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Abstract: Isothermal compression tests of BSTMUF601 super-alloy in the temperature range of
950 ˝C–1200 ˝C and at the strain rates of 0.2 s´1, 5 s´1, 10 s´1 were performed on a Gleeble-1500D
thermo-mechanical simulator. Based on the hyperbolic sine function, the unified constitutive
equations and hot processing maps during the hot deformation process were established. The flow
stress predicted by the constitutive equations shows good agreement with the corrected stress.
Hot processing maps for hot working conditions were established based on exploring the effect
of power dissipation efficiency and the instability coefficient associated with various kinds of
temperatures and stain rates. Subsequently, power dissipation efficiency and the instability coefficient
were interpreted based on hot processing maps under a series of strains, temperatures and strain
rates. The results show that power dissipation efficiency increases gradually with the increasing
temperature and the decreasing stain rate, and instability domains reduce first, then increase with the
increase of true strain. The optimum hot working condition of BSTMUF601 super-alloy was obtained.

Keywords: BSTMUF601 super-alloy; constitutive model; hot processing map; hot
deformation behavior

1. Introduction

The nickel-based super-alloy used for the muffle furnace should provide good mechanical
properties, oxidation resistance and especially excellent, high temperature, creep-resistant
performance [1]. The BSTMUF601 super-alloy is a nickel-based super-alloy developed independently
by Baosteel and applied to produce plates for muffle furnaces, and it possesses great elevated
temperature performance at a less expensive cost. Under the working condition, when the temperature
is 1095 ˝C and stress is 12.4 MPa, the steady creep rate of BSTMUF601 super-alloy is 10´6 s´1, which is
close to that of Inconel601 super-alloy. The creep rupture strength at the elevated temperature obtained
through persistent tensile experiment is at the same level compared with similar foreign materials.
Additionally, BSTMUF601 super-alloy has excellent welding performance, and high temperature
strength of the welded joints is 100 MPa under 950 ˝C and the room temperature strength is 630 MPa.

In the past years, research on the BSTMUF601 super-alloy was mainly focused on creep properties
and oxidation behavior [2,3]. However, little research has been carried out on investigating the
manufacturing technologies for this alloy, especially analyzing the processes to attain a fine and
uniform microstructure in a hot-wrought/rolled state. The flow stress is the most basic parameter
for characterizing plastic deformation properties of metals and alloys, and it determines the load
and energy needed during the plastic deformation [4]. In recent years, the processing map based
on the dynamic materials model (DMM) has been considered an important method for optimizing
hot working processes and controlling the microstructure in the forming process [5,6]. Based on
the processing map, the deformation mechanisms under different deformation conditions can be
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predicted, and then the deformation temperature and strain rate corresponding to the local peak
efficiency of power dissipation are chosen as the optimum processing parameters for the hot working
of materials [7,8].

The objective of this paper is to study the hot deformation behavior of BSMUF601 super-alloy
based on the results of isothermal compression tests. The processing maps of this alloy are constructed
in order to analyze the instability region and optimize the hot working parameters.

2. Materials and Methods

An experimental BSTMUF601 super-alloy was melted in vacuum in an electro-slag furnace
(Baosteel special steel, Shanghai, China), and then exposed to solid solution strengthening and hot
forging before specimen preparation, which was provided by Baosteel special steel. The chemical
composition (wt %) of the BSTMUF601 super-alloy is shown in Table 1. Cylindrical specimens
for compression tests (8 mm in diameter and 12 mm in height) were cut and machined from the
forged bar. To investigate the effects of the deformation temperature and flow stress, the isothermal
compression tests were performed on a Gleeble-1500D thermo-mechanical simulator (Dynamic Systems
Inc. Poestenkill, New York, NY, USA) at the temperature range of 950 ˝C–1200 ˝C with intervals of
50 ˝C and at strain rate range of 0.2, 5 and 10 s´1, respectively. A thermocouple was used to monitor
and control the temperature of the specimen during testing. Graphite foil pastes were used between
the specimens and the plate to minimize the friction during deformation [9].

Table 1. Chemical composition of the BSTMUF601 super-alloy (in wt %).

C Si Mn S P Cr Fe Ni

0.013 0.02 0.21 0.002 0.005 29.19 9.49 balance

Considering the actual characteristics of hot working process, to obtain uniform microstructure,
each specimen was heated to the testing deformation temperature at a rate of 10 ˝C/s, and held for
3 min. All the specimens were deformed with the desired deformation strain rate and 50% reduction
in height corresponding to a true strain of 0.69, and then quenched to room temperature immediately
in water.

3. Results and Discussion

3.1. Flow Stress-Strain Curves

The flow stress-strain curves of experimental BSTMUF601 super-alloy at the temperature range of
950 ˝C–1200 ˝C and at strain rates of 0.2, 5 and 10 s´1 are shown in Figure 1. As expected, the flow stress
is sensitively dependent on both the deformation temperature and strain rate. At the lower strain, the
flow stress increased rapidly with the increase of the strain, caused by the increase of the average value
of dislocation density which appears to have higher resistance to further compression. Some of the
stress curves showed a broad and flat peak, which indicates the occurrence of dynamic recrystallization
(DRX) and dynamic recovery (DRV) [10,11]. The flow stress decreases with the increase of deformation
temperature at the same strain rate, and increases with the decrease of the strain rate at the same
deformation temperature. This is easy to understand because the mobility of the grain boundary and
dislocation could be accelerated or improved at a higher temperature, while it would take a longer
time at a lower strain rate, according to the higher effect of the apparent activation energy of the
deformation and lower shearing stress. Additionally, higher deformation temperature and lower strain
rate could be beneficial for completing the DRX process including nucleation and growth.
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Figure 1. Flow stress-strain curves of BSTMUF601 super-alloy under different strain rates: (a) 0.2 s−1; 

(b) 5 s−1; (c) 10 s−1. 

3.2. Constitutive Model of Peak Stress 

Among all the flow stress constitutive equations, the Arrhenius-type equation proposed by 

Sellars et al. is the most widely used [12,13]. These equations are described as follows: 
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Figure 2b. Then, α = n1/n2 = 0.111/17.807 = 0.00623. 

Figure 1. Flow stress-strain curves of BSTMUF601 super-alloy under different strain rates: (a) 0.2 s´1;
(b) 5 s´1; (c) 10 s´1.

3.2. Constitutive Model of Peak Stress

Among all the flow stress constitutive equations, the Arrhenius-type equation proposed by Sellars
et al. is the most widely used [12,13]. These equations are described as follows:

.
ε expp

Q
RT
q “ A1 exppn1σq (1)

.
ε expp

Q
RT
q “ A2σn2 (2)

.
ε expp

Q
RT
q “ A sinhpασqn (3)

where
.
ε is the strain rate (s´1), Q is the apparent activation energy of deformation (J/mol), R is the

universal gas constant (8.314 J¨mol´1¨K´1), T is the absolute temperature (K), σ is the flow stress
(MPa), n1, n2, n are material parameters which are called the stress exponents, A, A1, A2, are material
parameters which relate to the strain rate–sensitive parameter.

Taking the natural logarithm of Equations (1)–(3) yields:

ln
.
ε “ ln A2 ` n1σ´Q{pRTq (4)

ln
.
ε “ ln A1 ` n2 ln σ´Q{pRTq (5)

ln
.
ε “ ln A` n ln sinhpασq ´Q{pRTq (6)

Generally, the different descriptions of the Arrhenius-type equations are used for different regions.
The exponential law in Equation (5) could predict the flow stress for the high stress level while the
power law in Equation (4) could only be used for the low stress level. However, the hyperbolic sine law
in Equation (6) is applicable for both low stress and high stress levels [8]. In the study, the flow stress
ranges from 50 to 300 MPa; therefore, the hyperbolic sine law in Equation (6) is the most optimum
constitutive equation. Obviously, the material parameters α, n, n1, n2 and Q should be identified at
first to analyze the flow behavior of the studied steel, and according to reference [14], α = n1/n2.

By linear fitting and plotting σ against ln
.
ε, n1 could be obtained from the slope of the linear

regression lines, as shown in Figure 2a. The average value of n1 was calculated to be 0.0562.
Additionally, n2 = 9.01 could be obtained from the slope of the linear regression lines, as shown
in Figure 2b. Then, α = n1/n2 = 0.111/17.807 = 0.00623.
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Figure 2. The linear regression (a) σ against ln ; (b) lnσ against ln ; (c) lnsinh(ασ) against ln ; 

and (d) lnsinh(ασ) against (10000/T). 

The value of n was calculated to be 6.757, obtained from the slope of the linear regression lines, 

as shown in Figure 2c. To calculate the apparent activation energy Q, Q = 1000 × n × R × K, where 

lnsinh( ) / (10000 / )K T


   , R is the universal gas constant, T is the deformation temperature, by 

plotting the lnsinh(ασ) against 1000/T at a constant strain rate, K could be obtained from the slope of 
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three linear regression lines at different strain rates. Therefore, the apparent activation energy was 

calculated to be 470.5 kJ/mol. In the same way, the value of lnA = Q/(RT) – h × n can be obtained from 

the intercept h of the lnsinh( ) - ln  , and lnA is 25.64. Therefore, A is 1.37 × 1011 in the present study. 

By filling the obtained material parameters (α, n, Q and A) into Equation (3), the hyperbolic sine 
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Figure 2. The linear regression (a) σ against ln
.
ε; (b) lnσ against ln

.
ε; (c) lnsinh(ασ) against ln

.
ε; and

(d) lnsinh(ασ) against (10000/T).

The value of n was calculated to be 6.757, obtained from the slope of the linear regression lines,
as shown in Figure 2c. To calculate the apparent activation energy Q, Q = 1000 ˆ n ˆ R ˆ K, where
K “ Blnsinhpασq{Bp10000{Tq| .ε, R is the universal gas constant, T is the deformation temperature, by
plotting the lnsinh(ασ) against 1000/T at a constant strain rate, K could be obtained from the slope of
the linear regression lines, as shown in Figure 2d. The average value of K is 0.53 from the slope of the
three linear regression lines at different strain rates. Therefore, the apparent activation energy was
calculated to be 470.5 kJ/mol. In the same way, the value of lnA = Q/(RT) – h ˆ n can be obtained from
the intercept h of the lnsinhpασq ´ ln

.
ε, and lnA is 25.64. Therefore, A is 1.37 ˆ 1011 in the present study.

By filling the obtained material parameters (α, n, Q and A) into Equation (3), the hyperbolic sine
equation for the peak stress of BSTMUF601 super-alloy is developed as following:

.
ε “ 1.37ˆ 1011rsinhp6.23ˆ 10´3σqs

6.757
expr´4.705ˆ 105{pRTqs (7)

3.3. Unified Constitutive Model

At higher deformation temperature and lower strain rate, flow stress decreases with the increase
of the true strain, which declares flow stress is sensitive to true strain at the material hot deformation
process [15]. Therefore, effects of the strain on flow stress should be considered in the established
constitutive model process. In order to achieve a primitive estimation of the flow stress in the plastic
deformation, the material parameters’ (α, n, Q and A) values were obtained individually at 12 different
true strains between 0.05 and 0.6 with 0.05 intervals, similar to the method used for establishing the
constitutive model of peak stress. The material parameters (α, n, Q and A) have functional relations
with true strain; furthermore, relations between the material parameters and true strain could be well
fitted with six-order polynominal functions [16], shown as Equation (8), plotting material parameters
against true strain, as shown in Figure 3. The material parameters (α, n, Q and A) could be accurately
calculated by Equation (8); hence, flow stress could be obtained through Equation (3).

$

’

’

’

&

’

’

’

%

Q{10000 “ 48.58´ 123.81ε` 3462.54ε2 ´ 24542.6ε3 ` 72972.3ε4 ´ 98514.7ε5 ` 49872.3ε6

lnA “ 41.01´ 82.34ε` 2752.32ε2 ´ 19910.79ε3 ` 59299.40ε4 ´ 79801.05ε5 ` 40202.88ε6

n “ 10.07´ 52.99ε` 651.71ε2 ´ 3811.26ε3 ` 10556.13ε4 ´ 13879.26ε5 ` 7007.21ε6

α “ 0.014´ 0.110ε` 0.795ε2 ´ 3.258ε3 ` 7.515ε4 ´ 8.939ε5 ` 4.248ε6

(8)
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Figure 3. Relations between material parameters and (a) α; (b) n; (c) Q; (d) lnA.

Comparing flow stress calculated from the unified constitutive model to experimental values
when the strain rate is 5 s´1, as shown in Figure 4a, it is easy to see that flow stress calculated from
the unified constitutive model is fits well with the experimental values. The correlation between the
flow stress of experimental values and calculated values was fine, as shown in Figure 4b, and the
correlation is 0.995. Additionally, the average relative error (AARE) was calculated at the experimental
conditions, and the value of the AARE is 2.78%. That declared that the predicted flow stress from the
unified constitutive model agreed well with the experimental results. It is worth mentioning that the
predicted flow stress has a great difference with experimental flow stress at a higher flow stress, and it
should be attributed to softening caused by the adiabatic temperature rise at a high strain rate.
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Figure 4. (a) Comparisons between predicted and experimental flow stress; (b) Correlation between
predicted and experimental flow stress.

4. Hot Processing Map

4.1. Approach Processing Map

The processing maps have been proved to be useful tools for understanding the hot deformation
behavior of metals and alloys over a wide range of temperatures, strains, and strain rates [17–21].
According to the dynamic materials model (DMM), processing maps are composed of two
superimposed power efficiency and instability maps at a constant strain [22]. The dynamic materials
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model assumes that the total instantaneous power P absorbed from the equipment is dissipated through
the temperature rise and microstructure change. The dissipated powers caused by the temperature rise
and microstructure change are named content G and co-content J. Most of the instantaneous power P
absorbed by the work-piece is dissipated by the dissipater content G, which is the power dissipated via
plastic deformation. The dissipater co-content J, which is the work related to metallurgical evolution
via various mechanisms such as DRV, DRX and phase transition, occurs dynamically to dissipate
power. The total power absorbed P can be expressed as:

P “ σ
.
ε “ G` J “

ż σ

0
σd

.
ε`

ż σ

0

.
εdσ (9)

The ratio of dJ/dG is equivalent to the strain rate sensitivity exponent m. For an ideal linear
dissipater, m = 1 and Jmax “ σ

.
ε{2. By normalizing the instantaneous J with the maximum value, the

efficiency of power dissipation η can be expressed as:

η “
J

Jmax
“

2m
m` 1

(10)

The power dissipation map is obtained by plotting the parameter η against temperature and
strain rate for different strains in the form of a contour map.

A continuum criterion for the occurrence of flow instability is obtained by utilizing the principle
of the maximum rate of entropy production, which was proposed by Ziegler, and is given as:

ξ
` .
ε
˘

“
B lnrm{pm` 1qs

B ln
.
ε

`m ă 0 (11)

where ξ(
.
ε) is the instability coefficient. The instability map can be obtained by plotting the instability

coefficient against the temperature and strain rate for different strains where the negative values of the
instability coefficient indicate domains of instability.

The processing map can not only be used to provide optimum deformation conditions but it
also can be used to describe the flow instability domains. The processing map is obtained through
superimposing an instability map on a power dissipation map.

4.2. Processing Map of BSTMUF601 Super-Alloy

The function relationship between lnσ and ln
.
ε is obtained by cubic curve fitting, and then the

strain rate sensitivity exponent m can be obtained. According to Equation (10), the efficiency of power
dissipation η was obtained. The power dissipation map is obtained by plotting the parameter η

against temperature and strain rate for different strains in the form of a contour map. According
to Equation (11), the value of the instability coefficient was calculated. The instability map can be
obtained by plotting the instability coefficient against temperature and strain rate for different strains
where the negative values of the instability coefficient, gray areas, indicate flow instability regions.
The processing maps for BSTMUF601 super-alloy obtained in the temperature range of 950 ˝C–1200 ˝C
and at the strain rate range of 0.2, 5 and 10 s´1 at true strains of 0.2, 0.4 and 0.6, through superimposing
the instability maps on the power dissipation maps are shown in Figure 5, respectively.
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Figure 5. Hot processing maps at different strains of BSTMUF601 super-alloy. (a) The strain is 0.2; (b) 

the strain is 0.4; and (c) the strain is 0.6. 
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Figure 5. Hot processing maps at different strains of BSTMUF601 super-alloy. (a) The strain is 0.2;
(b) the strain is 0.4; and (c) the strain is 0.6.

Generally, the maximum η represents the optimal processing window. From Figure 5, the power
dissipation efficiency will be elevated with the increase of the deformation temperature and the
decrease of the strain rate; the safety regions are in the low strain rate regions, and furthermore,
instability domains reduce first, then increase with the increase of the true strain, implying that the
true strain has a significant effect on the instability domains.

At true strain 0.2, the peak efficiency appears at strain rate 0.2 s´1 and deformation temperature
of about 1150 ˝C; as also, the instability regions appeared at the strain rate range of 2–10 s´1 and
deformation temperature range of 950 ˝C–1040 ˝C and 1140 ˝C–1170 ˝C, as shown in Figure 5a.
It should be noted that the space between the contour lines becomes close in the temperature range of
1100 ˝C–1150 ˝C and the strain rate range of 0.2–0.35 s´1, implying that the value is relatively sensitive
to the changes of both temperature and strain rate. At true strains 0.4 and 0.6, the peak efficiency
appeared at strain rate 0.2 s´1 and deformation temperature of about 1200 ˝C, as shown in Figure 5b,c.
The optimum hot working condition of BSTMUF601 super-alloy for all the true strains occurs in the
strain rate range of 0.2–0.4 s´1, the temperature range of 1100 ˝C–1130 ˝C and the temperature range
of 1170 ˝C–1200 ˝C as well. The power dissipation efficiency of these two domains is higher than that
in the other regions.

5. Conclusions

Hot deformation behavior of BSTMUF601 super-alloy was studied in the temperature range of
950 ˝C–1200 ˝C and the strain rate range of 0.2–10 s´1. The following conclusions were drawn.

(1) The material parameters (α, n, Q and A) have six-order polynominal functional relations with
the true strain, and the unified constitutive equations of BSTMUF601 super-alloy were established.
The apparent activation energy for hot deformation is 470.5 kJ/mol.

(2) The power dissipation efficiency will be elevated with the increase of deformation temperature
and the decrease of strain rate; the safety regions are in the low strain rate regions, and the instability
domains reduce first, then increase with the increase of the true strain, implying that the true strain
has a significant effect on the instability domains.

(3) The BSTMUF601 super-alloy possesses a large instability region and limited hot-working
region at large strain. The optimum hot working conditions of BSTMUF601 super-alloy were the strain
rate range of 0.2–0.4 s´1, and the temperature ranges of 1100 ˝C–1130 ˝C and 1170 ˝C–1200 ˝C.
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