immune responses, inflammatory reactions, and hematopoiesis [99]. Interleukin 6
(IL-6), also referred to as B-cell stimulatory factor-2 (BSF-2) and interferon beta-2, is a cytokine
involved in a wide variety of immune functions, such as antibody secretion, acute phase reaction,
and inflammation [100]. Interleukin 8 (IL-8), known as a neutrophil chemotactic factor, is a chemokine
produced by macrophages and other cell types, including epithelial cells, airway smooth muscle
cells [101], and endothelial cells.



Metals 2017, 7, 514 7 of 14

The most significant aspect of MBMs that are related to the immune response is hydrogen
gas production [102]. The expression of several pro-inflammatory factors can be decreased by
molecular H2, including TNF-α, IL-6, IL-1β, CCL2, IL-10, TNF-γ, IL-12, CAM-1 [103], HMGB-1 [104],
PGE2 [105], and nuclear factor-κB (NF-κB) [106]. The design of MBM implants should make use of the
immune response to improve implant integration while avoiding its perpetuation, leading to chronic
inflammation and foreign body reactions, and thus loss of intended function [32].

6. Tissue Growth

MBMs implanted into living tissue initiate host immune responses that reflect the first step
of tissue growth [107] and fibrous encapsulation [38]. There were concerns about tissue damage
because of the evolved hydrogen bubbles and alkalization of solution that are caused by magnesium
degradation [43,108]. In some cases, hydrogen bubbles from a degrading MBM surface can be
accumulated next to the implant and separate tissues and tissue layers, which will delay the healing
of the surgery region and lead to the necrosis of tissues [58]. However, promising studies of
magnesium-based biodegradable materials in vivo have shown that they can enhance new bone
formation in the vicinity of implantation, including the enhanced local formation of the periosteum
and endosteum, two distinct membrane layers that cover the outer and inner surfaces of the bone [109].
MBMs have been shown to be non-toxic and can stimulate bone tissue healing because a high
concentration of magnesium ions can lead to bone cell activation [12]. For cardiovascular tissue growth,
we recently studied Magnesium implantation in arteries both ex vivo and in vivo. Though there are gas
pockets in intima around the implanted Mg wire, the tissue showed normal morphology [4]. A complex
signaling network of growth factors includes epidermal growth factor (EGF), fibroblast growth factor
(FGF), granulocyte macrophage colony stimulating factor (GM-CSF), transform growth factor-β
(TGF-β), vascular endothelial growth factor (VEGF), and platelet derived growth factor (PDGF).
This signaling network controls adhesion, migration, proliferation, and differentiation of fibroblasts,
keratinocytes, and endothelial cells in wound healing [110]. According to Vroman Effect [18], during
the vascular wound healing process, blood proteins will deposit on MBMs surface in a provisional
matrix manner, which provides structural, biochemical, and cellular components to processes wound
healing [38].

Increased expression of collagen I extracellular matrix protein was found in human bone-derived
cells (HBDC) responding to Mg2+-enriched substrates [44], further suggesting that magnesium
promotes bone growth. In addition to magnesium, studies have shown that the Ca-P layer that
is generated by MBM implants can also promote tissue growth during the biodegradation process
both in vivo and in vitro [12,111]. This layer has been proven to facilitate the differentiation and
proliferation of osteoblastic cells in a Ca-P ratio-dependent manner, indicating that the Ca-P layer
promotes bone formation [112]. There is also Ca-P layer formation due to blood-triggered corrosion of
magnesium alloys [113]. The molecular mechanism of this effect has not been discovered yet; however,
it might be related to the ability of the Ca-P layer to increase cell adhesion and spreading.

There are still some molecules that have not been related to MBM implants that are associated with
tissue growth. For example, Damsky has suggested a role for the integrin molecules α5α1 and α3α1 in
bone formation [114]. It has also been shown that inhibitor of κB kinase–nuclear factor-κB (IKK-NF-κB)
inhibits osteoblastic bone formation by restricting the expression of Fos-related antigen-1 (Fra-1),
an essential transcription factor that is involved in bone matrix formation in vitro and in vivo [115].
Therefore, targeting IKK–NF-κB, α5α1, and α3α1 may help to promote bone formation and treat bone
resorption that occurs due to the inflammatory response after MBM implantation.

7. Systematic Integration

The biodegradation of Mg elicits an increase of Mg2+, hydrogen gas, and other corrosion products
to homeostasis. The molecules that have been proved or might be related to the responses to these
corrosion products are converged in Table 1. The molecules generally function in cell adhesion,
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transportation signaling, immune responses, and tissue growth. The further study of key molecules
that are involved in the in vivo and in vitro response to MBM implants, including their functions and
pathway, are advanced approaches to understand the biocompatibility of MBMs.

Table 1. Molecular factors involved in or possibly related to the response to magnesium-based materials
(MBM) implant corrosion products.

Biological
Responses Mg2+ Ca-P H2

Cell Adhesion
α5β1-, α3β1-, β1-integrins [44],
Shc [46], FAK [44], vitronectin and
fibronectin [47,49], SERPINE 1 [56]

Transportation
Signaling

TRPM6/7 [67,81,82], SLC41A1 [68],
CLDN16/19 [76], CNNM2 [69]

CaSR [90,91],
BGP [84]

Immune
Response

IL-8, PDGF, TGF-β1, Angio1, βFGF,
VEGF, ET-1, CXCR-1, HIF-1α [39];
HMOX1 [56], IL-1, TNFα, IL-6 [97]; IL-1
α and IL-1 β [100]; BSF-2 [100]

TNF-α, IL-6, IL-1β,
CCL2 and IL-10, TNF-γ,
IL-12, CAM-1 [103];
HMGB-1 [104];
PGE2 [105], NF-κB [106]

Tissue Growth collagen I extracellular matrix protein [44]; EGF, FGF, GM-CSF, TGF-β, VEGF,
PDGF [110]; IKK-NF-κB [110,115]; α5α1 and α3α1 [114]

8. Conclusions

The biocompatibility and degradation properties of Mg alloys make them remarkable implant
materials. The most significant problem with MBMs is the difference in their corrosion behavior
between in vitro and in vivo studies, which reflects the difficulty in predicting the biological responses
of MBMs in the in vitro studies. Another problem is the rapid corrosion of MBMs and the products
generated as a result. Systematically understanding the cellular/molecular responses to MBMs
implants in the aspect of cell adhesion, transportation signaling, immune responses, and tissue growth
are innovative strategies to evaluate their long-term safety for clinical use.
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