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Abstract: Characterizing material dynamics in non-equilibrium states is a current challenge in
material and physical sciences. Combining laser and X-ray pulse sources enables the material
dynamics in non-equilibrium conditions to be directly monitored. In this article, we review our
nanosecond time-resolved X-ray diffraction studies with 100-ps X-ray pulses from synchrotron
radiation concerning the dynamics of structural phase transitions in non-equilibrium high-pressure
conditions induced by laser shock compression. The time evolution of structural deformation of
single crystals, polycrystals, and glass materials was investigated. In a single crystal of cadmium
sulfide, the expected phase transition was not induced within 10 ns at a peak pressure of 3.92 GPa,
and an over-compressed structure was formed. In a polycrystalline sample of Y2O3 stabilized
tetragonal zirconia, reversible phase transitions between tetragonal and monoclinic phases occur
within 20 ns under laser-induced compression and release processes at a peak pressure of 9.8 GPa.
In polycrystalline bismuth, a sudden transition from Bi-I to Bi-V phase occurs within approximately
5 ns at 11 GPa, and sequential V–III–II–I phase transitions occur within 30 ns during the pressure
release process. In fused silica shocked at 3.5 GPa, an intermediate-range structural change in the
nonlinear elastic region was observed.

Keywords: structural dynamics; shock compression; time-resolved X-ray diffraction;
synchrotron radiation

1. Introduction

All natural phenomena in physical, chemical, and biological systems change with time and
occur away from equilibrium. Characterizing and controlling systems far from equilibrium is now
recognized as a great challenge in science and engineering [1]. However, the majority of materials
science is devoted to characterizing states and functions at equilibrium. Shock compression is one
of the techniques to generate non-equilibrium high-pressure states. A sudden increase of pressure
induces phase transitions of materials, which may be the way to study the dynamics in non-equilibrium
states. Traditional techniques have limitations in investigating phase transitions that are irreversible or
associated with negligible volume change from the step feature in Hugoniot curves or particle velocity
profiles [2]. Then, the transient non-equilibrium structures cannot be estimated without the aid of static
compression results. The duration of shock compression is short, and time-resolved structural detection
is required to investigate the dynamics of phase transitions under shock compression. Combining
laser and short X-ray pulses enables the transient structures of non-equilibrium states under shock
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compression to be monitored [3–13]. Most studies are limited to X-ray diffraction at one moment
during shock compression with a single-shot measurement [6,9–11]. To elucidate the dynamics, time
evolution of the structural change needs to be monitored. In the last decade, time evolution in the
nanosecond time region has been studied at the Photon Factory Advanced Ring (PF-AR), which is
a unique facility with a single-bunch operation. It is important to review the nanosecond dynamics
under shock compression performed at the PF-AR, because investigation of the phase transition
dynamics at much faster times (picoseconds or femtoseconds) using X-ray free electron lasers has
recently attracted considerable attention [13–15].

Here, we review time-resolved X-ray diffraction observations of the structural dynamics in
materials in non-equilibrium high-pressure states induced by shock compression at the PF-AR [16–19].
Synchrotron radiation was used as the source of the X-ray pulses. The structure of this paper is as
follows. In Section 2, we describe the laser shock compression method and the time-resolved X-ray
diffraction setup. In Section 3, we describe three examples of structural dynamics: a single crystal
(cadmium sulfide) [16], polycrystal (zirconia ceramics and bismuth) [18,19], and glass (silica glass)
samples [17].

2. Synchrotron Facility and Experimental Setup

The dynamics of structural phase transitions under high pressure were directly investigated by
nanosecond time-resolved X-ray diffraction using laser induced shock compression and 100-ps pulsed
X-rays from synchrotron radiation. In this section, we describe the laser shock compression technique,
the synchrotron radiation facility, and the time-resolved X-ray diffraction experimental setup.

2.1. Laser Shock Compression

Since the pioneering work of Bridgman [20,21], the properties of materials under high pressure
have been extensively investigated not only in materials science but also in geoscience [21,22] and
planetary science. There are two ways to generate high pressure: static compression and shock
compression. For static compression, a large press machine has long been used to study material
properties and synthesize new functional materials. In addition, diamond anvil cells have been
developed and extensively used for optical spectroscopy and structural analysis [23,24]. The main
benefits of static compression are the ability to maintain high-pressure conditions and the capability
of controlling the temperature. However, the pressure is limited by the fracture strength of the press
machine. In addition, a reference point obtained by dynamic-compression experiments is required
to determine the induced pressure. Conversely, in shock compression, the induced pressure is not
limited by the fracture strength of the materials, and the pressure is determined by measuring shock
and particle velocities with conservation laws [2]. The materials are compressed to a high-pressure
state in a very short time (e.g., nanosecond time scale) by shock compression. The induced state is a
non-equilibrium state that reverts to the equilibrium state with time. The dynamics of materials in
non-equilibrium high-pressure states can be monitored using appropriate time-resolved measurements.

A conventional technique to generate a shock wave is hypervelocity impact of the target materials
with a projectile, which is accelerated using a light-gas gun [25–28]. It is very difficult to synchronize
firing gunpowder and triggering electric devices with high time accuracy (e.g., within nanoseconds).
In recent times, a high-power laser pulse technique has evolved to induce shock compression via laser
ablation, which is called laser-shock compression. Using this technique, it is very easy to synchronize
the electronic measurement devices and timing of the shock compression with very high accuracy
(nanoseconds) [5,29–33]. In addition, ultrahigh pressures above 1 TPa can be achieved using an intense
laser pulse [34–39].

There are two main target geometries for laser-shock compression. One is a direct-irradiation
target, which consists of a sample and an ablator (usually aluminum foil). When the laser pulse
irradiates the ablator surface, laser ablation occurs. A shock wave induced by reaction to the laser
ablation propagates into the sample. The peak pressure of this process can be estimated by the



Metals 2016, 6, 17 3 of 16

equation P « 8.6ˆ 1011pI{1014q
2{3
λ´2{3, where P is the pressure (Pa), I is the laser power density

(W¨ cm´2), and λ is the wavelength (µm) [40]. This direct laser-shock compression is frequently used
for very high-power laser irradiation (higher than TW/cm2). The other target is a plasma-confined
target, which has a sandwich structure consisting of the sample, an ablation foil, and a cover layer,
which is transparent at the laser wavelength. The laser pulse penetrates the cover layer and induces
ablation at the ablator surface, and the ablation plume is confined between the sample and the
cover layer. For the cover layer, glass and polymer foils are usually used. In this case, the induced
pressure and the shock duration are enhanced. The peak pressure can be estimated with the equation
P « 3.16ˆ 102

a

α{p2α` 3q
?

IZ, where P is the pressure (Pa), I is the laser power density (W¨ cm´2),
Z is the shock impedance (g¨ cm´2¨ s´1), and α is a constant [41]. Using the plasma-confined target,
much higher pressures than the direct-irradiation target can be generated with the same laser power
density. However, there is a limit for the applied power density because of the ablation threshold of
the cover layer. The time evolution of the induced pressure can be obtained by measuring the shock
and particle velocities [2].

2.2. Time-Resolved X-ray Diffraction Setup

We developed a single-shot time-resolved X-ray diffraction and scattering measurement system
based on the storage-ring synchrotron X-ray source at the NW14A beamline of the Photon Factory
Advanced Ring (PF-AR) in Tsukuba, Japan [42]. The PF-AR operates in a single-bunch mode at 6.5 GeV
electron energy and supplies high-intensity hard X-ray pulses at a repetition rate of 794 kHz. The
complete experimental setup of the single-shot time-resolved X-ray measurement system is shown in
Figure 1. The pump source for shock wave generation was a Q-switched yttrium aluminum garnet
(YAG) laser (Powerlite 8000, Continuum Inc., San Jose, CA, USA). The wavelength, pulse width,
and energy were 1.064 µm, 8 ns (full width of half maximum and Gaussian shape), and ~1 J/pulse,
respectively. The peak energy and pulse width of the probe X-ray pulse were 15.6 keV and 100 ps,
respectively. The energy band width of the X-ray can be changed with the sample condition. We
will describe the energy-band width of the X-ray source in more detail later. The frequency of the
X-ray pulse train was divided by an X-ray pulse selector (XPS) from 794 kHz–946 Hz. Then, the single
X-ray pulse was picked up by the high-speed solenoid X-ray shutter (XRS1, Uniblitz Shutter System,
Rochester, NY, USA). The pump laser was synchronized with the frequency of the divided X-ray
pulse at 9.46 Hz using a PF master clock of 508 MHz. The 946 Hz X-ray was reduced to 9.46 Hz by a
frequency divider [16]. The single laser pulse synchronized with the X-ray pulse was also selected
using a solenoid laser shutter. The delay time between the X-ray and laser pulses (∆t) was controlled
by a delay generator (DG645, Stanford Research System Inc., Sunnyvale, CA, USA). The timing jitter in
this measurement system is about 1 ns. The X-ray diffraction and scattering patterns were recorded on
a two-dimensional (2D) charge-coupled device (CCD) detector (MarCCD 165, Rayonix, Evanston, IL,
USA) with a diameter of 165 mm. The same CCD detector was used for all of the experiments, and the
single-shot images were obtained without accumulation.

The pump-laser and probe X-ray were focused to 0.45 ˆ 0.45 mm2 or 0.45 ˆ 0.25 mm2 on the
ablator surface. The pump-laser was irradiated at about 15˝–20˝ normal to the sample. We carefully
aligned both the X-ray and laser beams as follows. First, we checked the X-ray beam position at the
sample position using the pinhole scan technique, in which we checked the beam center and beam
width by measuring the X-ray intensity through the pinhole by scanning the pinhole position. The
pinhole position was also monitored by using a microscope, which was fixed at a certain position. We
then placed a fluorescent plate at the sample position. The laser beam was focused on the plate and the
fluorescence from the focused spot was monitored by the microscope. The single laser pulse destroyed
and removed the sample in the X-ray path. We changed the sample after taking a single scattering
image of the shocked sample at each delay time.
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Figure 1. Schematic diagram of the single-shot time-resolved X-ray diffraction and 

scattering system at beamline NW14A of the PF-AR. The energy bandwidth of the X-ray is 

changed by the X-ray multilayer optics with the depth graded Ru/C from the default X-ray 

spectrum to ΔE/E = 4.4%–4.6%. The pump-laser for shock-wave generation and the X-ray 

pulse selector and shutter are synchronized with the RF master oscillator. The insert figures 

show the default X-ray spectrum from the U20 and the Gaussian-shaped and narrow 

energy bandwidth of the X-ray spectrum using the X-ray multilayer optics, which is 

modified from Figure 3 in [43]. 

The energy bandwidth of the probe X-ray was adjusted by the multilayer optics downstream of 

XPS. The default X-ray energy bandwidth that is suitable for the single-shot Laue diffraction 

measurement is ΔE/E = 15% with a broad asymmetric energy spectrum from an undulator with a 

period length of 20 mm (U20) [42]. The photon flux was 109 photons/pulse. However, the broad X-ray 

energy bandwidth is not suitable for time-resolved X-ray diffraction and scattering measurements of 

laser-induced shocked polycrystalline and amorphous materials. Therefore, we changed the X-ray 

energy bandwidth to the sample configuration. A depth-graded Ru/C layer on monocrystalline Si 

provided a Gaussian-shaped ΔE/E = 4.4%–4.6% X-ray energy bandwidth from the default undulator 

X-ray spectrum [43]. This photon flux was 3 × 108 photons/pulse. We can use the discretional energy 

bandwidth in the X-ray for the spectrum without reducing the photon flux per pulse. 
  

Figure 1. Schematic diagram of the single-shot time-resolved X-ray diffraction and scattering system at
beamline NW14A of the PF-AR. The energy bandwidth of the X-ray is changed by the X-ray multilayer
optics with the depth graded Ru/C from the default X-ray spectrum to ∆E/E = 4.4%–4.6%. The
pump-laser for shock-wave generation and the X-ray pulse selector and shutter are synchronized with
the RF master oscillator. The insert figures show the default X-ray spectrum from the U20 and the
Gaussian-shaped and narrow energy bandwidth of the X-ray spectrum using the X-ray multilayer
optics, which is modified from Figure 3 in [43].

The energy bandwidth of the probe X-ray was adjusted by the multilayer optics downstream
of XPS. The default X-ray energy bandwidth that is suitable for the single-shot Laue diffraction
measurement is ∆E/E = 15% with a broad asymmetric energy spectrum from an undulator with a
period length of 20 mm (U20) [42]. The photon flux was 109 photons/pulse. However, the broad X-ray
energy bandwidth is not suitable for time-resolved X-ray diffraction and scattering measurements of
laser-induced shocked polycrystalline and amorphous materials. Therefore, we changed the X-ray
energy bandwidth to the sample configuration. A depth-graded Ru/C layer on monocrystalline Si
provided a Gaussian-shaped ∆E/E = 4.4%–4.6% X-ray energy bandwidth from the default undulator
X-ray spectrum [43]. This photon flux was 3 ˆ 108 photons/pulse. We can use the discretional energy
bandwidth in the X-ray for the spectrum without reducing the photon flux per pulse.
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3. Structural Dynamics

3.1. Over-Compressed State in a Single Crystal of Cadmium Sulfide

The shock-induced phase transitions of cadmium sulfide (CdS) have been studied by
time-resolved spectroscopy using a light gas gun [44,45]. The wurtzite-rocksalt phase transition
has been reported to occur at 2.92 and 3.25 GPa for a-axis and c-axis compression, respectively [46,47].
The dynamics of the structural phase transition of CdS under shock compression has attracted
much attention because an intermediate phase with a face-centered tetragonal structure has been
proposed [44]. Using nanosecond time-resolved Laue diffraction and laser shock compression, the
structural dynamics of CdS under shock compression at a peak pressure of 3.92 GPa were monitored.

The target assembly had a plasma-confined geometry consisting of three layers: a PET film
(25 µm thick), an Al ablator (50 nm thick), and a single crystal of CdS (50 µm thick) [16]. The CdS
crystal had a (001) orientation. Laue diffraction was performed with a white X-ray pulse with a
peak energy of 16 KeV and an energy width (∆E/E) of 15%. The photon flux of the X rays was
109 phonons/pulse. The 10 ns laser pulse with a wavelength of 1064 nm and energy of 860 mJ was
focused on a 0.4 ˆ 0.4 mm2 spot on the sample. The spot size of the X-ray pulse was 0.49 ˆ 0.24 mm2,
and then a small part of the non-laser-irradiated sample was also probed.

Laue diffraction images under laser-shock compression for typical time delays (0, 6, 12, and 22 ns)
are shown in Figure 2. The delay between the laser and X-ray pulses was determined at the sample
position with their half maximum intensities. We monitored the timing of the laser and X-ray pulses
for each shot using photodiodes set in the optical path. The relative delay when the pulse reached the
monitor and the sample position was calibrated. Before laser irradiation, there are diffraction spots
with hexagonal symmetry corresponding to the wurtzite structure. Under shock compression, the
Laue images retain this hexagonal feature and all of the peaks move to the higher angle side of 2θ
and then back to their original positions, which suggest that the laser-induced shock compression is
parallel to the c-axis direction. The changes of the positions of the 201 and 302 Bragg peaks with time
are shown in Figure 3.
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Figure 3. Positions of the 201and 302 Bragg peaks at ∆t = 0, 3, 6, 9, 12, 15, 17, and 22 ns [16]. Reproduced
with permission from [Applied Physics Letters]. Copyright [2007], AIP Publishing LLC.

The 201 peak intensity decreased after laser irradiation. A higher angle shifted peak appeared
and its intensity increased until ∆t = 15 ns. For ∆t > 17 ns, the new peak shifted to a lower angle.
This feature can be explained by laser ablation generating a shock wave, which propagates inside the
sample with a shock speed. At a certain time delay, shock-compressed and uncompressed (pristine
sample) regions exist inside the sample, and the X-ray diffraction pattern then consists of both the
original peak and the higher angle shifted peak from the compressed region. As the delay increases,
the shocked volume increases and the intensity of the higher angle shifted peak increases. When the
shock front reaches the rear side of the sample, a release wave and shock-wave reflection account for
the decreased shock pressure. The peak position then returns to the original position after 22 ns. The
shock speed was estimated to be 4.2 ˘ 0.5 km/s from the time evolution of the higher angle shifted
peak. This value is in good agreement with the previously reported elastic velocity [47]. The maximum
compression was estimated to be 4.4% of the cell volume from the 201 peak shift [48]. The shock
pressure was estimated to be 3.92 GPa from volume compression, which is higher than the phase
transition pressure (3.25 GPa) for the wurtzite-rocksalt phase transition by c-axis compression.

Although the shock pressure is higher than the phase transition pressure, the phase transition did
not occur within 15 ns under shock compression. This indicates that the shock-induced structural phase
transition does not instantaneously occur and requires an incubation time for a single-crystal sample.
From another point of view, the over-compressed structure, which is not realized in equilibrium
conditions, is generated within nanoseconds in a non-equilibrium high-pressure state.

3.2. Reversible Phase Transition in Zirconia Ceramics

Y2O3 (3 mol %) stabilized tetragonal zirconia polycrystalline (3Y-TZP) ceramics are widely
used engineering ceramics because of their high strength and toughness [49]. Although the phase
diagram of pure zirconia is well established, the phase stability of 3Y-TZP under high pressure is
controversial [50–52]. The tetragonal structure transforms to a disordered structure or an orthorhombic
II phase via a monoclinic phase under static compression. Tetragonal zirconia directly transforms
to the orthorhombic II phase during shock compression or a quenchable monoclinic phase during
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the shock release process. The transformation path between the tetragonal and monoclinic phases
is not well established. The transient structure under shock compression can only be assessed by
time-resolved X-ray diffraction.

The target assembly had a plasma-confined geometry consisting of three layers: a plastic film
(25 µm thick), an Al ablation film (1 µm thick), and the 3Y-TZP sample (50 µm thick) [18]. The
3Y-TZP was a polycrystalline sample obtained from Tosoh Co. (Tokyo, Japan). The X-ray pulse
used in these experiments had a peak energy of 15.6 KeV, a bandwidth of 4.4%, and a flux of
3 ˆ 108 photons/pulse. The 10 ns laser pulse with a wavelength of 1064 nm and energy of 700 mJ
was focused on a 0.4 ˆ 0.4 mm2 spot on the sample. The peak pressure in the sample was estimated
to be 9.8 GPa.

Figure 4 shows a typical example of the Debye-Scherrer pattern (Figure 4a) and the rocking curves
obtained by integrating the Debye-Scherrer ring of 3Y-TZP before laser irradiation (Figure 4b), which
clearly shows that the pristine sample had a tetragonal structure. The error of the diffraction intensity
was estimated to be approximately 5% from the fluctuation of several signals.
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Figure 4. X-ray diffraction of the pristine sample of 3Y-TZP. (a) Debye-Scherrer ring 

detected by a CCD camera. The black square is the shadow of the laser beam block.  

(b) X-ray diffraction intensity profile obtained from the Debye-Scherrer ring. The stick 

diagram shows the peak positions of the tetragonal phase [18]. Reproduced with permission 

from [Journal of Applied Physics]. Copyright [2012], AIP Publishing LLC. 

Nanosecond time-resolved X-ray diffraction experiments were performed using the pump-probe 

protocol. X-ray diffraction was performed before and after laser irradiation, and each rocking curve was 

Figure 4. X-ray diffraction of the pristine sample of 3Y-TZP. (a) Debye-Scherrer ring detected by a CCD
camera. The black square is the shadow of the laser beam block. (b) X-ray diffraction intensity profile
obtained from the Debye-Scherrer ring. The stick diagram shows the peak positions of the tetragonal
phase [18]. Reproduced with permission from [Journal of Applied Physics]. Copyright [2012], AIP
Publishing LLC.

Nanosecond time-resolved X-ray diffraction experiments were performed using the pump-probe
protocol. X-ray diffraction was performed before and after laser irradiation, and each rocking curve was
normalized by its total intensity from 2θ = 0–60˝. The change is obtained from the differential signals
obtained by subtracting the rocking curve obtained after laser irradiation from that before irradiation.

Figure 5 shows the change of the differential signals of the X-ray diffraction intensity profile after
laser irradiation for ∆t = 5–1005 ns. For ∆t < 25 ns, diffraction peaks appear at 11˝, 13˝, and 16˝, which
correspond to the 110, 1´11, and 111 peaks of the monoclinic phase, respectively. The peak intensity
increased with increasing delay for ∆t < 15 ns and then decreased for ∆t > 15 ns. The intensity of the
110 peak of the tetragonal phase increases with increasing delay. In this time range, both the tetragonal
and monoclinic phases coexist under shock compression.
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3Y-TZP with delay time. The dashed lines represent the 110, 1–11 and 111 peak position of the
monoclinic phase [18]. Reproduced with permission from [Journal of Applied Physics]. Copyright
[2012], AIP Publishing LLC.

For ∆t > 55 ns, the differential signal corresponding to the 110 peak of the tetragonal phase at
~15˝ is positive and negative at lower and higher angles, respectively. This means that the peak shifted
to lower angle, indicating volume expansion induced by pressure release. The results clearly indicate
that laser-shocked 3Y-TZP ceramics undergo a reversible tetragonal-monoclinic phase transition in
a nanosecond time regime under shock compression and release processes, although an irreversible
transition has been suggested by previous shock–recovery investigations.

3.3. Phase Transition Dynamics in Polycrystalline Bismuth

Bismuth has one of the most complicated phase diagrams, and its phase transition point is
used as a pressure standard for static high-pressure experiments [53–56]. The kinetic process of
the Bi-I to Bi-II transition has been extensively investigated, although it has only recently been
semi-qualitatively understood through a ramp compression technique. However, information
about the structural dynamics of bismuth under shock compression is quite limited. The sequence
of shock-induced polymorphous transformations beyond the Bi-I to Bi-II transition has not been
systematically identified. Furthermore, the dynamics during the shock release process have been
proven to be almost unobtainable, owing to the complexity arising from the quasi-elastic release effect
and the release-induced multiple phase transition. Here, we investigated the dynamics of the structural
phase transition of bismuth under shock compression of approximately 11 GPa, which is higher than
the reported phase transition pressure of 7.7 GPa for the B-V phase [55].
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The plasma confined target consisted of a backup plastic film (25 µm thick), an Al foil (3 µm thick),
and the sample. The sample was a 20 µm thick foil of polycrystalline bismuth (99.97% pure) obtained
from Goodfellow Cambridge Limited (Huntingdon, UK) [19]. A laser pulse with energy of 1.0 J and
pulse width of 8 ns was focused on the target with a spot diameter of 0.48 mm. The peak pressure was
estimated to be 11 GPa using the Fabbro-Devaux model [41]. The X-ray pulse had energy of 15.6 KeV
and a band width of 1.4%. X-ray diffraction showed a Debye-Scherrer ring pattern in a characteristic
form of the polycrystal. The X-ray diffraction intensity profile was obtained by azimuthally averaging
the Debye-Scherrer diffraction patterns. The X-ray diffraction intensity profile from the pristine sample
(at a delay of 0 ns in Figure 6) is in the Bi-I (R´3m) phase. The most intense peak at 14˝ is the 110 line
of the Bi-I phase.
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Figure 6. Time evolution of X-ray diffraction intensity profile along of laser-shocked bismuth at
∆t = 0, 4, 14, 22, and 30 ns [19]. Reproduced with permission from [Applied Physics Letters]. Copyright
[2013], AIP Publishing LLC.

To systematically investigate the structural dynamics after laser irradiation, a series of pump-probe
measurements were performed for ´2 ď ∆t ď 36 ns. Selected signals at ∆t = 0, 4, 14, 20, and 30 ns are
shown in Figure 6, and are compared with the calculated diffraction-peak positions of the Bi-I to B-V
phases. The new peaks correspond to the Bi-V phase (Im´3m) at 4 ns, the Bi-III phase at ∆t = 14 ns,
and the Bi-II phase at ∆t = 20 ns. At ∆t = 30 ns, the shocked sample transformed back to the Bi-I phase.
Transient structural information at each delay was extracted by comparing the experimental diffraction
profile with the calculated diffraction peaks. The time evolution of the structure is schematically
summarized in Figure 7 with a pressure profile estimated using the Fabbro-Devaux model [41] and a
Gaussian laser profile. It shows that the Bi-I phase transforms to the Bi-V phase within approximately
5 ns during compression and then sequentially transforms to Bi-III, Bi-II, and Bi-I within 30 ns during
the release process.
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The observed transformation from Bi-I to Bi-V appears to be a direct transformation. There are two
possibilities. One is that the time the sample spends as the Bi-II and Bi-III phases during compression
is too short for to it to be resolved with the current experimental conditions. The other arises from
the reconstructive character of the Bi-I to Bi-II transition, which requires an incubation time of tens of
nanoseconds. Thus, the Bi-I phase would be over-shocked to the Bi-V phase, although the displacive
transformation path between the two phases is still unknown.

Recently, the shock-compression and pressure-release processes of bismuth at shock pressures
up to 14 GPa have been investigated using femtoseocond X-ray diffraction with a X-ray free electron
laser [13]. The Bi-V phase under compression was also observed. In the pressure-release process from
the Bi-V phase, melting was observed within 3 ns. Time-resolved X-ray diffraction is thus an excellent
way to determine the nature and time scale of phase transitions induced by shock compression.

3.4. Intermediate Structural Deformation in Shock-Compressed Silica Glass

The response of silica glass to shock compression has been investigated for many years. The
behavior of the intermediate- and short-range structures in shock-compressed silica glass is important
to understand the shock fracture process. Below 10 GPa, silica glass densification mainly occurs for
changes in the intermediate-range structure, as indicated by the first sharp diffraction peak (FSDP) at
1.55 Å´1 with a Fourier component period of approximately 4 Å [57]. A nonlinear elastic response
below 9 GPa has been observed in many types of silicate glass by free surface velocity measurement.
The shock wave front in the elastic shock pressure region produces a non-discontinuous ramp wave
front [58,59]. However, the shocked structure of silica glass has not been observed because the X-ray
scattering signal using one X-ray pulse is very week. We used a ∆E/E = 4.6% energy bandwidth
of the probe X-ray pulse with a peak energy of 15.6 KeV. We investigated the dynamics of the
intermediate-range structure in silica glass under elastic shock-wave loading of around 4 GPa by
time-resolved X-ray scattering measurements.

We fabricated the sample assembly with a plasma confined geometry, as shown in Figure 8a. The
sample consisted of silica glass, aluminum film, and poly(ethylene terephthalate) (PET) film to confine
the plasma [17]. The sample size was 5ˆ 5ˆ70 µm3 and the thicknesses of aluminum and the PET film
were 18 and 25 µm, respectively. The laser ablation was generated at the aluminum-PET film interface,
and the shock wave propagated into the aluminum and silica glass. At ∆t = 0 ns, the laser intensity at
the aluminum surface was 50%. We constructed a one-dimensional radial scattering curve for each
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delay time by integrated the 2D X-ray scattering pattern. Figure 8b shows the X-ray scattering patterns
as a function of Q, where Q = (4π/λ)sinθ, before laser irradiation and at ∆t = 10 ns with the X-ray
scattering silica glass and aluminum film peaks labeled. We estimated the shock pressure of silica
glass by the impedance matching method using the shift of the 111 aluminum diffraction peak and
the compressive data of silica glass in the nonlinear elastic shock region [60,61]. The mean maximum
shock pressure in silica glass was estimated to be 3.5 GPa by the impedance matching method.
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laser irradiation (dashed line) and at Δt = 10 ns (solid line). The FSDP of silica glass and  

X-ray diffraction peaks of aluminum 111, 200, 220, 311, and 222 of the face-centered 

Figure 8. (a) Schematic drawing of the plasma confined target of silica glass and a typical X-ray
scattering pattern using a single X-ray pulse. Aluminum was an ablator and pressure marker to
estimate the shock pressure of silica glass. (b) X-ray scattering patterns before laser irradiation (dashed
line) and at ∆t = 10 ns (solid line). The FSDP of silica glass and X-ray diffraction peaks of aluminum 111,
200, 220, 311, and 222 of the face-centered cubic structure [17] are indicated in the figure. Reproduced
with permission from [Applied Physics Letters]. Copyright [2012], AIP Publishing LLC.

Figure 9 shows differential scattering curves for each delay time, with the reference curve before
laser irradiation subtracted from the curve for each delay time. After laser ablation, the shock wave
generated at the aluminum-PET film interface propagated into the aluminum film. The maximum 111
and 200 peak shifts of aluminum are at ∆t « 0 ns, and the shock wave entered the silica glass through
the aluminum-silica glass interface. The FSDP shifts to the high Q side. The intermediate-range
structure changed with shock wave loading and the pressure release process. At ∆t « 10 ns, the
shock wave reached and reflected at the free-surface of silica glass. For ∆t > 13 ns, the shock pressure
gradually released. These shifts and intensity changes were also seen in hydrostatic compressed
silica glass using a synchrotron X-ray source. The intermediate range structure, such as the Si–O–Si
bond angle, only changed under shock wave loading in the nonlinear elastic shock region. This
time-resolved X-ray scattering method using a short X-ray pulse is able to reveal amorphous structure
dynamics under laser-induced shock wave loading.
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Figure 9. Difference X-ray scattering intensity ∆I as a function of Q at different delay times. The
reference curve before laser irradiation was subtracted for each delay time. The gray area is the FSDP
of silica glass, which is associated with the intermediate-range structure of glass. The shock wave
generated on the aluminum surface occurred at ∆t « ´5 ns, and propagated into the silica glass at
∆t « 0 ns. The shock pressure was released to the ambient pressure at ∆t « 30 ns [17]. Reproduced
with permission from [Applied Physics Letters]. Copyright [2012], AIP Publishing LLC.

4. Conclusions

Using 100-ps X-ray pulses of synchrotron radiation at the PF-AR (NW-14A beamline) with the
laser-shock compression technique, the dynamics of the structural changes of solid materials under
non-equilibrium high-pressure conditions were investigated with picosecond time-resolved X-ray
diffraction. The present technique can monitor the dynamics of monocrystalline, polycrystalline and
glass samples. In a single crystal of CdS, we found that the wurtzite-rocksalt phase transition requires
an incubation time of greater than 10 ns, and the over-compressed structure forms before the transition
at 3.92 GPa. In a polycrystalline sample of 3Y-TPZ ceramic, the reversible phase transition between
tetragonal and monoclinic phases occurs within 20 ns under laser-induced compression and release
processes at a peak pressure of 9.8 GPa. In polycrystalline bismuth, a sudden transition from the
Bi-I to the Bi-V phase occurs within ~5 ns during the compression process at 11 GPa, and sequential
V–III–II–I transitions occurs within 30 ns in the pressure release process. In fused silica shocked at
3.5 GPa, an intermediate-order structural change in the nonlinear elastic region was observed. The
phase transitions were observed in polycrystalline samples but not in a single crystal sample within
several tens of nanoseconds, which indicates that a large crystal sample requires longer shock duration
for the phase transition to occur.

The sequential observation using time-resolved X-ray diffraction is a very powerful technique
for monitoring the structural change in many types of materials (from glass to single crystals) under
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non-equilibrium high-pressure conditions. Further experiments at much higher pressures, which
can be generated with the high-power laser system, are required to study the dynamics of phase
transitions in metals and minerals in connection with geoscience and planetary science. The dynamics
at much shorter time scale (<picoseconds) will be also studied by using time-resolved X-ray diffraction
with high-power laser facility and much shorter and strong pulses from XFEL [13–15] and small-size
crystals such as nanocrystals.
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