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The ten articles [1–10] included in this Special Issue on “Liquid Metals” do not intend to 

comprehensively cover this extensive field, but, rather, to highlight recent discoveries that have greatly 

broadened the scope of technological applications of these materials. Improvements in understanding 

the physics of liquid metals are, to a large extent, due to the powerful theoretical tools in the hands of 

scientists, either semi-empirical [1,5,6] or ab initio (molecular dynamics, see [7]). Surface tension and 

wetting at metal/ceramic interfaces is an everlasting field of fundamental research with important 

technological implications. The review of [2] is broad enough, as the work carried out at Grenoble 

covers almost all interesting matters in the field. Some issues of interest in geophysics and astrophysics 

are discussed in [3]. The recently discovered liquid–liquid transition in several metals is dealt with  

in [4]. The fifth contribution [5] discusses the role of icosahedral superclusters in crystallization. In [6], 

thermodynamic calculations are carried out to identify the regions of the ternary phase diagram of  

Al-Cu-Y, where the formation of amorphous alloys is most probable. Experimental data and ab initio 

calculations are presented in [7] to show that an optimal microstructure is obtained if Mg is added to 

the Al-Si melt before than the modifier AlP alloy. Shock-induced melting of metals by means of laser 

driven compression is discussed in [8]. With respect to recent discoveries, one of the most outstanding 

developments is that of gallium alloys that are liquid at room temperature [9], and that, due to the 

oxide layer that readily cover their surface, maintain some “stiffness”. This has opened the possibility 

of 3D printing with liquid metals. The last article in this Special Issue [10] describes nano-liquid 

metals, a suspension of liquid metal and its alloy containing nanometer-sized particles. A  

room-temperature nano-liquid metal and its alloys were first introduced in the area of cooling high 

heat flux devices, which now is a commercial reality. However, their applications are not only in chip 
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cooling, and can also be extended to waste heat recovery, kinetic energy harvesting, thermal interface 

material, etc. This is mainly due to properties such as low melting point, high thermal and electrical 

conductivity, as well as other additional physical or chemical properties. These articles are 

summarized in more detail hereafter.  

After having pointed out that, contrary to the gaseous and solid states, developing simple models of 

liquid metals that can lead to semi- or even quantitative predictions, involve serious difficulties not yet 

satisfactorily overcome, Wang [1] starts describing his proposal. The author shows that the energy sate 

of liquids may be approximated reasonably well by the energy and volume of a vacancy. Specifically, 

the idea is to approximate all forces exerted on each atom of the liquid using the energy needed to 

produce a vacancy. The author illustrates the adequacy of his simple model, calculating a variety of 

magnitudes and comparing his results with available experimental data. In particular, he presents data 

for the latent heat of melting for Si, Ge, Bi, Sb, In, Ar, Kr, and Xe, the volume changes on melting for 

Si, Ge, Bi, Sb, Pu, Ce, La, Tl, Eu, Yb, and Er, vacancy formation energy for around thirty metals, and 

the temperature coefficient of the surface tension for fifteen metals. It is worth noting that some of the 

metals chosen by the author to check the performance of his model are far “simple”. As an outstanding 

closure to his review, the author briefly comments on a universal melting diagram, showing three  

non-equilibrium states: a crystal supersaturated with vacancies, the undercooled liquid, and the 

amorphous solid. The diagram (normalized temperature T/Tm versus vacancy concentration Cv) shows 

a solid-liquid critical point (T*/Tm, Cv
*) below which only the amorphous solid can exist. Checking the 

validity and usefulness of this melting diagram either experimentally or by means of the power  

ab initio theoretical tools now available, will be worthwhile. 

Materials processing techniques that make use of liquid metals, such as infiltration or brazing, 

require a deep knowledge on the basic properties of the metal and of the interface generated between 

the metal and other present phases, generally solid and of a ceramic or metallic nature. In the review 

by Professor Eustathopoulos [2], several examples have been given showing how simple wetting 

experiments can provide very useful information on the basic mechanisms involved in materials 

processing by infiltration or in joining similar or dissimilar materials by brazing alloys. In this paper, 

the author offers a critical overview on the kinetics of the spreading of liquid metals on solid surfaces, 

considering both possible cases: non-reactive wetting and reactive wetting. Current existing models 

aiming to explain the kinetics of wetting in reactive systems are discussed based on the most recent 

findings. The author points out that a general description of reactive wetting, taking into account both 

the localized and delocalized reaction, is still lacking. As for the experimental methods used in 

wettability studies, great improvements are expected to be made in the near future, including the 

development of new devices where sessile drop experiments can be coupled in the same chamber with 

high temperature surface analysis techniques. 

Understanding liquid metals is not only important for the manufacturing industry but also for other 

fields such as geophysics or astrophysics. Indeed, a deep knowledge of the liquid structure and 

properties at very high pressures is crucial for the development of physically based models of 

planetary cores. And such models can be very complex since they can involve, for example, the 

generation of magnetic fields due to the convection flows of liquid metals. In particular, the study of 

turbulent convection in liquid metals is getting increasing relevance in the field of Geophysics. This is 

the topic of the article by Riveiro et al. [3]. In this article the authors present experiments at a 
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laboratory scale to benchmark complex hydrodynamics codes with magnetic fields. Experiments 

presented here are done in liquid gallium. Such experiments together with numerical models provide 

parameters that can be used in larger scale simulation tools. 

Despite the large number of studies on liquids, new phenomena still arise that remain almost 

unexplored. Zu et al. [4] propose the possibility of a liquid–liquid transition for certain materials. 

Phase diagrams of ordinary alloys do not show any line above liquidus. However, here, the author 

shows evidence of a transition induced by temperature in several metals within the liquid state. This 

transition occurs at ordinary pressures, but at temperatures well-above the melting temperature. Novel 

experiments are devised to show this transition, such as internal friction, firstly applied for liquids by 

the author. Moreover, those solids resulting from the liquid after the transition have characteristics that 

can differ from those obtained from solidification of the liquid before the transition. 

Recent experiments have detected the presence of icosahedral superclusters in undercooled liquids. 

These superclusters survive above melting temperature Tm as their surface atoms have the same fusion 

heat as their core atoms, and are melted by liquid homogeneous and heterogeneous nucleation in their 

core, depending on superheating time and temperature. They act as heterogeneous growth nuclei of the 

crystallized phase at a temperature Tc < Tm, contributing to the reduction of the critical barrier that 

becomes smaller than that of crystals with the same number of atoms n. As Tournier [5] discusses in 

his review, after weak superheating, the most stable superclusters with n = 13, 55, 147, 309, and 561 

survive or melt and determine Tc during undercooling, depending on n and sample volume. The 

experimental nucleation temperatures Tc of 32 liquid elements and the supercluster melting 

temperatures are predicted with sample volumes varying by 18 orders of magnitude. In his analysis, 

Tournier utilizes the classical Gibbs free energy change, adding an enthalpy saving related to the 

Laplace pressure change derived from supercluster formation, which he quantifies for n = 13 and 55, 

and shows to be proportional to the inverse of the supercluster radius for n > 55. The transformation of 

superclusters in crystals occurs for a radius between the critical radius for crystal growth and that for 

supercluster growth as the superclusters have a much lower density than crystals. The Gibbs free 

energy change from the liquid state to crystal becomes smaller than that of the superclusters just above 

its maximum at the crystal critical radius. 

A variety of families of liquid metallic alloys are being developed that, when solidified, form 

amorphous materials that are expected to give rise to revolutionary technologies [11]. Wang et al. [6] 

discuss, in their paper, the glass-forming ability in the ternary Al-Cu-Y system. In particular, they 

identify the regions of the phase diagram where glasses are formed by means of thermodynamic 

calculations based on Miedema’s model and Alonso’s method. They succeed in locating a hexagonal 

region within the ternary phase diagram where metallic glass formation is favored energetically. In 

addition, they concluded Al72Cu10Y18 to be the optimal composition for glass formation. Available 

experiments seem to support their predictions. They also claim that the semi-empirical methods they have 

used might be greatly useful to find regions of phase diagrams of multicomponent alloy systems where 

glass formation is most probable. 

Al-Si and Al-Mg-Si alloys are two of the most important families of aluminum alloys, both offering 

a wide variety of technological applications. In particular, Al-Si alloys are most popular in automotive 

applications. Additionally, Mg is added to improve mechanical properties through formation of finely 

dispersed coherent Mg2Si precipitates. When the Si content is high enough, and depending on 
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processing conditions, large primary Si crystals and/or acicular Al-Si eutectic can me formed. Both are 

highly detrimental as far as final properties of the alloy are concerned. In order to modify this 

microstructure, several elements and/or alloys are added to the melt that during the solidification 

process modify the acicular eutectic to a less detrimental globular eutectic acting also as a  

high-efficiency heterogeneous nucleation substrate for the primary Si so reducing their size.  

Zhu et al. [7] consider the performance of AlP alloy as a modifier addressing the important 

technological problem of whether the order in which Mg and AlP are added to the melt matters. 

Extensive experimental studies and numerical calculations by means of ab initio molecular dynamics 

simulations allow the authors to conclude: (a) when pure Mg is added to the Al-Si melt before the Al-P 

alloy, Mg-Si clusters form that coexist with P-Al clusters. During solidification, the P-Al clusters 

precipitate as AlP leading to the formation of small primary Si particles; (b) instead, when the AlP 

alloy is added first, P-Al clusters evolve into P-Mg clusters on Mg addition. In the solidification 

process, P precipitates as Mg3P2, rather than AlP. Thus, nucleation of primary Si particles is 

diminished due to the absence of AlP. 

Perhaps the reason for the lack of understanding of some aspects of liquids is that, experimentally, 

the study of liquids poses some significant challenges, particularly when considering high pressures. 

De Ressegier and co-authors show [8] how lasers, together with different characterization techniques, 

such as optical shadowgraphs and scanning electron micrographs, can provide information about liquid 

transitions induced by high pressures and strain rates. The authors show clear evidence for this 

transition for the case of aluminum, as well as tin. Iron, however, does not show a complete melt, 

although there seems to be a layer of melted material below the surface. These results have important 

consequences for understanding fundamental issues, such as the Earth’s core. 

Room-temperature liquid-metal droplets are important for many applications: energy harvesting, 

self-healing composites, soft electrodes, micro-pumps, interconnects, liquid marbles, switches and 

relays, etc. An eutectic gallium and indium alloy (EGaIn, 75% gallium and 25% indium) has been used 

in some of these applications by enabling that a thin oxide skin forms spontaneously on the metal at 

ambient conditions, which allows EGaIn to form stable shapes that would otherwise be prohibited by 

surface tension. The paper [9] demonstrates a molding technique for producing spheres composed of 

eutectic gallium-indium (EGaIn) with diameters ranging from hundreds of microns to a couple of mm. 

The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs 

defined by replica molding. Subsequent exposure to acid removes the oxide and causes the metal to 

bead up into a sphere, with a size dictated by the volume of the reservoirs. EGaIn spheres can 

subsequently be embedded or encased in polymer matrices using this technique. This technique can be 

used for producing many spheres in parallel, with any desired two-dimensional spatial arrangement. 

Liquids containing particles of nm size (nano-fluids) have attracted considerable attention with the 

goal of obtaining excellent thermal conductors [10]. Nano-fluids are interesting due to the fact that the 

poor thermal conductivity of a fluid (or liquid) medium can be supplemented by the high thermal 

conductivity of the suspended nanoparticles. In paper [10], the authors review of the preparation, 

physicochemical properties, and the suppression of chemical reactivity to water and oxygen of 

LSnanop (Liquid Sodium containing nanoparticles of titanium). The presence of small amounts of Ti 

nanoparticles (2% as the atomic % of Ti, 6.92 × 10−7 as the number fraction of Ti nanoparticles, and 

0.0088 as their volume fraction) makes physicochemical properties change considerably, compared to 
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liquid Na. The ideas behind LSnanop can be extended to produce many other interesting and valuable 

materials, such as ferromagnetic liquid sodium, by properly selecting the convenient nanoparticles to 

be dispersed in the liquid metal. 

Despite the rich variety of issues discussed in the ten papers published in this Special Issue, there is 

still a wealth of issues that deserve at least a brief comment in this Introduction. The study of liquid 

metals under microgravity conditions is throwing light on several key aspects of solidification [12,13]. 

The use of liquid-metal solutions to produce greener crystalline silicon is expected to provide a 

practical way to produce this old but still-essential material [14]. An issue not yet fully understood is 

the positive temperature coefficient of surface tension that some liquid metals (more specifically, 

alloys) show [15,16]. Significant progress in a classical issue of enormous relevance, i.e., the structure 

of liquid metals, is being attained due to the combined use of synchrotron X-ray diffraction and 

molecular dynamics simulations. For instance, it has been found that in some liquid metals, the inter-

atomic distance contracts on heating, while at the same time coordination decreases [17]. All this 

modestly illustrates the strong breath of research that still exists in the field of liquid metals. 
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