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Abstract: The thermo-mechanical control processing (TMCP) of low carbon (C) Nb-Ti-containing
HSLA steel with different cooling rates from 5 to 20 ◦C/s was simulated using a Gleeble 3500 system.
The samples’ microstructure was characterized and the tensile properties measured. The results
show that a microstructure mainly consisting of quasi-polygonal ferrite (QPF), granular bainitic
ferrite (GBF), and martensite/austenite (M/A) constituent formed in each sample. Furthermore,
the accelerated cooling led to a significant grain refinement of the QPF and GBF, and an increase in
the density of dislocations, as well as suppressed the precipitation of nanoscale particles; however,
the overall yield strength (YS) still increased obviously. The accelerated cooling also brought about a
decrease in amount of M/A constituent acting as a mixed hard phase, which weakened the overall
strain-hardening capacity of the QPF + GBF + M/A multiphase steel and simultaneously elevated
yield-to-tensile strength ratio (YR). In addition, the mechanisms in dominating the influence of
controlled cooling on the final microstructure and tensile properties were discussed.

Keywords: HSLA construction steels; controlled cooling; microstructure; tensile properties;
strain-hardening

1. Introduction

High strength low alloy (HSLA) steel with a low yield-to-tensile strength ratio (YR) can inhibit an
unexpected failure due to its high resistance to deformation from yielding to plastically destabilizing [1].
For this reason, HSLA steel for earthquake resistant construction normally requires a combination
of high strength and low YR [2]. However, since high strength of plate steel due to fine-grained
microstructure is basically correlated to high YR, it is difficult to produce such a high strength plate steel
with low YR [2,3]. Furthermore, HSLA construction steel is currently produced by thermo-mechanical
control processing (TMCP) of low carbon containing steel [4], leading to a highly grain-refined
microstructure. Hence, an enhanced combination of weldablility, strength and toughness can be
achieved at the expense of an elevated YR [4,5]. Extensive investigations [2,6–8] have indicated
that an appropriate dual-phase microstructure containing granular bainitic ferrite (GBF) and/or
quasi-polygonal ferrite (QPF) and M/A constituent is essential to balance the above described
yield strength and YR in plate steel produced by TMCP. An increased amount of M/A constituent
acting as a mixed hard phase [9–12] can enhance the stain-hardening capacity of the soft ferrite
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phase [2,6–8,13] and correspondingly lower the YR, which has been achieved by the addition of
nitrogen to V-microalloyed steel [8], and the accelerated cooling followed by heat-treatment on-line
process (HOP) of Nb-microalloyed steel [6,7]. Nevertheless, the M/A constituent acting as brittle
islands can cause a toughness loss [14–16], which can be prevented by grain refinement of soft ferrite
phase [17]. Mixed microstructure of suitably fine-grained QPF and/or GBF as the soft phase and
an increasing amount of M/A constituent as the mixed hard phase, may also form in a low carbon
Nb-Ti-containing HSLA steel, and the tensile properties of this type of multiphase plate steel are
characterized by a combination of high strength and low YR. This multiphase plate steel may be
prepared through an appropriate control of cooling route suitable for industrial process. However,
the mechanisms in governing the overall tensile properties required for the development of such an
advanced multiphase HSLA plate steel need further investigation in detail.

As such, in this attempt, the simulations on TMCP of low-carbon Nb-Ti containing HSLA
steel with different controlled cooling rates were performed. The effect of controlled cooling on
the microstructure and tensile properties of all the samples was evaluated.

2. Experimental Materials and Methods

Low carbon Nb-Ti-containing steel was melted in a 50 kg vacuum furnace and hot-rolled to
16-mm-thick plates, with the chemical compositions listed in Table 1. The steel contains 0.06C, 1.47Mn,
0.20Mo, 0.23Cr, 0.25Ni and 0.19Cu (in wt. %); these elements serve to promote the formation of QPF
and/or GBF containing M/A constituent. Furthermore, a small amount of Nb and Ti was added to
prevent the coarsening of austenite grains during the subsequent TMCP.

Table 1. Chemical compositions of experimental steel (wt. %).

C Si Mn P S Cr Ni Mo Cu Nb Ti AlS

0.06 0.28 1.47 0.008 0.002 0.23 0.25 0.20 0.19 0.035 0.018 0.024

Round bar specimens with length × diameter of Φ 75 × 15 mm were cut from the plates,
and thermo-mechanically processed using a Gleeble 3500 system; the process routings are shown
schematically in Figure 1. A group of specimens was produced by diffusion annealing at 1180 ◦C for
10 min, compressing at 1080 ◦C for a strain of 0.35 to simulate rough rolling, subsequently compressing
at 830 ◦C for a strain of 0.30 to simulate finish rolling, and finally controlled cooling. The average
strain rate for both compressions was 1 s−1. The controlled cooling processes were conducted with
commencing at 780 ◦C, cooling to 450 ◦C at four different rates of 5–20 ◦C/s, re-reddening up to
500 ◦C for promoting the carbon atom diffusion from α to metastable austenite (γ′), and air-cooling to
room temperature.
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Figure 1. Schematic illustration of simulation schedule for thermal-mechanical controlled processing. 
Figure 1. Schematic illustration of simulation schedule for thermal-mechanical controlled processing.



Metals 2017, 7, 23 3 of 17

After the simulation, each sample for microstructural observations was cut along the cross-section
where the thermocouple was located, polished, and etched in a 4% nital solution. The microstructure
was observed via optical microscopy (OM) using an Axiover-200MAT microscope (Axiover, Jean,
Germany). In addition, the M/A constituent was further characterized using metallographic samples
etched in LePera’s reagent. The morphology of M/A constituent (in white) dispersed in the ferrite
matrix (in gray) was estimated at 500×, and quantified from more than 500 particles in at least ten fields
of view, using the Image-Pro Plus™ software (Media Cybernetics, Rockville, MD, USA). Furthermore,
the ferrite matrix, M/A constituent, dislocations, and precipitate in each sample were characterized
using a JEM-2010 transmission electron microscope (TEM, JEOL, Tokyo, Japan). The average size and
volume fraction of the precipitated particles were also measured statistically by averaging over at
least 1000 particles from the TEM image. Each sample for TEM observations was obtained by cutting
thin slice parallel to the metallographic section, and the 3-mm-diameter disc made by a small punch
was then thinned via electropolishing. The electropolishing was performed at a voltage and current
of 25 V and 55–65 mA, respectively, using a 7% perchloric acid/glacial acetic acid mixture under
room temperature.

The fraction of retained austenite (RA) and the density of dislocations in each sample were
determined via quantitative X-ray diffraction (XRD) analysis. The XRD spectra were obtained by
scanning in a Rigaku D/max-2500/PC diffractometer (Rigaku, Tokyo, Japan) using a Cu-Kα radiation
source, over a scanning angle (2θ) range of 35◦–105◦ with a step size of 0.02◦, and the estimated
penetration depth was 20 µm or so. For more precisely determining the low level of RA, six different
sections of an identical sample were scanned and the average value was reported. A method offered by
Ferreira et al. [18] was used to deal with the decomposition of XRD peaks and calculation. In addition,
the X-ray method for determining dislocation density is based on the theory [19,20] below. Diffraction
peaks are broadened by the presence of non-uniform strains that systematically shift atoms from their
ideal positions and finite size of coherently diffracting domains. These two effects have a different
dependence on the value of θ. The non-uniform strain effect can therefore be separated, since the
slope of a plot of βhkl cos{θhkl} versus 4sin{θhkl} is equal to a measure of the non-uniform strain, ε.
The parameter, β, is the measured peak broadening. The dislocation density, ρ, is calculated using the
following equation [21]:

ρ =
6πε2

b2 (1)

where b stands for the Burgers vector of dislocations in α-Fe. ε and b can be determined by XRD line
profiles [20].

Moreover, the mean equivalent diameter (MED) of ferrite grains with boundaries defined by a
misorientation tolerance angle (MTA) ranging 2◦–30◦ was determined for each sample. To quantify
the MED, each sample was electropolished in a solution of 85% alcohol, 10% perchloric acid, and 5%
glycerinum. The electropolished sample was then examined via Electron backscatter diffraction (EBSD)
performed on a ZEISS ULTRA 55 Field-Emission Scanning Electron Microscope (FESEM, Hitachi,
Tokyo, Japan) equipped with a HKL EBSD fast acquisition system, using a step size of 0.12 µm for the
EBSD scans.

Tensile samples were made from each TMCP simulation specimen by cutting along the
cross-section with the dimensions indicated in Figure 2. The room temperature tensile tests were carried
out at an extension rate of 1 mm/min, using an Inspekt Table 3 KN model universal testing machine
and the special fixture [2]. Two tensile samples were tested for each TMCP simulation specimen and
the average value is reported. The yield strength was determined as the 0.2% offset stress.
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Figure 2. Wire-cut tensile sample (a) (in mm) from the cross section of TMCP simulation specimen
(b) with 10 × 2 mm2 gauge length located in the center of the formerly compressed section.

3. Results

3.1. Tensile Properties

The typical tensile strain-stress curves are shown in Figure 3 with the tensile properties listed in
Table 2. As the table indicates, the yield strength (YS) increases from 476 to 537 MPa, while the ultimate
tensile strength (TS) also increases from 675 to 692 MPa, with an increase in cooling rate from 5 to
20 ◦C/s. Accordingly, the strain hardening magnitude, ∆σ, which is equal to the difference between
the TS and the YS, decreases from 199 to 155 MPa, and the YR increases from 0.70 to 0.78. The ∆σ
and the YR are secondary criteria for the indication of strain hardening, and a high ∆σ or a low YR
represents an excellent strain hardening capacity [22].

Metals 2017, 7, 23 4 of 17 

 

 

Figure 2. Wire-cut tensile sample (a) (in mm) from the cross section of TMCP simulation specimen 

(b) with 10 × 2 mm2 gauge length located in the center of the formerly compressed section. 

3. Results 

3.1. Tensile Properties 

The typical tensile strain-stress curves are shown in Figure 3 with the tensile properties listed in 

Table 2. As the table indicates, the yield strength (YS) increases from 476 to 537 MPa, while the 

ultimate tensile strength (TS) also increases from 675 to 692 MPa, with an increase in cooling rate 

from 5 to 20 °C/s. Accordingly, the strain hardening magnitude, Δσ, which is equal to the difference 

between the TS and the YS, decreases from 199 to 155 MPa, and the YR increases from 0.70 to 0.78. 

The Δσ and the YR are secondary criteria for the indication of strain hardening, and a high Δσ or a 

low YR represents an excellent strain hardening capacity [22]. 

 

Figure 3. Typical tensile stress-strain curves for different nitrogen content steels. 

Table 2. Summary of the tensile test results. 

CR/°C YS/MPa TS/MPa Δσ/MPa YR 

5 476 ± 11 675 ± 7 199 ± 9 0.70 ± 0.02 

10 498 ± 9 680 ± 6 182 ± 7 0.73 ± 0.01 

15 521 ± 10 686 ± 7 165 ± 8 0.76 ± 0.02 

20 537 ± 7 692 ± 5 155 ± 4 0.78 ± 0.01 

CR—Cooling rate, YS—yield strength, TS—tensile strength, Δσ—Strain hardening magnitude, and 

YR—yield-to-tensile strength ratio. 

Figure 3. Typical tensile stress-strain curves for different nitrogen content steels.

Table 2. Summary of the tensile test results.

CR/◦C YS/MPa TS/MPa ∆σ/MPa YR

5 476 ± 11 675 ± 7 199 ± 9 0.70 ± 0.02
10 498 ± 9 680 ± 6 182 ± 7 0.73 ± 0.01
15 521 ± 10 686 ± 7 165 ± 8 0.76 ± 0.02
20 537 ± 7 692 ± 5 155 ± 4 0.78 ± 0.01

CR—Cooling rate, YS—yield strength, TS—tensile strength, ∆σ—Strain hardening magnitude, and
YR—yield-to-tensile strength ratio.
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3.2. Microstructure

Multiphase Microstructure Observations

Typical optical micrographs displaying the microstructure (upper) and M/A constituent (lower)
are shown in Figure 4, and the quantified features are summarized in Table 3. As the figure indicates,
the microstructure of samples cooling at different rates is composed of QPF, GBF and a little lath bainitic
ferrite (LBF), dispersed with M/A constituent. The two different morphologies of bainitic structure,
i.e., GBF and LBF, are distinguished according to systematic descriptions by Bramfiti et al. [23] and
Bhadeshia et al. [24]. The GBF as a transformation product during continuous cooling is essentially
a mixture of blocky ferrite with dispersed granular constituent of martensite and retained austenite,
which are more easily distinguished using Lepera’s reagent etched sample. However, after the QPF
and GBF formation ends, the LBF can form in the region of residual austenite with carbon in rich,
yet not rich enough to produce M/A constituent, and grows as sheaves with the transformation
proceeding. The GBF forms mainly at the prior austenite grain (PAG) boundary and intragranular
QPF. Moreover, the massive and slender M/A constituents are dispersed at the boundaries of the QPF,
GBF, and even PAG. The amount of GBF increases gradually at the expense of the QPF with increased
cooling rate. In addition, as the table shows, the area fraction, f M/A, and average size of the M/A
constituent decreases from 7.7% to 3.5% and from 1.9 to 0.3 µm, respectively, with increased cooling
rate; the amount of massive M/A constituent also decreases, whereas its slender counterpart increases.

Metals 2017, 7, 23 5 of 17 

 

3.2. Microstructure 

Multiphase Microstructure Observations 

Typical optical micrographs displaying the microstructure (upper) and M/A constituent (lower) 

are shown in Figure 4, and the quantified features are summarized in Table 3. As the figure 

indicates, the microstructure of samples cooling at different rates is composed of QPF, GBF and a 

little lath bainitic ferrite (LBF), dispersed with M/A constituent. The two different morphologies of 

bainitic structure, i.e., GBF and LBF, are distinguished according to systematic descriptions by 

Bramfiti et al. [23] and Bhadeshia et al. [24]. The GBF as a transformation product during continuous 

cooling is essentially a mixture of blocky ferrite with dispersed granular constituent of martensite 

and retained austenite, which are more easily distinguished using Lepera’s reagent etched sample. 

However, after the QPF and GBF formation ends, the LBF can form in the region of residual 

austenite with carbon in rich, yet not rich enough to produce M/A constituent, and grows as sheaves 

with the transformation proceeding. The GBF forms mainly at the prior austenite grain (PAG) 

boundary and intragranular QPF. Moreover, the massive and slender M/A constituents are 

dispersed at the boundaries of the QPF, GBF, and even PAG. The amount of GBF increases gradually 

at the expense of the QPF with increased cooling rate. In addition, as the table shows, the area 

fraction, fM/A, and average size of the M/A constituent decreases from 7.7% to 3.5% and from 1.9 to 0.3 

μm, respectively, with increased cooling rate; the amount of massive M/A constituent also decreases, 

whereas its slender counterpart increases. 

 

Figure 4. Optical micrographs of 4% Nital solution and Lepera’s reagent etched samples of: (a,b) 5 

°C/s; (c,d) 15 °C/s; and (e,f) 20 °C/s. QPF—quasi-polygonal ferrite, GBF—granular bainite ferrite, 

LBF—Lath bainite ferrite, M/A—Martensite/austenite constituent. 

Figure 4. Optical micrographs of 4% Nital solution and Lepera’s reagent etched samples of: (a,b) 5 ◦C/s;
(c,d) 15 ◦C/s; and (e,f) 20 ◦C/s. QPF—quasi-polygonal ferrite, GBF—granular bainite ferrite,
LBF—Lath bainite ferrite, M/A—Martensite/austenite constituent.
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Table 3. Summary of microstructure observations and quantifications.

CR ◦C/s Phase Composition f M/A/% f RA/% CM/A/wt. % f 2◦≤θ≤15◦ /% MED2◦≤θ≤15◦ /µm Dp/nm f p/% ρ/×1014 m−2

5 QPF + GBF + M/A 7.7 ± 0.4 0.76 ± 0.17 0.54 45 6.05 30.7 ± 0.5 5.6 ± 0.3 × 10−4 3.82 ± 0.05
10 QPF + GBF + M/A 5.6 ± 0.2 1.28 ± 0.15 0.73 51 4.90 26.8 ± 0.2 3.0 ± 0.4 × 10−4 4.10 ± 0.03
15 QPF + GBF + M/A 4.1 ± 0.3 1.67 ± 0.13 1.00 54 3.71 22.6 ± 0.3 1.7 ± 0.3 × 10−4 4.21 ± 0.06
20 QPF + GBF + LBF + M/A 3.5 ± 0.2 2.31 ± 0.16 1.16 59 3.37 20.4 ± 0.3 0.8 ± 0.2 × 10−4 4.39 ± 0.04

CR—cooling rate, QPF—quasi-polygonal ferrite, GBF—granular bainitic ferrite, LBF—lath bainitic ferrite, M/A—martensite/austenite constituent, RA—retained austenite, f M/A—area
fraction of M/A constituent, f RA—volume fraction of retained austenite, CM/A—carbon content in M/A constituent, f 2◦≤θ≤15◦—fraction of boundaries at low misorientation tolerance
angle 2◦–15◦, MED2◦≤θ≤15◦—mean equivalent diameter of ferrite grain with boundaries at low misorientation tolerance angle 2◦–15◦, determined as effective grain size, Dp—average
size of precipitates, f p—volume fraction of precipitates, ρ—the density of dislocations.
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The typical TEM observations are exhibited in Figure 5. The ferrite plates formed from the parent
austenite phase in each sample, while the island-like phase remained. The irregular plates of QPF have
a relatively low dislocation density (Figure 5a,b), whereas the parallel plates comprising the GBF and a
little LBF possess a high density of dislocations (Figure 5b,c), Furthermore, the bright (Figure 5d) and
dark (Figure 5e) field images, as well as the selected area diffraction pattern (Figure 5f) reveal that the
island is a constituent phase of martensite and austenite. All slender, and a part of the massive M/A
constituent, are located at the boundaries of the GBF plates; the other massive constituent is dispersed
in the regions surrounded by the QPF plates or between the QPF and GBF plates.
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Figure 5. Typical TEM observations of GBF, AF and LBF plates with M/A constituent in samples of:
(a) 5 ◦C/s; (b) 15 ◦C/s ;and (c) 20 ◦C/s; and a typical M/A constituent indicated by: (d) bright field;
(e) dark field; and (f) selected area diffraction pattern. QPF—quasi-polygonal ferrite, GBF—granular
bainitic ferrite, LBF—Lath bainitic ferrite and M/A—martensite/austenite.

Figure 6 reveal two types of precipitate embedded in the ferrite matrix, namely Ti-rich (Nb,Ti)(C,N)
and Nb-rich (Nb,Ti)(C,N) particles, with the sizes of 40–80 nm and 10–30 nm, respectively. The former
persisted possibly from the reheating stage and even synthesized during the hot deforming, while
the latter mainly formed during the controlled cooling. Some of these fine particles pin dislocations.
As Table 3 shows, the average size, Dp, and volume fraction, f p, of precipitates in each sample decrease
with the increased cooling rate.
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Figure 6. TEM observations of precipitate in samples of: (a) 5 ◦C/s; (b) 15 ◦C/s; and (c) 20 ◦C/s; and
(d) their energy dispersive X-ray (EDX) analyses.

Figure 7a,b shows the XRD pattern and its enlarged details for each sample, and the fraction of
retained austenite and the dislocation density are summarized in Table 3. As the table shows, both
the volume fraction of retained austenite, f RA, and the dislocation density, ρ, increase with increased
cooling rate.
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The MED of the QPF and GBF grains of each sample was estimated using EBSD. The typical
inverse pole figures are indicated in Figure 8 and the MED for MTA ranging 2◦–30◦ and varied cooling
rate in Figure 9. The MED of the QPF and GBF grains decreases monotonically with decreasing MTA
and increasing cooling rate, respectively. Moreover, the boundaries of the QPF and GBF grains can
be divided into two categories: high angle (θ > 15◦) and low angle (2◦ ≤ θ ≤ 15◦). The fraction of
low-MTA boundaries, f 2◦≤θ≤15◦ , and the corresponding MED2◦≤θ≤15◦ are listed in Table 3. As the
table shows, the former increases, whereas the latter decreases with increased cooling rate.
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4. Discussion

4.1. Effect of Cooling Rate on the Microstructure

As Figures 4 and 5 show, a multiphase microstructure consisting of QPF + GBF + M/A constituent
formed in each sample, with the quantified attributes summarized in Table 3. Obviously, the GBF
increases, whereas the QPF and M/A constituents decrease with increased cooling rate. The mechanism
governing the effect of accelerated cooling on this microstructure was determined experimentally.

4.1.1. Effect of Cooling Rate on the QPF + GBF

Dilatation curve (Figure 10) was measured during continuous cooling of each sample that was
prior imposed by two-pass compressing and initial cooling to 780 ◦C as described in Section 2;
the starting temperature (Ar3) for the transformation of γ → QPF + GBF in each sample is also
indicated in the figure.
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As Figure 10 shows, the sample with the highest cooling rate (20 ◦C/s) has the lowest Ar3 (613 ◦C).
As one of transformed products (Figures 4e and 5c) under this highest-rate cooling condition, the GBF,
which nucleates and grows mainly from the PAG boundaries in high densities, is the dominant phase
of this mixed-microstructure steel. The QPF, in contrast, nucleates and grows intragranually and only
in small amounts. Therefore, the thermodynamic driving force for the nucleation of GBF in the sample
cooling at 20 ◦C/s is higher than that of the QPF. This result is in agreement with previous works on
continuous cooling transformation of bainitic steel [19,25]. Moreover, the Ar3 increases to 622, 631, and
652 ◦C, when the cooling rate is lowered to 15, 10, and 5 ◦C/s, respectively. This indicates that the γ/α
transformation in the sample cooling at a lower rate begin at an elevated temperature. In addition,
although the GBF is still the dominant phase in the mixed QPF GBF microstructure, the amount
of QPF increased significantly with decreased cooling rate. The nucleation and growth of the QPF
during slower cooling therefore gradually constitutes the dominant transformation. In addition,
QPF mainly nucleates in the dislocation substructure of TMCP-processed steel [15,18] and grows
intragranually (Figures 4 and 5); the amount of QPF increases with decreased cooling rate from 20 to
5 ◦C/s. The above-mentioned results confirm that the increased cooling rate promoted the formation,
and thereby resulted in increasing fractions of GBF.

On the other side, the sample (cooling at 20 ◦C/s) with the lowest Ar3 has the highest degree of
supercooling for the transformation of γ→ QPF + GBF. This probably leads to the nucleation of the
QPF and GBF at the highest rate and results ultimately in the finest equivalent grain. Furthermore,
as Figure 8 shows, the accelerated cooling and hence the decreasing Ar3 brings about a decreasing
equivalent grain size of the QPF and GBF (i.e., the MED) at any given MTA.

The dislocation density, ρ, in the QPF + GBF matrix of the samples also varies with the Ar3.
That is, the ρ increases with decreasing Ar3, due to increased cooling rate, which concurs with the
works of Bhadeshia et al. [24,26]. In those studies, they proposed that the ρ of bainite increases with
decreasing Bs (the starting temperature for bainite transformation), and could be described empirically
as a function of the Bs, indicating a strong negative correlation between the ρ and the Bs.

4.1.2. Effect of Cooling Rate on the M/A Constituent

As Figures 4 and 5 show, the amount of QPF in the samples increases with decreased cooling rate.
In fact, the surrounded regions by adjacent QPF plates increase with increasing number of growing
QPF plates, which leads to an increasing amount of metastable austenite (γ′) during the continuous
transformation occurred in cooling and subsequent re-reddening. The transition of γ→ QPF + GBF + γ′

is, however, accompanied by the diffusion of C atoms from the QPF and the GBF to γ′. This leads to
the C-enrichment of γ′ and correspondingly an increasing amount of M/A constituent with decreased
cooling rate, as shown in Figures 4 and 5 and Table 3.

Moreover, the carbon level in M/A (in wt. %) for each sample with different cooling rate can be
estimated by considering the following simplistic carbon balance:

Ce = fα × Cα + fM/A × CM/A (2)

where fα and f M/A are volume fraction of ferrite and M/A constituent (fα + f M/A = 100%), respectively;
Ce, Cα and CM/A are carbon content in experimental alloy (0.06 wt. %), and ferrite (assumed to be
0.02 wt. %), and M/A constituents, respectively. The estimated results are summarized in Table 3,
indicating that the carbon level in M/A constituent increases with increasing cooling rate. Although
less M/A is present at the highest cooling rate, a larger fraction remains austenite. This result might
imply that the thermal stabilization of austenite is enhanced by higher carbon content. Therefore,
increased cooling rate can eventually lead to increasing fraction of retained austenite in the M/A
constituent, as determined from XRD analyses (Figure 7) and quantifications (Table 3).
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It is worth noting that subsequent to accelerated cooling, the re-reddening process can enhance
the diffusion of carbon atoms from the QPF and the GBF to γ′, and accordingly promote the formation
of M/A constituent and retained austenite in them.

4.2. Effect of Cooling Rate on the YS

The final microstructure of the sample, consisting of QPF + GBF + M/A, possesses a variety
of microstructural features, such as the effective grain boundaries of the QPF + GBF, dislocations,
carbonitride precipitates, and the M/A constituent. These features all have the corresponding effects
on the YS. Each microstructural feature and its effect on the YS, varies with the cooing rate (Table 2).
the YS (σy) of low-C microalloyed bainitic steel can be described by a linear sum of the individual
strengthening contributions, according to [19]:

σy = σ0 + σs + σd + σp + σM/A (3)

where σ0 is the lattice friction stress; σs is the solid solution strengthening; σd is the strengthening
originated from the boundaries of the QPF + GBF effective grain; σρ is the strengthening provided
by dislocations of the QPF + GBF; σp is the carbonitride induced precipitation strengthening; and
σM/A is the strengthening due to the hard M/A constituent. The YS is contributed by each of these
strengthening factors.

The YS, σy, can be described as a function of the grain size using the Hall-Petch relation [27,28],
which is given as follows:

σy = σ0 + kHPd1/2 (4)

where kHP × d−1/2 and σ0 are the contributions from boundary strengthening and strengthening
provided by other mechanisms, respectively. In this attempt, kHP is the structural constant that stands
for the effect of the effective grain size of matrix QPF + GBF on the strength; d is the effective grain size
corresponding to the MEDθ, which represents the MED of the QPF and GBF grains with boundaries
at a certain MTA, θ. Low-MTA boundaries can control the movement of dislocations, according to
previous works [29,30]. Furthermore, I. Gutierrez [31] proposed that an effective grain with low-MTA
boundaries at a threshold angle of 2◦, comprises the smallest microstructural unit that controlled
the YS. Low angle boundaries (2◦ ≤ θ ≤ 15◦) are related to the ferrite sub-units within the bainitic
packets/sheave, while high angle boundaries (θ > 15◦) are relevant to the bainitic packets/sheaves,
according to [32]. The effect of MED of QPF grains with MTA ranging 2◦–30◦ on the YS was also
estimated in our previous work, producing a minimum correlation of 95% between the YS and
MED−1/2, for MTA values of 2◦–6◦ [2], which gave a definition of the effective grain size. A similar
study was also carried out in the present work. For MTA values of 2◦–30◦, σy was plotted as a function
of MED−1/2 for the QPF and GBF grains; for low MTA ranging 2◦–15◦, σy exhibited a strong linear
relation to MED−1/2 with correlation coefficients of 0.95–0.99. As such, a linear fitting of the σy vs.
MED−1/2

2◦≤θ≤15◦ was made for all effective grains with an MTA of 2◦ ≤ θ ≤ 15◦, as indicated in
Figure 11, yielding a correlation coefficient of 0.97. The obtained linear regression equation is:

σd = 306 + 420.6d1/2 (5)

where d is the effective grain size, MED2◦≤θ≤15◦ , in µm. The strengthening contribution from the
effective grain of the QPF and GBF in the samples cooling at different rates is summarized in Table 4.
As the table shows, the contribution from boundary strengthening increases with increased cooling
rate, owing to decreasing effective grain size of the matrix QPF + GBF (Table 3).
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The estimations on contribution of dislocation strengthening (σρ) to the YS were made according
to [32]:

σp = αMGbρ1/2 (6)

where α, M, G, b, and ρ are a constant (i.e., 0.15) [32], Taylor factor (2.73 for ferrite steel [32]), shear
modulus (81.6 GPa for Fe), Burger’s vector (0.248 nm for Fe), and the average dislocation density,
respectively. The value of ρ was determined quantitatively from the XRD spectrum of each sample
shown in Figure 7. The strengthening contribution from the dislocations of matrix QPF + GBF to the
YS of each sample is summarized in Table 4. As the table shows, the average dislocation density of
matrix QPF + GBF increases with increased cooling rate, thus leading to an increasing contribution
from dislocation strengthening.

A high density of small Nb-rich (Nb,Ti)(C,N) precipitated particles mainly in ferrite can provide a
significant strengthening contribution [33]. Figure 6 and Table 3 confirm that a high volume fraction of
Ti- and Nb-rich particles, with average sizes of 16–28 nm, formed in the QPF and GBF matrix of the
present Nb-Ti-containing HSLA steel. Therefore, the estimations on strengthening contribution from
fine dispersed precipitates must be made, and were performed using the following equation [34]:

σppt =
11.3 f 1/2

p

Dp
ln(Dp/0.496)× 103 (7)

where f p and Dp are the volume fraction and average size (in nm) of precipitated particles, as shown in
Figure 6 and Table 3. The contribution of precipitation strengthening to the YS is summarized in Table 4.
As the table shows, the decreasing cooling rate lead to simultaneous decreases in Dp and increases in
and f p (Table 3), thereby resulting in increasing contribution from precipitation strengthening.

In addition to the aforementioned strengthening mechanisms, the sum (110 MPa ± 5 MPa) of
other individual strengthening contributions, σ0 + σs + σM/A, is approximately the same for all the
steels considered (Table 4).

Except for the sum σ0 + σs + σM/A, the individual factors can be described in descending order of
their strengthening contribution as, effective grain of the GBF and QPF, dislocations and precipitates.
In another aspect, the increasing cooling rate led to a decreased density of fine precipitates (Table 3) and
in turn to a decreased strengthening contribution. However, this increased cooling rate also resulted in
simultaneous a decreasing effective grain size of the GBF and the QPF and an increasing dislocation
density, yielding in turn an enhanced strengthening contribution. As a result, the overall YS increases
with the increasing cooling rate.
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Table 4. Summary of individual strengthening contributions from different microstructural features of
all steels.

CR/◦C/s YS/MPa σ0 + σs + σM/A/MPa σd(MED2◦≤θ≤15◦ )/MPa σρ/MPa σppt/MPa

5 476 106 171 163 36
10 498 110 190 169 29
15 521 107 218 171 25
20 537 115 229 175 18

CR—cooling rate, YS—yield strength, σ0 + σs + σM/A—sum of strengthening contribution from lattice friction
stress, solid solution and M-A constituent, σd—boundary strengthening, MED2◦≤θ≤15◦—mean equivalent
diameter of ferrite grain with boundaries at misorientation tolerance angle 2◦–15◦ determined as the effective
grain size, σρ—dislocation strengthening, and σppt—precipitation strengthening.

4.3. Effect of Cooling Rate on the TS and YR

The TS and YS simultaneously decrease with decreasing cooling rate, as shown in Figure 3
and Table 2; the YS decreases, however, in a magnitude higher than the TS. Accordingly, the
strain-hardening magnitude ∆σ increases, whereas the YR decreases, indicating an improved capacity
for work-hardening or an enhanced resistance to overloading. This also indicates an enhanced integrity
of the steel structure for unexpected deformation [35] and an improved tolerance for defects [36], from
an engineering viewpoint.

The final microstructure of the steels with different cooling rates, as shown in Figures 4 and 5,
is a mixture of QPF + GBF + M/A constituent. the micro-hardness of the M/A constituent is higher
than that of the bainitic ferrite matrix, according to previous studies [16,37]; The M/A constituent can
act as a mixed hard phase during tension, and hence induce a high degree of plastic deformation of
ductile ferrite phase via two- or three-stage work-hardening, according to the mechanism of typical
dual-phase steel [38]. Therefore, the overall strain-hardening capacity can be improved by increasing
the amount of hard phase [35,38].

The effect of M/A constituent on the ∆σ, TS, and YR of the samples was also estimated intuitively.
As Figure 12 and Table 3 indicate, the area fraction of M/A constituent, f M/A, increases from 3.5% to
7.7% with decreasing cooling rate from 20 to 5 ◦C/s, correspondingly, the ∆σ, in turn, increases with
increasing f M/A, and effective grain size of GBF and QPF. Accordingly, the YR declines. The decreasing
YR suggests that the TS decreases much slower than the YS with increasing effective grain size, due to
decreasing cooling rate. This is mainly because the TS is less sensitive to grain size than the YS [39,40].
Nevertheless, the results revealed that the overall tensile properties including the ∆σ, TS, and YR can
be regulated with the cooling rate properly controlled.Metals 2017, 7, 23 15 of 17 
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5. Conclusions

The effect of controlled cooling on the microstructure and tensile properties of low C Nb-Ti
containing HSLA steel undergoing a group of simulated TMCPs has been investigated. The conclusions
are made as follows:

(1) The microstructure consisting of QPF + GBF + M/A constituent forms in samples with varied
cooling rate of 5–20 ◦C/s. The Ar3 decreased with increasing cooling rate, resulting in increasing
GBF, and decreasing QPF and M/A constituents.

(2) The increasing cooling rate reduces the precipitation of fine particles, but leads to a decreasing
effective grain size of GBF and QPF, and an increasing density of dislocations, thereby resulting
in an increase in the overall YS.

(3) The decreasing cooling rate leads to increased amounts of M/A constituent, and hence an
improved overall strain-hardening capacity of the multiphase microstructure, accordingly
resulting in a lowered YR.
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