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Abstract: The effect of quenching on the corrosion resistance of Mg-7Y-1.5Nd alloy was investigated.
The as-cast alloy was homogenized at 535 ◦C for 24 h, followed by quenching in air, water, and liquid
nitrogen. Then, all of the samples were peak-aged at 225 ◦C for 14 h. The microstructures were
studied by scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction.
Corrosion behavior was analyzed by using weight loss rate and gas collection. Electrochemical
characterizations revealed that the T4-deep cryogenic sample displayed the strongest corrosion
resistance among all of the samples. A new square phase was discovered in the microstructure of the
T6-deep cryogenic sample; this phase was hugely responsible for the corrosion property. Cryogenic
treatment significantly improved the corrosion resistance of Mg-7Y-1.5Nd alloy.
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1. Introduction

Magnesium alloys contained rare earths have been widely used in aerospace applications
because of their excellent mechanical properties [1]. Researchers have successfully developed many
commercial Mg-RE alloys, including WE43, WE54, and EW75 alloys [2–5]. Heat treatment is vital in
the transformation of precipitated phases and the redistribution of alloying elements, which contribute
to improve mechanical property of Mg-RE alloys [6,7].

Recently, many researchers studies have exerted considerable effort to elucidate the influence
of heat treatment on the mechanical strength, corrosion property, and creep resistance of Mg-RE
alloys [8,9]. Rokhlin et al. [10] examined the characteristic features of the precipitated phase in
a ternary Mg-Nd-Y system, thereby gaining an insight into volume transformation and the kinetics
of solid solution decomposition. Xin et al. [11] demonstrated that aging precipitation significantly
reduced the strength anisotropy of the extruded Mg-Y-Nd alloy. Zhu et al. [12] analyzed the serrated
flow and tensile properties of Mg-Y-Nd alloys, and that they found that serrated flow is due to
interactions between dislocations and solute atoms. Various precipitations (e.g., Mg3Nd, Mg12YNd,
Mg3(Y, Nd), etc.) may form in a Mg-Y-Nd system [13]. The majority of previous studies have focused
on the relationship between precipitations and mechanical strength. Thus, the effects of precipitations
on the corrosion behavior of Mg-Y-Nd alloys remain unclear [14,15]. Ben-Hamu et al. [16] investigated
the relationship between the microstructure and corrosion behavior of Mg-Y-Gd-Zr alloys; they found
that after 3 h of aging, the samples exhibited a stronger better corrosion resistance than that of grains
with zirconium-depleted edge areas. Jiang et al. [17] explored the corrosion behavior of extrusion,
under-aged, peaked-aged, and over-aged WE93 alloys, particularly with regard to corrosion rates,
corrosion products, and heat treatment effects. Ma et al. [18] assessed the as-cast, T4, and T6 conditions
of Mg-5Y-1.5Nd alloys to reveal the influence of precipitated phases on corrosion resistance during heat
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treatment; they demonstrated that heat treatment significantly affected the micro-galvanic corrosion
between cathodic precipitated phases and the anodic α-Mg matrix.

Deep cryogenic heat treatment is a conventional supplementary treatment for metals to improve
their wear resistance and hardness of steels [19–21]. Numerous works have recently focused on the
effects of cryogenic treatment on Mg-Al alloys. Yong et al. [22] claimed that cryogenic treatment
improved the mechanical property and corrosion resistance of AZ91 Mg alloys because of the altered
distribution of precipitated phases. Liu et al. [23] studied the effect of cryogenic treatment on the
microstructure and mechanical properties of Mg-1.5Zn-0.15Gd alloys; their results revealed that
numerousω phase particles precipitated from the Mg matrix after cryogenic treatment. The volume
fraction of ω phase particles increased as the cryogenic treatment duration was increased from 1 min
to 24 h, and the ductility of alloy was enhanced by 79%. Kamran et al. [24] found that deep cryogenic
heat treatment improved the hardness and wear resistance of on AZ91 alloys. When compared
to conventional heat treatment, deep cryogenic treatment can change the size and distribution of
precipitated phases in the magnesium alloys more effectively, and improve the microstructure of
magnesium alloys by placing the samples in an ultra-low temperature environment. The literature
consistently suggests that as grain size decreases, the corrosion resistance of Mg is improved in neutral
and alkaline sodium chloride electrolytes. A fine-grained microstructure will form a better passive
film on the surface of magnesium alloys [25]. Therefore, deep cryogenic treatment may improve
the corrosion resistance of magnesium alloys to some extent. Nonetheless, limited information is
available regarding the effects of different precipitated phases on the corrosion resistance of Mg-RE
alloys exposed to deep cryogenic heat treatment.

The present study object consisted of Mg-7Y-1.5Nd alloys under T4 and T6 conditions subjected to
different quenching processes. The microstructure, weight loss rate, gas collection, and electrochemical
characteristics of the samples were analyzed to reveal the effects of deep cryogenic heat treatment on
the corrosion behavior of Mg-7Y-1.5Nd alloys.

2. Experimental Methods

2.1. Materials and Characterization

Mg-7Y-1.5Nd alloy was prepared by melting in an electrical resistance furnace (General Research
Institute for Nonferrous Metals, Beijing, China) inside a steel crucible under protected gas consisting of
argon (Ar) and tetrafluoroethane (C2H2F4) to prevent burning of the melts. Mg-7Y-1.5Nd denoted that
the chemical compositions were expressed in mass percent. The materials were prepared by blending
the appropriate proportions from ingots of commercially pure Mg (>99.95%), Y (99.9%), and Nd
(99.9%). The highest smelting temperature was 850 ◦C, and the cast temperature was between 720 ◦C
and 750 ◦C. The samples were cut from the ingots by an electric spark linear cutting machine (General
Research Institute for Nonferrous Metals, Beijing, China). Inductively coupled plasma-atomic emission
spectrometry revealed that the chemical compositions of the alloy were as follows: Y, 7.11 wt. %;
Nd, 1.52 wt. %; Al, 0.016 wt. %; Fe, 0.020 wt. %; and balance Mg.

The details of the heat treatment of the Mg-7Y-1.5Nd alloy are provided in Table 1. The solution
treatment (T4) was performed at 535 ◦C for 16 h under an argon atmosphere to attain a homogenous
structure of the magnesium α phase. The samples were then quenched in three different environments,
namely, air (room temperature), water (20 ◦C), and deep cryogenic (liquid nitrogen, −196 ◦C) for
12 h. Aging treatment was performed at 225 ◦C for 14 h, which was followed by quenching in air, water,
and deep cryogenic environments. The samples were completely immersed in liquid nitrogen (−196 ◦C)
to facilitate cryogenic treatment. All of the samples in this study had dimensions of 1 cm× 1 cm× 1 cm.
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Table 1. The heat treatment process of Mg-7Y-1.5Nd alloy in this study.

Heat Treatment Homogenizing Ageing

As cast - -
T4-air 535 ◦C, 16 h + air quenching, 12 h -

T4-water 535 ◦C, 16 h + water quenching, 12 h -
T4-cryogenic 535 ◦C, 16 h + liquid nitrogen quenching, 12 h -

T6-air 535 ◦C, 16 h + air quenching, 12 h 225 ◦C, 14 h + air quenching, 12 h
T6-water 535 ◦C, 16 h + water quenching, 12 h 225 ◦C, 14 h + water quenching, 12 h

T6-cryogenic 535 ◦C, 16 h + liquid nitrogen quenching, 12 h 225 ◦C, 14 h + liquid nitrogen quenching, 12 h

To conduct microstructural analysis, the sample surfaces were etched in Picral etchant (mixture of
10 mL of acetic acid, 10 mL of ethanol, 70 mL of deionized water, and 10 mL of picric acid). The sample
surfaces were then cleaned with ethanol. This etchant clarifies α and β phases. The metallographic
morphology and the corroded surface were observed by scanning electron microscopy (SEM; JSF-6700F,
Jeol, Tokyo, Japan) equipped with energy dispersive X-ray spectroscopy (EDS; INCA, Oxford
Instruments, Abingdon, UK). The sample surfaces were then characterized by optical microscopy
(OM, Carl Zeiss Jena, Wangen, Germany) and further analyzed by EDS. EDS analysis was performed to
characterize the components of each sample at more than three replicate spots, and the obtained results
were identical. The precipitated phases of Mg-7Y-1.5Nd alloy were identified by X-ray diffraction
(XRD; D/Max 2550, Rigaku, Tokyo, Japan) with CuKα radiation operated at 40 kV and 40 mA. The XRD
test step was 4◦/min.

2.2. Corrosion and Electrochemical Tests

To evaluate gas collection, 1 cm × 1 cm × 1 cm cubes were prepared, weighed, and sealed
using epoxy, leaving a 5 cm2 exposed surface. A funnel was inverted into the samples to transfer the
generated hydrogen bubbles into a burette during immersion (Figure 1). Each sample was polished
with 5000-grit SiC paper and measured thrice in 3.5% NaCl solution for 72 h.

The Mg-7Y-1.5Nd alloy samples were polished with the abrasive paper for metallographic analysis.
The original weight (W0) of the samples was obtained using an analytical balance. Then, the immersion
test was completed in 3.5% NaCl solution for 72 h. Each sample had three replicate samples to ensure
the reliability of the results. After the immersion test, the boiling of chromic acid (20% chromium
trioxide + 1% silver nitrate) was applied at 100 ◦C to remove the corrosion products on the surface of
the Mg-7Y-1.5Nd alloy samples [26,27]. The samples without corrosion products were successively
washed with deionized water and ethyl alcohol. Once the samples were dry, the final weight (W1) was
obtained using an analytical balance. The original weight (W0) minus the final weight (W1) denoted
the weight loss (∆W) during the corrosion reaction. The surface morphologies of the samples without
corrosion products were characterized by scanning electron microscopy.

The samples for electrochemical testing consisted of 1 cm × 1 cm × 1 cm cubes. Prior to
electrochemical testing, the electrodes were encapsulated in epoxy resin, leaving a 1 cm × 1 cm
surface exposed. The samples were ground using a 5000-grit SiC emery paper, degreased by ethyl
alcohol, and then dried by cold flowing air. The used electrolyte was 3.5% NaCl (consisting of A.R.
(Analytical Reagent) NaCl and deionized water) at 25 ± 1 ◦C. The open circuit potential (OCP),
the potentiodynamic polarization curve, and electrochemical impedance spectra were obtained by
a Solatron 2273 system under a three-electrode configuration with 450 mL of electrolyte (Figure 2).
A platinum foil (20 mm × 20 mm × 3 mm) and a saturated calomel electrode (SCE) acted as the
counter and reference electrodes, respectively. All of the potentials were given with respect to the
SCE. The potentiodynamic polarization curves were obtained at a scanning rate of 0.5 mV/s after the
cell was held at the OCP for 600 s. Electrochemical impedance spectroscopy (EIS) at the OCP was
conducted for 10 min. For the EIS, the frequency ranged from 100,000 Hz to 0.1 Hz, with 5 mV of
amplitude of sinusoidal potential signals with respect to the OCP. Electrochemical measurements were
performed in three replicates to guarantee data accuracy.
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shown in Figure 3a, the microstructure of the as-cast alloy consisted of the α-Mg matrix, particle 
phases, and skeleton phases. The close-up view in Figure 3b reveals that a small quantity of skeleton 
phases was distributed on the surface of the as-cast alloy, whereas particle phases were mostly 
distributed discretely. The microstructure of Mg-7Y-1.5Nd alloy changed during homogenization 
annealing (T4). Specifically, the volume fraction of the precipitated phases decreased, and the 
skeleton phases became nearly invisible. The precipitated phases were almost completely dissolved 
except for a few particle phases, consequently producing a supersaturated α-Mg matrix. However, 
as shown in Figure 3c–e, the sample exposed to deep cryogenic treatment displayed the least 
precipitated phases, thus illustrating the inhibitory effect of ultralow temperature on precipitation 
during the cooling process and ultimately forming the largest supersaturated solid solution [28–30]. 
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Figure 2. Schematic of the electrochemical testing of magnesium alloys in NaCl solution.

3. Results and Discussion

3.1. Microstructure of Mg-7Y-1.5Nd Alloy

Figure 3 shows the SEM photographs of Mg-7Y-1.5Nd alloy under different conditions. As
shown in Figure 3a, the microstructure of the as-cast alloy consisted of the α-Mg matrix, particle
phases, and skeleton phases. The close-up view in Figure 3b reveals that a small quantity of skeleton
phases was distributed on the surface of the as-cast alloy, whereas particle phases were mostly
distributed discretely. The microstructure of Mg-7Y-1.5Nd alloy changed during homogenization
annealing (T4). Specifically, the volume fraction of the precipitated phases decreased, and the skeleton
phases became nearly invisible. The precipitated phases were almost completely dissolved except for
a few particle phases, consequently producing a supersaturated α-Mg matrix. However, as shown in
Figure 3c–e, the sample exposed to deep cryogenic treatment displayed the least precipitated phases,
thus illustrating the inhibitory effect of ultralow temperature on precipitation during the cooling
process and ultimately forming the largest supersaturated solid solution [28–30].
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All of the samples were measured based on their close-up views. The changes in the amounts 
and distributions of the precipitated phases were more clearly shown during the solid-solution and 
aging treatments. The magnified images of the other samples are provided in Figure 4. 

The EDS results for the different samples are presented in Table 2. The matrix location (marked 
“a”) contained mainly magnesium as well as few traces of yttrium and neodymium. Particle phases 
were marked as “b”, whereas square phases were marked as “c” (the microstructures of the T4-air 
and T4-cryogenic samples lacked square phases, so the particle phases marked as “c” were selected). 
The “b” and “c” phases contained greater amounts of rare earth elements than the “a” phase. By 
contrast, magnesium exhibited an opposite trend, indicating that the precipitated phases consisted 
mainly of intermetallics containing rare earth elements. The square phases had more rare earth 
elements than the particle phases. The atomic ratio of magnesium to rare earth elements of square 
phases was 4.8:1, whereas that of particle phases was 3:1. 

Figure 3. The scanning electron microscopy (SEM) of different samples: (a) As-cast; (b) closed-up view
of (a); (c) T4-air quenching; (d) T4-water quenching; (e) T4-cryogenic quenching; (f) T6-air quenching;
(g) T6-water quenching and (h) T6-cryogenic quenching.

All of the samples were measured based on their close-up views. The changes in the amounts
and distributions of the precipitated phases were more clearly shown during the solid-solution and
aging treatments. The magnified images of the other samples are provided in Figure 4.

The EDS results for the different samples are presented in Table 2. The matrix location (marked
“a”) contained mainly magnesium as well as few traces of yttrium and neodymium. Particle phases
were marked as “b”, whereas square phases were marked as “c” (the microstructures of the T4-air and
T4-cryogenic samples lacked square phases, so the particle phases marked as “c” were selected). The “b”
and “c” phases contained greater amounts of rare earth elements than the “a” phase. By contrast,
magnesium exhibited an opposite trend, indicating that the precipitated phases consisted mainly of
intermetallics containing rare earth elements. The square phases had more rare earth elements than
the particle phases. The atomic ratio of magnesium to rare earth elements of square phases was 4.8:1,
whereas that of particle phases was 3:1.
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Table 2. Energy dispersive X-ray spectroscopy (EDS) results of different samples in Figure 4.

Locations Alloys Mg (at. %) Y (at. %) Nd (at. %)

a

T4-air 98.832 1.031 0.137
T4-water 98.621 1.213 0.166

T4-cryogenic 98.378 1.424 0.198
T6-air 99.717 0.249 0.034

T6-water 99.718 0.253 0.029
T6-cryogenic 99.739 0.230 0.031

b

T4-air 75.229 20.461 4.310
T4-water 80.162 17.564 2.274

T4-cryogenic 74.307 21.224 4.469
T6-air 81.394 16.102 2.504

T6-water 82.032 15.704 2.264
T6-cryogenic 82.683 15.621 1.696

c

T4-air 75.916 21.637 2.447
T4-water 76.498 21.391 2.111

T4-cryogenic 76.112 21.791 2.097
T6-air 77.393 21.903 0.704

T6-water 76.818 22.662 0.520
T6-cryogenic 76.347 22.921 0.732
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After the aging treatment, particle phases precipitated along the grain boundary and within
the grains of the supersaturated α-Mg phase. A small quantity of particle phases still survived the
solution treatment. The solid solubility of yttrium and neodymium were 11.4 wt. % and 3.6 wt. %,
respectively. The “undissolved particles” after the solidification process acted as nucleation sites during
the aging treatment, after which the undissolved particles grew. An increased amount of precipitated
phases was observed along the grain boundary and within the grains of the supersaturated α-Mg
phase. The shape of precipitate phases depended mainly on the preferential orientation of the crystal.
In addition, a small quantity of skeleton phases began to form. The aging treatment caused the Y and
Nd atoms to diffuse toward the grain boundaries, thus forming precipitated phases. This phenomenon
reduced the concentrations of the Y and Nd atoms in the α-Mg matrix. The difference among the aging
samples was that precipitated phases were distributed more uniformly after deep cryogenic treatment,
as shown in Figure 3g,h. The precipitated phases served as the cathodes of electrochemical reactions
that accelerate the corrosion process [31,32].

The amplified SEM images and EDS results of the T6-cryogenic sample are shown in Figure 5.
The SEM images revealed that many square phases were formed along the grain boundaries. The black
matrix location (denoted by “a”) contained mainly Mg as well as trace amounts of Y and Nd. The SEM
images clearly showed the white contrast square phases (denoted by “b”) and the erose phases
(denoted by “c”), of which the latter had a higher Y content; their Nd contents were similar. The square
phase in Figure 4 played an important role in the corrosion resistance of Mg-7Y-1.5Nd alloy.
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The SEM image, EDS results, TEM (transmission electron microscopy) image and SAED (selected
area electron diffraction) pattern of the square phases after T6-cryogenic quenching are shown in
Figure 6. The SEM images revealed that many square phases were formed along the grain boundaries.
The EDS analysis demonstrates that the composition of square phase is about 81.011% Mg, 16.449%
Y and 2.540% Nd in atomic percent. Based on the measured atomic ratio of Mg/(Y, Nd) in this
phase and phase situation shown in Mg-Y-Nd ternary phase diagram, this phase can be concluded as
Mg24(Y, Nd)5 phase. In this phase, ratio between the yttrium and neodymium atoms is discretionary,
but the ratio of Mgatoms

Yatoms + Ndatoms is nearly 24:5. This conclusion is further confirmed by XRD analysis.
Figure 6b shows the TEM image of square phase and its corresponding diffraction pattern along zone
axis [012]. The Mg24(Y, Nd)5 diffraction pattern is also consistent with that of stable Mg24Y5 phase in
Figure 6c.
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Figure 7 presents the elemental distributions (Mg, Y, and Nd) of Mg-7Y-1.5Nd alloy after cryogenic
quenching. All three elements were distributed homogeneously in the α-grains after T4 heat treatment,
as shown in Figure 7a,c,e, implying that the alloying elements completely dissolved back to the
α-Mg matrix. However, both Y and Nd were redistributed non-uniformly after T6 heat treatment
(Figure 7d,f), suggesting that the alloying elements combined with Mg to form the second phases
along the grain boundary.

XRD was performed to characterize the components of Mg-7Y-1.5Nd alloy in three replicate
samples. The results shown in Figure 8 indicated that α-Mg was the major phase, and that the
precipitated phases of the as-cast, T4 and T6 samples both contain Mg24(Y, Nd)5 and Mg3(Y, Nd);
this findings is consistent with Nie’s results [13,33]. “Undissolved particles” remained after the
solidification process, as shown in Figure 3. During the aging treatment, these particles acted as
nucleation sites for growth. An increased amount of precipitated phases manifested because of these
“undissolved particles”. The precipitated phases were distributed along the grain boundary and within
the grains of the supersaturated α-Mg phase. However, the types of “undissolved particles” remained
unchanged after the aging treatment; thus, both precipitates b and c in the XRD test were detected
in the T4 and T6 samples. The peaks of the precipitated phases were almost undetectable in the T4
sample after deep cryogenic heat treatment, implying that the alloying elements (Y and Nd) were
dissolved into the Mg matrix by homogenization [34]. The Y and Nd contents in these locations
were rich because of the enriched solute atoms in the solid/liquid interface during non-equilibrium
solidification, even though solute atoms must be pushed into the grain boundary [35,36]. The peaks of
the precipitated phases of the T6 samples had a greater intensity than those of the T4 samples, indicating
that the T6 treatment promoted the precipitation by maintaining the temperature below solidus for
a period. This phenomenon was consistent with the SEM images of the metallographic structure
(Figure 3). The intensity of the precipitated phase was different, indicating that the Mg-7Y-1.5Nd
samples had a different driving force for corrosion reaction.
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3.2. Weight Loss Rate and Gas Collection

The corrosion rate ∆W (mg·cm−2·h−1) was calculated as: ∆W = (W0 −W1)/ST, W0 is the original
weight (mg), W1 is the final weight without corrosion products (mg), S is the surface area (cm2), and T
is the corrosion period (h). Each type had three samples, and the average value was considered as
the corrosion rate. The weight loss rates of different Mg-7Y-1.5Nd alloy samples were presented in
Figure 9.

As shown in Figure 9, the T4 samples had lower corrosion rates than the T6 samples because of the
amount of precipitated phases formed from the α-Mg matrix during the aging process. The precipitated
phases served as the cathode of the electrochemical corrosion reaction, thereby accelerating the
dissolution of the α-Mg matrix. The weight loss rates of the Mg-7Y-1.5Nd alloy samples can be ordered
as follows: T4-cryogenic < T4-water < T4-air < T6-cryogenic < T6-water < T6-air. The corrosion rates
of the different samples were determined based on the joint effect of amount and distribution of
the precipitated phases. Phases can act as effective galvanic cathodes and consequently deteriorate
the corrosion performance. Nonetheless, fine and homogeneous phases were found to be better
anti-corrosion barriers [37,38]. Therefore, the homogeneous square phases in the T6-cryogenic sample
played an important role in improving the corrosion resistance.
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The corrosion behavior of Mg in the NaCl proceeded through an electrochemical reaction with
water to yield magnesium hydroxide Mg(OH)2 and hydrogen gas:

Anodic reaction: Mg→Mg2+ + 2e− (1)

Cathodic reaction: 2H2O + 2e− → H2 + 2OH− (2)

Overall reaction: Mg + 2H2O→Mg(OH)2 + H2 (3)

Hydroxide anions were generated by the cathodic reaction, indicating that the dissolution of
one Mg atom generated one H gas molecule. That is, the evolution of one mole of hydrogen gas
corresponds to the dissolution of one mole of magnesium. Therefore, in theory, measuring the volume
of the evolved hydrogen is equivalent to measuring the weight loss of the dissolved magnesium.
Moreover, the measured hydrogen evolution rate is equal to the weight loss rate when converted into
the same units.
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Gas collection was performed by employing a weight-loss method for corrosion rate testing.
This strategy was convenient for calculating the average corrosion rate over a given period.
The corrosion rate was investigated by conducting simultaneous hydrogen evolution and weight-loss
tests on each sample. Figure 10 shows the average hydrogen evolution rates of different samples in
3.5% NaCl solution for 72 h. The corrosion rates of different Mg-7Y-1.5Nd alloy samples increased
with prolonged immersion time. The T6-air sample presented the highest hydrogen evolution rates
due to the amount and distribution of the precipitated phases, which acted as micro-cathodes for the
micro-cells. During immersion, the law of the relative hydrogen evolution rate was similar to that of
the weight loss rate (Figures 9 and 10).
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3.3. Electrochemical Characterization and Analysis

Figure 11 shows the electrochemical characterizations, corrosion potential (Ecorr), and corrosion
current (Icorr) of Mg-7Y-1.5Nd alloy measured in 3.5% NaCl solution. The OCP was comparatively
stable prior to measurements. A corrosion product film formed on the surface of the samples, and no
clear localized corrosion occurred. The OCP curves represented the initiation and propagation of
corrosion, and stable OCP values implied a steady state between the propagation of corrosion and the
deposition of corrosion products [39,40]. The fluctuation of the OCP values with time was probably
due to the competition between localized corrosion and passivation. For a short immersion period
(600 s), the OCP of Mg-7Y-1.5Nd alloy became more and more positive with prolonged immersion time.
This phenomenon may be attributed to the longer incubation period for the localized corrosion of the
samples because of the stable and protective oxide film. The T4 samples exhibited a more positive OCP
than the T6 samples, indicating a shorter activated period for localized corrosion, probably because
of the large amount of precipitates on the grain boundaries. In addition, the OCP of the samples
became stable with a prolonged immersion time, establishing a nearly steady state between the
localized corrosion and the deposition of corrosion products [41]. As shown by the OCP in Figure 10,
electrochemically activity of the samples can be ordered as follows: T6-air > T6-water > T6-cryogenic
> T4-air > T4-water > T4-cryogenic. The T4-cryogenic sample displayed the most positive OCP
because of the absence of precipitated phases on the grain boundaries, which acted as cathodes that
accelerated the corrosion of the α-Mg matrix. The T6-cryogenic sample presented a better corrosion
resistance than other T6 samples. This phenomenon can be attributed to the type and distribution
of the precipitated phases, particularly the interaction between the impurities and dislocation of the
square phases along the grain boundaries [42]. Phases played dual roles that depended on amount
and distribution. The presence of phase in alloys can deteriorate corrosion performance as it could act
as an effective galvanic cathode. Nonetheless, a fine and homogeneous phase was found to be a better
anti-corrosion barrier.
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The cathodic Tafel slopes were similar for samples under different conditions, indicating that
hydrogen evolution reaction occurred [43]. The anodic branch did not exhibit Tafel characteristics,
and it was not as steep as the cathodic branch, implying that the cathodic reaction played a major role
in the corrosion reaction. In contrast to the anodic branch, the cathodic branch exhibited linear Tafel
characteristics at potentials that are more negative than the critical pitting potential [44]. If the current
associated with the oxygen reduction was neglected, and cathodic process within the Tafel region
was mainly hydrogen evolution in a solution without stirring [45]. The anodic polarization curves of
magnesium and its alloys were complex because of the negative difference effect, which enhanced the
hydrogen evolution when the alloy was anodized. Thus, the Tafel extrapolation for calculating the
corrosion current density was conducted tangentially to the cathode. Figure 11 shows the calculated
corrosion current density with respect to the different quenching processes of Mg-7Y-1.5Nd alloy.
The T6-air quenching sample had the largest Icorr because the amount of precipitated phases acting as
the cathode of the electrochemical reaction accelerated the corrosion process. By contrast, the T4-deep
quenching sample showed the smallest Icorr. These results were consistent with the weight loss rate
(Figure 8) and the average hydrogen evolution rate (Figure 9). The free corrosion potential representing
the corrosion tendency of different samples followed this order: T6-air > T6-water > T6-cryogenic >
T4-air > T4-water > T4-cryogenic. This hierarchy was consistent with the type and distribution of
precipitated phases in different samples.
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corrosion potential (Ecorr) and the corrosion current (Icorr); SCE: Saturated calomel electrode.

The Bode diagrams of the samples comprised two capacitive loops at high and low frequencies
from the Bode diagrams in Figure 12. The change in the Bode diagrams represented the dynamic
characteristics of the dissolving surfaces. The larger high frequency capacitive loop was related to the
electric double layer at the electrode/electrolyte interface [46,47], and its diameter was equal to the
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charge transfer resistance of the working electrode. The smaller low frequency capacitive loop was
due to the relaxation of mass transport of the partially protective oxide layer [48]. When the corrosion
reaction proceeded, the oxide layer was progressively broken down, and the corrosion product began
to form gradually. The inductive loop at low frequency was attributed to desorption of the corrosion
product and the reaction of Mg+ with H2O at the damaged areas of the corrosion product film [49].
As shown in Figure 12c, the Bode diagrams of the T4-deep quenching alloy had only a single high
frequency capacitive loop presumably because the adsorption and desorption of the corrosion product
was too weak to be detected. This finding was consistent with the relative low corrosion rate of the T4
alloy during the initial period.Metals 2017, 7, 427 13 of 18 
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quenching; and (f) T6-cryogenic quenching; |z| represents the impedance value.

As shown in Figure 13a, the Nyquist diagrams of different Mg-7Y-1.5Nd samples exhibited
varied characteristics of electrochemical reactions. The T4-deep quenching sample had the largest
electrochemical impedance spectra, suggesting that the hydrogen evolution reaction was the most
difficult in the α-Mg matrix. According to the Nyquist diagrams in Figure 13, the corrosion resistance
of the samples can be ordered as follows: T6-air < T6-water < T6-cryogenic < T4-air < T4-water <
T4-cryogenic. This finding was consistent with the results for weight loss rate, hydrogen evolution,
OCP, and potentiodynamic polarization.
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The Nyquist plots shown in Figure 13a, fit the equivalent circuits presented in Figure 12b.
Where, Rs is the solution resistance; Rt is the charge transfer resistance, and Qdl is the constant phase
element (CPE) of the electric double layer. The CPE, which served as the capacitor, was considered the
deviation effect. The RLMg

+ and LMg
+ series connection represented the middle-frequency inductance,

which described the Mg+ reaction at the damaged areas of the corrosion product film [39,42].
The polarization resistance, Rp, was an important parameter, because 1/Rp was proportional to
the corrosion rate [49]. According to the equivalent circuits in Figure 12b, Rp can be calculated
as follows:

Rp = Rs +
RtRLMg+

Rt + RLMg+

(4)

The calculated values of 1/Rp for the different samples are listed in Figure 14c. The corrosion rate
of the T4 sample was lower than that of the T6 sample in the immersion test. Moreover, the T4-deep
quenching sample exhibited the strongest corrosion resistance among the samples. This result was
consistent with the conclusions obtained from the results for weight loss rate, hydrogen evolution and
Tafel extrapolation.

3.4. Corrosion Mechanism

Figure 14 shows the schematic diagrams of the microstructure in relation to the corrosion
mechanism. In this study, the corrosion rates of the different samples were mainly determined
by the amount and distribution of the precipitations according to the classical theory proposed by
Song et al. [37,38]. The phases played dual roles that depended on the amount and the distribution.
The presence of phases in the alloys can deteriorate the corrosion performance because it can act as
an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better
anti-corrosion barrier.

Changes were observed in the volume fraction and distribution of the second phases in
the Mg-7Y-1.5Nd alloy after T4 heat treatment because of the different quenching environment
environments, namely, air (Figure 14a), water (Figure 14b), and liquid nitrogen (Figure 14c). The sample
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exposed to deep cryogenic treatment exhibited the least precipitated phases, illustrating the inhibitory
effect of ultralow temperature on the precipitation during the cooling process, which formed a large
supersaturated solid solution in Figure 14c. After the aging treatment, particle phases precipitated
along the grain boundary and within the grains of the supersaturated α-Mg phase. The precipitated
phases were distributed more uniformly after water quenching treatment (Figure 14e) and deep
cryogenic treatment (Figure 14f).
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Moreover, square phases formed along the boundaries, which influenced the corrosion barrier of
the α-Mg matrix. This phenomenon implied that square phases had a more negative potential than the
α-Mg matrix. The crystal structure of Mg24(Y, Nd)5 phase is similar to that of Mg24Y5 phase, which is
a body-centered cubic (BCC) cell. The crystal structure of α-Mg is close-packed hexagonal (HCP) cell.
The density of BCC cell (68%) is smaller than that of HCP cell (72%) via calculation. A larger density
cell means that close-packed hexagonal (HCP) cell is more stable than body-centered cubic (BCC) cell.
That means that the square phases are more chemically active than Mg matrix. In the initial stage,
the square phases are preferentially dissolved as micro-anodes and the Mg matrix is protected as
micro-cathodes. Then slight corrosion of Mg matrix occurs due to the non-uniform microstructure
(such as defects and chemical composition) at the interiority of Mg matrix to form corrosion micro-cells.
Thus, in the present work, the square phases acted as the anode to decrease the corrosion of α-Mg.
The square phases were preferentially corroded instead of the α-Mg matrix, which played an important
role in the retention of magnesium. A higher amount of square phases indicates a better corrosion
resistance of Mg-7Y-1.5Nd alloy. However, deeper insight into square phases requires further studies.

4. Conclusions

Deep cryogenic heat treatment is a conventional supplementary treatment for improving the
mechanical properties of metals. However, few studies have explored effects of deep cryogenic
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treatment on the corrosion resistance of magnesium alloy. This study investigated the effect of different
quenching process on the corrosion resistance of Mg-7Y-1.5Nd alloy.

(1) The T4 sample subjected to deep cryogenic treatment showed the least precipitated phases and
formed the largest supersaturated solid solution. By contrast, the precipitated phases of the T6
sample exposed to deep cryogenic treatment were distributed more uniformly. Many square
phases were formed along the grain boundaries.

(2) The weight loss ratesof the Mg-7Y-1.5Nd alloy samples were arranged as follows: T4-cryogenic <
T4-water < T4-air < T6-cryogenic < T6-water < T6-air. During the immersion period, the law of
the relative hydrogen evolution rate was similar to that of the weight loss rate.

(3) The T4-cryogenic sample showed the most positive OCP because of the absence of the precipitated
phases on the grain boundaries. The polarization curves revealed that the T6-cryogenic sample
had a better corrosion resistance than the other T6 samples. Both the Bode and Nyquist diagrams
proved this finding.

(4) The T4-deep sample had the least precipitated phases, which acted as the cathode of the
electrochemical reaction for accelerating the corrosion of the α-Mg matrix. The T6-deep sample
also showed a better corrosion resistance because of the uniformly distributed precipitated
phases. The square phases had a more negative potential than the α-Mg matrix. The square
phases were preferentially corroded instead of the α-Mg matrix, which played an important role
in the retention of magnesium. A greater amount of square phases suggests a better corrosion
resistance of Mg-7Y-1.5Nd alloy. Nonetheless, a deeper insight into square phases is needed.
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