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Abstract: High-temperature corrosion of carbon steel in N2/0.1% H2S mixed gas at 600–800 ˝C for
50–100 h was studied after hot-dipping in the aluminum molten bath. Hot-dipping resulted in the
formation of the Al topcoat and the Al-Fe alloy layer firmly adhered on the substrate. The Al-Fe alloy
layer consisted primarily of a wide, tongue-like Al5Fe2 layer and narrow Al3Fe layer. When corroded
at 800 ˝C for 100 h, the Al topcoat partially oxidized to the protective but non-adherent α-Al2O3

layer, and the interdiffusion converted the Al-Fe alloy layer to an (Al13Fe4, AlFe3)-mixed layer.
The interdiffusion also lowered the microhardness of the hot-dipped steel. The α-Al2O3 layer formed
on the hot-dipped steel protected the carbon steel against corrosion. Without the Al hot-dipping, the
carbon steel failed by forming a thick, fragile, and non-protective FeS scale.

Keywords: H2S corrosion; hot-dip aluminizing; carbon steel; microhardness

1. Introduction

The H2S gas comes off as a by-product during processing in oil refineries, petrochemical plants and
fossil-fired power plants. It dissociates into sulfur and hydrogen, and embrittles and corrodes the steel
seriously by forming FeS scales incorporated with some hydrogen to dangerously shorten the service
life of the steel. FeS is entirely non-protective, and grows fast owing to its high non-stoichiometry and
low melting point [1]. Hydrogen released from the H2S gas ingresses in the scale and steel interstitially
as molecular hydrogen (H), generates lattice point defects, forms hydrogen clusters, and thereby
increases the corrosion rate greatly. Since steels cannot resist the H2S corrosion at high temperatures,
they need to be coated. Al hot-dipping is an effective, inexpensive and simple anti-corrosion coating
technique for steels [2]. The hot-dipped coating consists of the Al-rich topcoat and the inner Al-Fe alloy
layer that is composed of an outer minor Al3Fe layer (near topcoat side) and an inner major Al5Fe2

layer (near steel substrate side). An irregular tongue- or finger-like morphology develops between
the inner major Al5Fe2 layer and the steel substrate [3,4]. The Al hot-dipping drastically improved
the oxidation resistance of steels by forming the highly protective α-Al2O3 layer upon exposure to
air at high temperatures [5–7]. However, the corrosion resistance of Al-coated carbon steels in the
H2S-containing gas was not yet adequately studied. The purpose of this study was to investigate
the corrosion behavior of the Al hot-dipped carbon steel under N2/0.1% H2S mixed gas at high
temperatures in order to utilize the Al hot-dipped steel in the hostile H2S-containing environments.

2. Experimental Procedure

A medium carbon steel plate with a nominal composition of Fe-0.44 C-0.30 Mn-0.25 Si-0.019
S-0.016 P (wt. %) was cut to 80 ˆ 20 ˆ 2 mm3 size coupons, ground using SiC sand paper No. 1200,
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cleaned ultrasonically in alcohol, subjected to the liquid flux solution consisting of 20 vol. % KCl
and AlF3 in 4:1 weight ratio in water. After drying, the coupons were immersed in the pure molten
Al bath on top of which a solid flux (KCl + NaCl + AlF3 in 2:2:1 in weight ratio) was spread to
protect the molten Al bath from oxidation. The Al hot-dipped steel was pulled out, cooled to room
temperature in air, further cleaned using 5 vol. % HNO3 solution to remove any flux adhered on the
aluminized surface, placed in a quartz tube furnace and exposed at 600–800 ˝C for up to 100 h in
N2/0.1% H2S-mixed gas. After the corrosion tests the Al hot-dipped steel specimens were examined
by an optical microscope (OM; Leica DM2700, Leica Microsystems, Switzerland), a scanning electron
microscope (SEM, Hitachi S3000-N, Tokyo, Japan) equipped with an energy dispersive spectroscope
(EDS; Horiba Ex-220, Kyoto, Japan) and a high power X-ray diffractometer (XRD; Bruker D8 Advance,
Karlsruhe, Germany) using Cu-Kα radiation operating at 40 kV and 300 mA. Before analyzing the
results using above microstructural techniques, the cross-sections were etched in a reagent consisting of
5% nitric acid, 5% sulfuric acid, and 0.1% hydrofluoric acid. The Vickers microhardness (Microhardness
Tester, Mitutoyo MVK-H2, Kanagawa, Japan) of the Al hot-dipped steel specimen was measured along
the coating depth at room temperature under an indentation load of 100 g for 5 s, with an average
indentation interval of 50 µm.

3. Results and Discussion

Figure 1 shows OM/EDS/XRD results of the Al hot-dipped carbon steel. Figure 1a indicates that
the hot-dipped coating consists of the Al topcoat with a thickness of about 50–60 µm and the Al-Fe
alloy layer with a thickness of 170–230 µm. The characteristic finger- or tongue-like morphology was
seen between the Al-Fe alloy layer with the columnar microstructure and the steel substrate having
equiaxed grains [8]. It originated from the fast inward diffusion of Al during hot-dipping through
the orthorhombic Al5Fe2 with 30% vacancies along the c-axis [4], or from the atomic size mismatch
between Al (atomic radius; 0.143 nm) and Fe (atomic radius; 0.126 nm) [9]. Figure 1b indicates the EDS
concentration spot analysis (at. %). Spots 1–4, 5–19 and 20–22 corresponded to the Al topcoat, Al-Fe
alloy layer, and the steel substrate, respectively. The Al/Fe compositional ratios (at. %) at spots 5–6
and 7–19 were 2.9 and 2.6, respectively, suggesting that mainly Al3Fe and Al5Fe2 were formed in the
alloy layer between the topcoat and the substrate. SEM/EDS analysis indicated that no aluminum was
detected below spot 19. The alloying elements such as Mn and Si were detected in a small amount
inside the coating (Figure 1b), implying their dissolution in the coating. The intensity of diffraction
patterns decreased in the order of Al, Al5Fe2, and Al3Fe in Figure 1c, and decreased in the order of
Al5Fe2 and Al3Fe in Figure 1d. This indicated that the Al-Fe alloy layer that existed below the Al
topcoat was composed of Al5Fe2 as the major phase, and Al3Fe as the minor one [3,4].
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Figure 1. Al hot-dipped carbon steel: (a) Etched cross-sectional OM image; (b) EDS concentration
profiles along the spots 1–22 marked in Figure 1a; (c) XRD pattern taken from the air-side; (d) XRD
pattern after grinding off the Al topcoat.
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Figure 2 shows XRD/OM results of the Al hot-dipped carbon steel after corrosion at 600 ˝C for
50 h. In Figure 2a, α-Al2O3 and Al5Fe2 were detected as the minor and major phases, respectively.
The Al topcoat partially oxidized to α-Al2O3, and leftover (i.e., uncorroded) aluminum topcoat along
with the underlying Al3Fe layer transformed to the Al5Fe2 not only due to the outward diffusion of Fe
(from the substrate to the surface) but also due to the inward diffusion of Al (from the coating towards
the interior) during heating under N2/0.1% H2S gas. The oxygen source for the formation of α-Al2O3

was the impurity of oxygen in the N2/0.1% H2S gas. The α-Al2O3 scale with a thickness of about 5 µm,
the underlying Al5Fe2-rich alloy layer, and the substrate were shown in Figure 2b. The α-Al2O3 scale
was non-adherent due to the incorporation of sulfur and hydrogen from H2S and the mismatch of
thermal expansion coefficients between the scale and the alloy layer.
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pattern; (b) etched cross-sectional OM image.

Without aluminum hot-dipping, the carbon steel was corroded seriously, as shown in Figure 3.
The corrosion condition selected for the uncoated steel was the same as described in Figure 2 (i.e.,
600 ˝C for 50 h) in order to find the effect of hot-dip aluminizing. The scale formed on the uncoated
steel was ~165–200 µm thick (Figure 3a), and consisted of FeS (Figure 3b). The scale was fragile
and easily detached from the matrix owing to the incorporation of sulfur and hydrogen from H2S.
Moreover, excessively large growth stress had arisen due to the formation of a thick scale, and the
thermal stresses generated during corrosion and the subsequent cooling stage. Since FeS has a defect
structure of Fe1´xS (x = 0–0.2), it grows rapidly through the outward diffusion of Fe2+ ions, leaving
Kirkendall voids behind [1]. Hence, numerous voids formed at the bottom of the FeS scale, which
could act as stress concentration sites to facilitate the scale spallation (Figure 3a).
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Figure 3. Uncoated steel after corrosion in N2/0.1% H2S at 600 ˝C for 50 h: (a) SEM cross-sectional
image; (b) XRD pattern.

Figure 4 shows SEM/EDS/XRD results of the Al hot-dipped carbon steel after corrosion at 800 ˝C
for 100 h. In Figure 4a, the α-Al2O3 scale was about 5 µm thick, non-adherent, and partially broken
owing to the excessive stress accumulated in the scale as well as the hydrogen and sulfur released from
the H2S gas. According to the SEM-EDS analysis, the composition of spot 1 shown in Figure 4b was
38.9% Al-58.1% O-2.8% S-0.2% Fe in wt. %, which indicated that α-Al2O3 was incorporated with some
sulfur and iron. Such was also observed at the spot 2 shown in Figure 4b. Sulfur and iron ions that
were doped in the highly stoichiometric α-Al2O3 may constitute additional energy levels localized
in the forbidden energy band, which would beneficially increase the defect mobility in α-Al2O3 and
thereby enhance the formation of α-Al2O3. Sulfur was present only at spot 1 (2.8 wt. %) and spot 2
(1.6 wt. %). However, oxygen was present all over spots 1–25, with its concentration (wt. %) gradually
decreased from 58.1% O at spot 1 to 0.6% O at spot 25. This suggested that oxygen diffused inwardly
faster and more in-depth than sulfur. Nevertheless, the thin α-Al2O3 scale effectively protected the
steel, suppressing the formation of the non-protective FeS or less protective Al2S3 scale at the coating
surface. In Figure 4a, spots 1–15 were not able to be etched due to the dissolution of oxygen and
sulfur to a certain amount, while spots 15–25 were able to be etched, which revealed coarse, fully
grown substrate grains. Hence, the boundary between the retained coating and the substrate may be
designated as spot 15. Numerous voids formed at spots 12–16, and furthermore, at spots 2–4 due to
the interdiffusion between the coating and the substrate. The amount of void formation increased with
an increase in the corrosion temperature and time. A few cracks formed due to thermal expansion
mismatch between coating and the steel substrate [6]. Because of the counter-diffusion of Al and Fe,
the characteristic finger- or tongue-like morphology as shown in Figure 1a was no longer observable
in Figure 4a. In Figure 4c, the strongest peaks were in the order of Al13Fe4 and AlFe3, indicating that
the upper part of the retained coating (viz around spot 3 in Figure 4a) consisted of Al13Fe4 as the major
phase and AlFe3 as the minor phase. Additionally, faint peaks of α-Al2O3 and FeS were detected in
Figure 4c. A small amount of FeS was formed at the coating surface not only because of the α-Al2O3

scale spallation but also due to the preferential oxidation of Al at the outer surface. When the upper
part of the coating was ground off to reveal the underlying phases, Al13Fe4 became the major phase
(Figure 4d). The EDS concentration profile also corresponded to the Al13Fe4 phase around the ground
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off area (viz spots 19 and 20). The alloying elements such as Mn and Si tended to be present more
around spots 21–25, apparently owing to the inward transportation of Al that expelled Mn and Si.
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Figure 4. Al-hot dipped steel after corrosion in N2/0.1% H2S at 800 ˝C for 100 h: (a) etched
cross-sectional SEM image; (b) concentration profiles of Al, Fe, Mn, Si, S and O; (c) XRD pattern
taken from the air-side; (d) XRD pattern after grinding off the upper part of the coating.

Figure 5 shows the microhardness profile of the Al hot-dipped carbon steel. Before heating, the
microhardness (Hv) was about 65 for point 1 (viz Al topcoat), 859 for point 2 (viz Al3Fe), 1020 for
points 3–5 (viz Al5Fe2 in the alloy layer), and 223 for points 6–10 (viz α-Fe substrate). Such hardness
increment due to hot-dipping can improve the wear resistance and beneficially enhance the service
life of the steel [6]. After heating at 800 ˝C for 100 h, the microhardness of points 1 and 2 increased
mainly due to oxidation or the incorporation of oxygen in the coating, whereas that of points 3–6
decreased mainly due to the counter-diffusion of Al and Fe, which changed the brittle Al5Fe2-rich
alloy layer to the ductile (AlFe or Al13Fe4)-rich alloy layer or another ductile Al-dissolved layer.
Ductile AlFe and Al13Fe4 may be used as structural components because of their good oxidation- and
corrosion-resistance, and high specific strength [5]. The microhardness of the substrate did not change
noticeably before and after heating.
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Figure 5. Microhardness variation along the depth of the Al hot-dipped carbon steel before and after
heating at 800 ˝C for 100 h in N2/0.1% H2S gas.
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Figure 6 shows the Ellingham diagram (data from [10]). The oxides were more stable than the
corresponding sulfides, whereas Al was more active than Fe. Hence, the most stable α-Al2O3 formed
preferentially upon exposure of the Al hot-dipped steel to N2/0.1% H2S mixed gas, and suppressed
the corrosion significantly. By contrast, the uncoated steel degraded rapidly not by oxidation but by
sulfidation. Upon exposure of the uncoated steel to N2/0.1% H2S mixed gas, FeO and FeS would form
competitively. Since FeS is much more non-stoichiometric than FeO, FeS overgrows FeO and covers
the whole surface as the corrosion proceeds. The fast growth rate of FeS, incorporation of hydrogen
and sulfur, void formation, and excessive stress that generated owing to the compositional difference
in the scale resulted in the cracking and detachment of the FeS scale, allowing the direct contact of
N2/0.1% H2S gas with the uncoated steel. This further accelerated the corrosion of the uncoated steel.

Metals 2016, 6, 2 6 of 7 

Figure 6 shows the Ellingham diagram (data from [10]). The oxides were more stable than the 

corresponding sulfides, whereas Al was more active than Fe. Hence, the most stable α-Al2O3 

formed preferentially upon exposure of the Al hot-dipped steel to N2/0.1% H2S mixed gas, and 

suppressed the corrosion significantly. By contrast, the uncoated steel degraded rapidly not by 

oxidation but by sulfidation. Upon exposure of the uncoated steel to N2/0.1% H2S mixed gas, FeO 

and FeS would form competitively. Since FeS is much more non-stoichiometric than FeO, FeS 

overgrows FeO and covers the whole surface as the corrosion proceeds. The fast growth rate of FeS, 

incorporation of hydrogen and sulfur, void formation, and excessive stress that generated owing to 

the compositional difference in the scale resulted in the cracking and detachment of the FeS scale, 

allowing the direct contact of N2/0.1% H2S gas with the uncoated steel. This further accelerated the 

corrosion of the uncoated steel.  

 

Figure 6. Ellingham diagram of oxides and sulfides that can form on the Al hot-dipped steel. 

4. Conclusions  

The carbon steel was hot-dipped in a molten Al bath, and corroded in N2/0.1%H2S mixed gas at 

600–800 °C for up to 100 h. The Al hot-dipping was found to be a good surface modification 

technique for the employed steel. The coating consisted primarily of the Al topcoat and an Al-Fe 

alloy layer firmly adhered on the steel substrate. The Al topcoat partially oxidized to the thin and 

non-adherent α-Al2O3 scale from the surface. This effectively protected the carbon steel substrate. 

The formation of the α-Al2O3 layer was highly preferred, because alumina grows quite slowly due 

to its high stoichiometry. Heating during the corrosion accompanied the counter-diffusion of Al 

and Fe. This made the finger- or tongue-like morphology at the (Al-Fe alloy layer)/steel interface 

diffuse and dull, converted the Al-Fe intermetallic phases, changed the microhardness, and formed 

Kirkendall voids and cracks in the coating. In the case of uncoated carbon steel, thick, fragile, non-

adherent FeS scales formed on the surface because hydrogen dissolved in the scales and non-

protective sulfide scales formed.  

Acknowledgments : This work was supported by the Korea Institute of Energy Technology Evaluation and 

Planning (KETEP) grant (No. 20143030050070) funded by the Korea government Ministry of Trade, Industry 

and Energy. 

Author Contributions: Muhammad Ali Abro performed the experimental work, and drafted the paper. Dong 

Bok Lee supervised the experimental work, microstructural analyses, and finalized the paper.  

Conflicts of Interest: The authors declare no conflict of interest.  

Figure 6. Ellingham diagram of oxides and sulfides that can form on the Al hot-dipped steel.

4. Conclusions

The carbon steel was hot-dipped in a molten Al bath, and corroded in N2/0.1% H2S mixed gas at
600–800 ˝C for up to 100 h. The Al hot-dipping was found to be a good surface modification technique
for the employed steel. The coating consisted primarily of the Al topcoat and an Al-Fe alloy layer firmly
adhered on the steel substrate. The Al topcoat partially oxidized to the thin and non-adherent α-Al2O3

scale from the surface. This effectively protected the carbon steel substrate. The formation of the
α-Al2O3 layer was highly preferred, because alumina grows quite slowly due to its high stoichiometry.
Heating during the corrosion accompanied the counter-diffusion of Al and Fe. This made the finger-
or tongue-like morphology at the (Al-Fe alloy layer)/steel interface diffuse and dull, converted the
Al-Fe intermetallic phases, changed the microhardness, and formed Kirkendall voids and cracks in
the coating. In the case of uncoated carbon steel, thick, fragile, non-adherent FeS scales formed on the
surface because hydrogen dissolved in the scales and non-protective sulfide scales formed.
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