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Abstract: Metallic glasses are known for their outstanding mechanical strength. However, 

the microscopic mechanism of failure in metallic glasses is not well-understood. In this 

article we discuss elastic, anelastic and plastic behaviors of metallic glasses from the 

atomistic point of view, based upon recent results by simulations and experiments. Strong 

structural disorder affects all properties of metallic glasses, but the effects are more 

profound and intricate for the mechanical properties. In particular we suggest that 

mechanical failure is an intrinsic behavior of metallic glasses, a consequence of  

stress-induced glass transition, unlike crystalline solids which fail through the motion of 

extrinsic lattice defects such as dislocations.  
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1. Introduction 

Metallic glasses show high mechanical strength with the yield strain as high as 2%, comparable to 

those of the strongest crystalline materials [1–4]. For this exceptional strength bulk metallic glasses are 

widely known as promising new structural materials, although there are serious problems related to the 

absence of work-hardening and limited ductility. However, the basic understanding of the structure and 

OPEN ACCESS



Metals 2013, 3 78 

 

 

mechanical properties of metallic glasses is very much underdeveloped. In general the science of 

glasses and liquids is much less advanced than the science of crystalline materials. In fact 

understanding the nature of glass and the glass transition is considered to be one of the greatest 

challenges in condensed matter theory [5]. Our theoretical tools are sufficiently developed to elucidate 

the properties of gases, in which atoms interact only weakly, and crystals, in which atoms form a 

periodic structure. However, glasses and liquids are very different from either of them. They are 

condensed matter with high physical density comparable to those in crystals. Atoms are strongly 

correlated in position and momentum, and attempts to provide theoretical explanation of the structure 

and dynamics of glasses and liquids face a formidable barrier of the many-body problem. An effective 

approach to overcome this barrier to some extent is to use numerical simulation, which became 

feasible by the recent rapid progress in computing power. However, numerical approaches tend to 

leave us in a deluge of numbers without giving us key concepts to unfold the mystery. 

In this article we discuss the nature and mechanisms of elastic, anelastic and plastic deformation of 

bulk metallic glasses mainly from the atomistic point of view, covering simulation as well as 

diffraction experiments, but excluding macroscopic tensile or compression mechanical testing. The 

subjects treated here are not new problems. For elastic behavior the effect of structural disorder was 

first discussed in the seminal work by Weaire, et al. [6]. The basic concepts necessary to understand 

the formation of shear bands in plastic deformation were developed in the equally seminal work by 

Spaepen [7]. But the development of bulk metallic glasses [8,9] and recent advances in computing and 

diffraction methods are making it possible to achieve deeper understanding of the subject down to the 

atomic level. We focus on several topics which are still controversial, such as the role and definition of 

structural defects, and propose some solutions. 

2. Elastic Properties 

2.1. Simulation of Elastic Deformation  

2.1.1. Effect of Heterogeneity in Local Elasticity 

The elasticity theory used in mechanical or civil engineering is the elasticity theory of a continuum 

body, developed before the existence of an atom was confirmed. For instance elastic deformation is 

defined by 

 1  r' r
 

(1) 

where r and r' are the positions before and after deformation, and   is the strain tensor and follows the 

Hook’s law. However, at the atomic level a solid is not a continuum body. As an approximation we 

may use the von Kármán model of spheres connected by springs [10]. Then Equation (1) could be 

extended to describe the deformation of the atomic system as 

 1  i ir' r (2) 

where the suffix i refers to each atom. However, the strain tensor   is uniform, or affine, only for 

homogeneous deformation of a Bravais lattice with only one atom in the unit cell. If the unit cell 
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contains more than one atom, even for macroscopically uniform strain the local strain is not 

necessarily the same for each non-equivalent atom,  

 1  ν,n ν,nr ' r (3) 

where the index ν refers to the non-equivalent lattice sites within the unit cell and n refers to the unit 

cell. Now a glass can be considered as a crystal with an infinitely large unit cell. Thus in a glass the 

strain tensor is different for each atom;  

 1 i i ir' r (4) 

Therefore we do not expect affine deformation in a glass at the atomic level, even though a metallic 

glass deforms just as a crystalline solid, following the Hook’s law at the macroscopic level.  

This point was recognized early in the simulation of deformation in metallic glasses by  

Weaire et al. [6] in which they pointed out that the atomic displacements, ∆i = ri' − ri, are not collinear 

to each other. They also related the non-collinear nature of displacements to the shear modulus 

softening in the amorphous state. If one compares the elastic moduli of a material in the crystalline 

state and in the amorphous state, the bulk modulus is comparable for the two states, but the shear 

modulus of the amorphous state is considerably (20%–30%) lower than that of the corresponding 

crystalline state [11]. This is because deformation in response to isostatic pressure is nearly affine, but 

in the case of shear stress deformation is highly non-affine [6]. Indeed the simulated stress-strain curve 

(Figure 1) shows that the apparent shear modulus is significantly smaller than that expected for  

affine deformation. 

Figure 1. Stress-strain curve of glassy iron by simulation for uniaxial tension.  

Compared to the curve expected for affine deformation the apparent shear modulus is  

significantly lower. 

 
A part of this softening originates from spatial variation in the elastic moduli. It is known that if the 

local shear elastic constant, G, has spatial variation, the total elastic response to the shear stress, τ is 

larger than expected from the average, 

ττ
ε s G G
 

 

(5) 
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where <τ> is the external shear stress. Therefore elastic heterogeneity results in softening. This result 

was first obtained half a century ago, in the seminal work by Z. Hashin and S. Shtrikman [12] who 

opened up a large field of composite mechanics. 

Indeed the atomic-level elastic moduli have a wide distribution. The atomic-level stresses and 

elastic moduli are defined as the local response of energy to affine deformation [10,13,14]. First, we 

express the total energy of the system as the sum of the atomic-level energies; 

i
i

E E (6) 

It is easy to do so for a pair-wise potential V(r); 

 i ij
j

E V r (7) 

where rij is the distance between i-th and j-th atoms. We then impose uniform affine deformation and 

expand the total energy in terms of the affine strain, εαβ, where α and β are Cartesian coordinates. The 

energy response defines the atomic level stress, σi
αβ, and the atomic level elastic modulus, Ci

αβγδ; 

αβ αβ αβγδ αβ γδ
0

1
Ω σ ε ε ε ...

2i i i
i

E E C     
 


 

(8) 

where Ωi is the atomic volume which was included for the dimensional reason [13,14]. Recently this 

was extended to ab initio calculations using the density functional theory (DFT) so that the stresses can 

be calculated from the first-principles [15]. It was found that the shear modulus, G, has a much wider 

distribution than the bulk modulus, B [14]. Thus it is immediately obvious that the softening due to 

distribution is more serious for G than for B. However, when an external stress σαβ is applied the local 

strain εi
γδ cannot be given simply by σi

αβ/Ci
αβγδ, because atoms are connected to each other and each 

atom cannot be displaced independently. In continuum mechanics this interdependence is expressed as 

the elastic compatibility condition. For this reason calculating the local strain in an inhomogeneous 

body is a very difficult theoretical problem. Analytically it is difficult to go beyond the variational 

calculation as was done first by Hashin and Shtrikman. Formally the Green’s function method by 

Kröner [16] is a more advanced approach, but it is very difficult to solve the actual problem with this 

technique. Instead numerical solution, including the finite element analysis, is usually sought in 

obtaining the answer. This elastic heterogeneity has been considered to be the reason for softening of 

shear modulus, G, by Weaire et al. [6], and in a number of simulation results [17,18].  

2.1.2. Local plastic deformation 

On the other hand Suzuki et al. [19] found that the nominally elastic deformation contains a 

significant component of anelastic, or local plastic, deformation in which the atomic structure is locally 

changed. Similar observations were made for the simulation of deformation of polymer chains [20]. 

The plastic deformation event is strongly localized, and consists of one atomic bond being broken, 

while a new bond in a perpendicular direction is formed in close vicinity, resulting in bond exchange, 

or reorientation. This is what happens during creep [21–23] or flow under high shear stress [24]. 

Interestingly the number of bond reorientation for a given strain is constant, making the deformation 

appearing as macroscopically elastic [19].  
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In order to evaluate the relative contributions from these two effects, elastic heterogeneity and local 

plasticity, we computed the apparent shear modulus of a model amorphous iron with the modified 

Johnson (mJ) potential [25] used in [19] as a function of the magnitude of the shear strain, εs. 

Softening due to elastic heterogeneity occurs no matter how small the strain is, so the stress is linear 

with strain for small strain. But local plastic deformation is like a transition in the double-well 

potential, and deformation occurs in a step-wise fashion. If macroscopic strain is increased linearly 

with time, the macroscopic stress is reduced every time local deformation occurs. The strain at which 

the first reduction happens, εred, depends on the sample size, and should be proportional to 1/N, where 

N is the number of atoms in the model. The magnitude of εred can be estimated as below. In [19] it was 

found that a single action of bond reorientation produces overall strain of ε1 = α/N, where α = 0.078  

(~1/NC, NC is the coordination number) and N is the number of atoms in the model system. So if εs is 

smaller than ε1 bond reorientation will not occur because of the model size effect; εred~ε1. Figure 2 

shows this effect for the system with N = 500 (ε1 = 1.6 × 10−4) at 100 K. The shear modulus calculated 

for affine deformation (Born modulus) is 69 GPa. The initial value of the macroscopic shear modulus, 

57 GPa, is reduced from the Born modulus due only to the softening by the inhomogeneous local shear 

modulus, amounting to 18% softening. When εs exceeds ε1, however, additional softening due to bond 

reorientation is activated, which further reduces the shear modulus to 49 GPa, representing another 

11% softening. Thus for the system with the mJ potential the two mechanisms of softening contribute 

by comparable amounts.  

Figure 2. Apparent shear modulus, G = τ/ε, normalized by the modulus for affine 

deformation, Gaffine, as a function of the shear strain, simulated for models with 500 atoms. 

Glassy Fe with the modified Johnson potential ( ), Lennard-Jones glass ( ), and glass 

with the Dzugutov potential ( ). 

 

Then, why some authors [6,17,18] do not observe the second, bond reorientational effect? To 

answer this question we repeated the same simulation for the Lennard-Jones (LJ) glass and the glass 

with the Dzugutov (Dz) potential [26]. As shown in Figure 2, we found that the Dz glass also shows 

stepwise softening similar to the mJ glass, with the second softening starting at an even higher level of 

strain (10−3). On the other hand the LJ glass shows almost continuous softening with a very small 

critical strain (εred ~ 2 × 10−5 << ε1). Thus in the LJ glass the two softening processes are not distinct 

and bond-cutting is not a discrete jump process, in agreement with other reports on this system [17,18]. 
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The three potentials used in the simulation are compared in Figure 3. Both the mJ and Dz potentials 

have either a maximum (Dz) or a region of strong negative second derivative (mJ and Dz) in the region 

between the first peak and the second peak of the pair-density function (PDF) which helps to separate 

the first and the second peaks. In contrast, the LJ potential extends to the second neighbor, and does 

not strongly drive separation of the first two PDF peaks. Consequently the atomic connectivity is  

well-defined for the mJ and Dz potentials, whereas it is less clearly defined for the LJ potential, 

because the transition from the first to the second neighbor is continuous for the LJ potential, resulting 

in a very small value of εred.  

Figure 3. The Lennard-Jones potential compared with the Modified Johnson potential for 

iron and the Dzugutov potential. 

 

It should be noted that in metals the interatomic potentials are dominated by the Friedel  

oscillation [27], and tend to have a maximum between the first and the second peaks of the PDF. Thus 

the mJ and Dz potentials are better suited for modeling metallic glasses. Also both LJ and Dz glasses 

show very strong softening, by more than 60% compared to the affine (Born) value, whereas 

experimentally the extent of softening is only 30%. Thus the mJ potential is the most realistic among 

the three even on this account alone.  

As shown above metallic glasses are inherently inhomogeneous at the atomic level when it comes to 

elastic deformation. The atomic-level elastic moduli have wide distributions reflecting significant 

distribution in local atomic environment. Surprisingly details of the interatomic potential influence the 

nature of deformation. The potentials which distinguish the first neighbors from the second neighbors, 

such as the mJ and Dz potentials, result in the intrinsic anelasticity even at small strains, whereas this 

effect is not clearly seen for the LJ potential.  

2.2. Diffraction Experiments 

2.2.1. Anisotropic PDF 

Elastic strains in crystalline solids can be readily observed through the shifts in the position of the 

Bragg peaks. In glasses as well strain can be related to the shifts in the structure function, S(Q),  

(Q = 4πsinθ/λ, θ is the diffraction angle and λ is the wavelength of the diffraction probe) determined by 

diffraction measurement, or the pair-density function (PDF),  



Metals 2013, 3 83 

 

 

     2 0
0

1
1 1 sin d

2π ρ
g r S Q Qr Q Q

r


    

 

(9) 

where ρ0 is the atomic density. Paulsen et al. [28] were the first to attempt such a measurement using 

X-ray diffraction, and quickly noted that the deformation is heterogeneous and the peaks in g(r) do not 

shift with the same ratio. Hufnagel et al. [29] followed this work with more accurate measurements. 

By examining the shifts in the peak position in S(Q) and the point of zero-crossing in the 

corresponding pair-distribution function (PDF), g(r), measured with Q either parallel or perpendicular 

to the direction of the applied stress, they concluded that the glasses are elastically inhomogeneous. In 

particular they found that the strains at short distances are smaller than those at large distances. Similar 

results were obtained by several groups [30–39], and it is clear that such inhomogeneous response is a 

common feature of elasticity in metallic glasses, distinct from those of crystalline solids. 

There is, however, a minor problem before we discuss the implications of these results. In all of 

these measurements, with the exception of [34,38], g(r) was obtained by the standard  

Fourier-transformation, Equation (9). But this equation applies only to an isotropic body [40]. For an 

anisotropic system we should use the anisotropic PDF method [21,41] based on the expansion by the 

spherical harmonics; 

       
, ,

,m m m m

m m

g g r Y S S Q Y
r Q

      
   

 r Q
r Q   

   

(10) 

where Yℓ
m(u) are the spherical harmonics. Anisotropic gℓ

m(r) and Sℓ
m(Q) are connected through 

      2
2 0

0

d
2π ρ

m mi
g r S Q J Qr Q Q


 



  
 

(11) 

where Jℓ(z) is the spherical Bessel function. For ℓ = 0 (the isotropic term) J0(z) = sinz/z, and we recover 

Equation (9). Elastic deformation induces mainly the ℓ = 2 term [21]. For ℓ = 2, 

   2
2 3 2 3

sin 3cos sin sin cos
3 3

z z z z z z
J z z

z z z z


     

 

(12) 

which is similar to J0(z) but is sufficiently different, as shown in Figure 4. This results in small but 

significant differences in the anisotropic PDF particularly at short distances [23,38]. 

Figure 4. Spherical Bessel function, Jℓ(z), for ℓ = 0 and 2. 
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For affine deformation it can be readily shown that  2
mg r  is proportional to the derivative of the 

isotropic term,  0
0d dg r r  [21]. For uniaxial compression or tension [42], 

       
1

2
0 0 0
2, , 2, , 0

2 1 ν1 d
ε ε

5 3 daff zz aff aff zz affg r g r r g r
r

     
   

(13) 

where ν is the Poisson’s ratio. Indeed the experimentally observed  0
2r g r  is close to the derivative 

as shown in Figure 5 [42], particularly at large distances, and the magnitude of the strain thus 

determined agrees with the macroscopic strain. However, there are small but significant deviations at 

short distances. The interpretation of these deviations is still an open question as discussed below. It 

should also be noted that in order to discuss such small deviations it becomes important to use the 

Bessel transformation, Equation (11), rather than the Fourier-transformation, Equation (9). 

Figure 5. Anisotropic pair-density function (PDF) of glassy Zr52.5Cu17.9Ni14.6Al10Ti5 under 

compressive stress of 1.2 GPa (red solid line) compared to the derivative of the isotropic 

PDF (dashed line) [42]. 

 

2.2.2. Interpretation of the Results 

A majority of researchers interpret these results in terms of distance-dependent strain [28–33,35–39] 

or chemical inhomogeneity [34]. The strain is small at short distances, and increases as r is increased. 

Indeed if we fit Equation (13) to the data by using an r-dependent strain, εzz,aff(r), the strain is smaller 

at r below 6 Å. Some argue that this r-dependent strain is an evidence of hard clusters interfaced by 

soft media, and elastic heterogeneity produces non-affine behavior [28,39]. However, there is a major 

jump in logic in this argument. If the local elastic modulus is heterogeneous local displacements will 

be heterogeneous as well, some large and some small, ending up with the average displacement not 

much different from what is expected for the average modulus. Explicit models or simulations are needed 

to link the observed r-dependent strain with the picture of hard clusters interfaced with soft media. 

Reference [39] goes further to argue that S(Q) is influenced by deformation only up to qc = 6 Å−1, 

and thus the core of the clusters are not deformed. The basis of their argument is their observation that 

the strain-induced anisotropy in S(Q), ∆S(Q), is zero beyond qc. But this observation differs from other 

studies, and is simply incorrect; the problem is poor statistics in the measurement. As we discussed 

above ∆S(Q) is nearly proportional to dS(Q)/dQ [21,42]. If we actually compare Q∆S(Q) with 
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QdS(Q)/dQ (Figure 6) they are nearly proportional to each other, and the cut-off of 6 Å−1 does not 

exist, in clear disagreement with the assertion in [39].  

Figure 6. Q  0
2S Q  (~∆S(Q)) compared to Q  0

0d dS Q Q . The measurement was made for 

Zr52.5Cu17.9Ni14.6Al10Ti5 glass under tension at 1.2 GPa. Note that they do not decay even 
beyond 6 Å−1, and Q  0

2S Q  is proportional to Q  0
0d dS Q Q  as expected.  

 

On the other hand the difference between the observed  0
2g r  and what is expected for affine 

deformation, Equation (13), is very similar to that for anelastic (creep) deformation discussed below. 

For this reason [42] assigns the shear softening to anelastic deformation. They found that the observed 

 0
2g r  can be fit nicely with 

       0 0 0
2, , 2, , 2,ε ε εtotal zz anel anel app zz anel affg r g r g r  

 

(14) 

where εzz,anel is the anelastic strain, εzz,aff = εapp − εzz,anel is the affine (elastic) strain, and  0
2,anelg r  is the 

anisotropic PDF for anelastic deformation shown below in Figure 7. The fraction of the affine strain to 

the total strain, z = εzz,aff/εapp, was found to be about 0.76, implying as much as 24% of the strain 

originates from the anelastic effect. As it turns out this fraction is exactly what has been assumed in the 

theory of glass transition [43] to be the fraction of the liquid-like atomic sites at the glass transition.  

Figure 7.  0
2g r  of glassy Zr52.5Cu17.9Ni14.6Al10Ti5 after creep deformation at 300 °C for 

30 min. under the stress of 1.2 GPa, compared to  0
0d dg r r  [42]. 
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3. Creep and Anelastic Deformation  

When a solid is heated to a temperature below the glass transition temperature and is subjected to a 

stress below the elastic limit, slow deformation (creep) is induced and the sample changes its shape. If 

the sample is later annealed without a stress the sample recovers a part of the deformation. So creep 

deformation is composed of recoverable anelastic deformation as well as unrecoverable plastic flow. 

Such a behavior is observed in many crystalline as well as glassy materials, including metallic  

glasses [3,44,45]. In the case of crystalline materials both anelasticity and flow are caused by lattice 

defects, dislocations and vacancies. Anelastic behavior is caused by localized defects in a double-well 

potential, whereas plastic flow is caused by unbound flow of defects. For glasses, however, the 

mechanism is not clear because defects cannot be easily identified. Because anelastic deformation is 

characterized by the memory effect, and the memory has to be stored somehow in the structure, the 

structure of a glass after anelastic deformation should be anisotropic.  

Indeed the structure after creep has the anisotropy mainly with the ℓ = 2 symmetry [21], and the 

next term with ℓ = 6 is much smaller [46]. The observed anisotropic PDF is again similar at large 

distances to the derivative of the isotropic term expected for affine deformation (Figure 7), and the 

strain determined by Equation (13) agrees with the macroscopic recoverable strain. However, at short 

distances there are very appreciable deviations. These deviations were explained in terms of the  

bond-orientational anisotropy [21–23]. Right after the stress is applied the solid has elastic 

deformation, and the anisotropic PDF resembles Equation (13). Then while the sample is held under 

stress at an elevated temperature, the structure tries to recover the isotropic state, by cutting bonds 

parallel to the uniaxial stress, and creating new bonds perpendicular to the stress, resulting in  

bond-exchange or bond reorientation (Figure 8). When the temperature is reduced and stress is 

removed, the sample ends up with more bonds in the perpendicular direction than in the parallel 

direction. Thus, 

     0 0 0
2 2, 2,aff obsg r g r g r  

 

(15) 

shown in Figure 9 (red line) represents the local structural rearrangement to induce bond-orientational 
anisotropy. Now in Figure 9 we also show  0

2g r  for elastic deformation (blue line). The two curves 

in Figure 9 are similar, suggesting that the apparent elastic deformation contains significant anelastic 

component [42]. However, there are some differences in detail, which deserve further studies. 

Figure 8. Formation of bond-orientational anisotropy under stress [21]. 
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Figure 9. Anisotropic PDF,      0 0 0
2 2, 2,aff obsg r g r g r   , reflecting structural  

re-arrangement, for anelastic deformation (red) and for elastic deformation (blue) [42]. 

 

Incidentally, microscopically the glass never recovers the same atomic arrangement after anelastic 

recovery. The glassy state is characterized by extremely high degree of structural degeneracy. Once the 

atomic structure is deformed it never comes back to the exactly same atomic connectivity network 

when the stress is removed. Thus strictly speaking there is no true anelasticity in glasses. This situation 

is the same as the case of apparently elastic deformation discussed above. In that sense every 

deformation in metallic glasses has a plastic component. However, when the plastically deformed 

region is localized and surrounded by the matrix which is only elastically deformed, the matrix applies 

back-stress to recover the original state. When the sample is heated without a stress the original state 

may be recovered. Thus operationally we can say that the system exhibits anelasticity.  

4. Plastic Deformation  

4.1. Macroscopic Behavior 

4.1.1. Shear Band Formation and Non-Linear Viscosity 

At room temperature metallic glasses fail by forming shear bands, where plastic strains are strongly 

localized. Failure behavior is controlled by nucleation of shear bands and interaction among multiple 

shear bands [2,3,7,47–49]. At higher temperatures, however, metallic glasses deform homogeneously 

through creep and fails after macroscopic necking. Such a behavior is common to all materials, as 

discussed by Ashby for crystalline materials [50] and by Spaepen for metallic glasses (Figure 10a [7] 

and shown by experimental data in Figure 10b [51]). The key quantity in an attempt to understand the 

behavior is the constitutive law for steady state flow; 

 σ, ,f T 
 

(16) 

where γ is the strain rate, σ is the applied stress, and ϕ is some structural parameter to be discussed 

below. In the liquid state above Tg the system shows the Newtonian behavior, in which γ is linearly 

dependent on σ; 
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(17) 

where G∞ is the instantaneous shear modulus and τM is the Maxwell relaxation time. Thus the flow is 

homogeneous. However, if the stress exponent, n = dlog γ/dσ, becomes large, any accidental stress 

concentration, for instance due to macroscopic extrinsic defects such as inclusion, will lead to locally 

accelerated flow, and deformation becomes inhomogeneous, usually resulting in formation of shear 

bands. So the non-linearity of the constitutive law for steady state flow, Equation (16), is the first 

requirement for inhomogeneous flow. 

Figure 10. (a) Schematic deformation map of a metallic glass by Spaepen [7]. τ is the 

shear stress, and μ is the shear modulus. (b) Experimental data for Pd80Si20 [51]. 

 
(a) (b) 

4.1.2. Size Effect and Extrinsic Defects 

The initial report that the transition from homogeneous to inhomogeneous flow depends on the 

sample size [52] caused much excitement, and was thought to have broken a new ground. However, it 

seems that experimental details, such as the surface condition and the tapered shape, both due to the 

focused-ion-beam (FIB) fabrication, adversely affected the result [53], and unfortunately this transition 

does not appear to be real.  

On the other hand the results by the nano-indentation measurements appear to be real, and relevant 

to the discussion on the mechanism of deformation. It was found that in the nano-indentation 

measurement the pop-in stress is much higher than the yield stress for macroscopic samples  

(Figure 11 [54]). The microscopic yield strain from the nano-indentation experiment is 8% to 9%, 

significantly larger than the yield strain by a macroscopic mechanical testing, which is about 2%. A 

similar effect was found for crystalline materials, and can be understood in terms of the effect of 

extrinsic defects, such as inclusions and voids [55]. When the size of the indentor is sufficiently small 
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it can avoid defects which could initiate shear bands, whereas if it is large enough it always hits a 

defect which initiates shear bands. It is clear that in macroscopic mechanical testing shear bands are 

initiated by extrinsic defects. As we discuss below for this reason the strength of a macroscopic sample 

is determined largely by the flow stress, not by the microscopic yield stress. 

Figure 11. (a) Maximum shear stress at first pop-in for Zr52.5Cu17.9Ni14.6Al10Ti5 as a 

function of indenter radius [54]. The shear modulus is 35 GPa, so the pop-in strain is about 

8% to 9%, whereas the macroscopic yield strain is 2%. (b) The pop-in stress against the 

indentor radius for crystalline Mo [55]. 

  
(a) (b) 

The same argument was advanced by Tian et al. [56]. By studying the elastic limit of sub-micron 

size metallic glass (Cu49Zr51) with a dog-bone shape prepared by FIB, they found that the elastic limit 

was about 4%, twice as much as that for bulk metallic glass (2%). They argue that the surface 

imperfections, such as oxide inclusions, initiate the shear bands, and thus the mechanical strength is 

controlled by the flow stress. In sub-micron samples, however, imperfections can be avoided, resulting 

in a higher elastic limit. This explains why metallic glasses all show more or less the same strength, 

2% in strain [4]. In crystalline materials strength is controlled by defects, and thus varies wildly from 

sample to sample. In metallic glasses strength is controlled by the flow stress, an intrinsic property. 

That is why all metallic glasses show similar elastic limit of 2%. 

4.1.3. Feedback Effect of Structural Parameter 

An equally important role is played by the structural parameter ϕ. In crystalline materials 

deformation leads to multiplication of dislocations which accelerates deformation, until dislocations 

start to become entangled resulting in work-hardening. Thus we may use the dislocation density as ϕ. 

In glasses, however, the nature of the structural parameter ϕ is not obvious, as discussed in detail later. 

Here, it is sufficient to note that the effective temperature, Teff, or the fictive temperature, Tf, is usually 

used to fulfill this role. The atomic structure of a crystal is independent of temperature, except for 
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thermal expansion. However, there are many evidences that suggest that the atomic structure of a 

liquid depends upon temperature. For instance if we define the effective activation energy for  

viscosity by 

   
 

d ln η η

d 1effE T k
T


 

(18) 

where η∞ is the viscosity extrapolated to T→∞, Eeff is constant at high temperatures, but quickly 

increases as T approaches the glass transition [57]. So Teff can be defined by Ea = Eeff(Teff), where Ea is 

the activation energy for viscosity, for a given structure. In glass science Teff is traditionally called the 

fictive temperature, Tf. Another way to define ϕ is to consider the inherent structure [58]. The inherent 

structure is the atomic structure obtained by equilibriating the system at temperature T and quenching 

it extremely fast, which is possible only with computer simulation. The energy of the inherent structure 

describes the structure at the temperature T from which the system was quenched [59]. When 

temperature is changed the structure, thus Teff, changes to a new equilibrium. Except at very high 

temperatures this change is slow, and is characterized by the structural relaxation time τα. 

Teff has a critical role in the stress-strain curve. To see this effect clearly we have to suppress 

formation of shear bands and study the stress-strain curve for homogeneous deformation. This can be 

done, in principle, with a very small sample, or more easily with computer simulation. In computer 

simulation the sample size is usually small, and by using specific boundary conditions deformation can 

be kept homogeneous. The system is deformed with a constant strain rate, not by a constant stress. In 

such a case, the yield stress, σY, the stress needed to start plastic deformation, is much higher than the 

flow stress, σf; the stress necessary to maintain the flow at low temperatures (Figure 12 [60]). This is 

because up to σY deformation is basically elastic, and the structure, defined by the topology of atomic 

connectivity, remains unchanged. This means that the effective temperature, Teff, remains unchanged 

up to yielding. But as soon as yielding starts the energy is transferred to the system through mechanical 

work, and Teff starts to rise. The rise in Teff results in the reduction in viscosity, and faster flow. If the 

local flow rate becomes higher than the externally imposed strain rate the stress is relaxed and goes 

down, until the steady state flow is achieved. In the particular case shown in Figure 12 σY is twice as 

much as σf.  

Figure 12. Simulated stress-strain curve of glassy Zr50Cu40Al10 at a low temperature, 

showing stress over-shoot for yielding before attaining the steady-state flow [60]. 
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However, experimentally observed stress-strain curves [2,3,47–49] show the stress overshoot which 

is much smaller than those in Figure 12. Whereas the simulation shown in Figure 12 was done for a 

relatively small system of a few nano-meters with homogeneous strain, the real materials form shear 

bands where strains are concentrated. This suggests that in macroscopic stress-strain measurements 

shear bands are initiated from some defects, such as inclusions, almost as soon as the stress level 

exceeds the flow stress, and it leads to a failure. That is why the flow stress, not the microscopic yield 

stress, determines the macroscopic yield stress. On the other hand as discussed above in  

nano-indentation experiments require a much higher level of stress to initiate the flow, equivalent to 

the microscopic yield stress, because a small indentor can hit the surface without a defect.  

4.1.4. Effect of Structural Relaxation 

Because a glass is obtained usually by cooling the liquid, the structure of the glass, which can be 

described by the fictive or effective temperature, Teff, depends on the temperature of the system when 

the structure froze, thus depends on cooling rate. The higher the cooling rate the higher the Teff is 

(Figure 13). Annealing afterward causes structural relaxation and Teff is reduced, which results in 

changes in many properties including mechanical properties [3,61]. Some properties, such as volume 

and brittleness, are irreversible if annealing is performed below Tg. However, they can be restored by 

annealing above Tg. Also during heavy mechanical deformation parts of the sample in or near the shear 

bands become liquid, so Teff is raised back above Tg, and the sample becomes “rejuvenated” [62]. On 

the other hand, other properties, such as magnetic transition temperature [63] and internal friction [64], 

can be reversibly changed even when annealing is performed below Tg. Some structural features, such 

as compositional short-range order, can be brought to equilibrium even below Tg [63]. Obviously Teff 

can be different for different properties.  

Figure 13. Temperature dependence of the volume of a liquid through the glass transition 

at Tg, for slow cooling (solid line) and fast cooling (dotted line). Teff is the effective (fictive) 

temperature for fast cooling. 

 

The volume is reduced by structural relaxation, and is usually explained by removal of excess  

free-volume which was quenched-in during fast cooling. However, the amount of reduction in volume 

is small, just a fraction of a percent [3,61], whereas the actual structural change observed by the 

change in the PDF is more extensive, and amounts to a few percent [65]. A better explanation is that as 

 

Tg    Teff              T
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Teff is reduced by relaxation the amplitude of fluctuation in local volume or density is reduced, and 

both free-volume (region of low density) as well as anti-free-volume (region of high density) are 

eliminated by annealing [66]. This reduces the peak-widths of the PDF. Consequently the change in 

the PDF is proportional to the second derivative of the PDF [67]. As we discuss below the free-volume 

model [68] was conceived for a hard-sphere systems, and do not apply very well for metallic systems. 

For metals elimination of free-volume reduces volume, but elimination of anti-free-volume increases 

volume. The total volume change is a consequence of partial cancellation of these two effects. For 

instance for Pt60Ni15P25 the total volume reduction when annealed at 15K below Tg is 0.57%. But the 

reduction due to free-volume is 2.05%, which is offset by the increase due to anti-free-volume by 

1.47% [69]. This explains why the actual changes in the local structure are much more significant than 

suggested by the total volume change.  

4.1.5. Ductility 

Most metallic glasses show no or limited ductility [3,4,11,47,48], particularly in tensile experiment, 

which represents a major drawback in application. A very interesting observation relates ductility to 

the Poisson’s ratio [70]. According to [70] ductility is determined solely by the Poisson’s ratio ν. If ν is 

greater than 0.31 the material is tough, whereas if ν is less than 0.31 it is brittle. The results are 

confirmed at least by one report [71]. Because low values of Poisson’s ratio is related to increased 

covalency this trend is reasonable. Indeed highly ductile glasses made of noble metals [72,73], rare 

earth [74], or Zirconium [75] show high values of Poisson’s ratio. However, the assertion that the 

Poisson’s ratio is the only relevant parameter and no other parameter has an effect is perplexing, and 

probably not entirely correct.  

Ductility is a complex property, and relates to the ability of the material to enumerate shear bands 

and absorb the energy of deformation, which goes back to the constitutive law, Equation (16). Because 

the parameters in Equation (16) depend on temperature, ductility also depends on the measurement 

temperature. Indeed as in crystalline materials the presence of the ductile-to-brittle transition (dbt) is 

reported [76]. It is possible that the critical value of the Poisson’s ratio depends upon temperature, 

most probably on T/Tg. This subject requires further research, in light of the importance of ductility for 

applications. On the other hand various attempts have been made to improve ductility primarily by 

mixing with soft and ductile crystalline materials [48,77,78].  

4.2. Computer Simulation 

4.2.1. Earlier Simulations 

The first realistic computer simulation of plastic deformation was done by Kobayashi et al. for a 

model of Cu57Zr43 composed of 1533 atoms [79]. They found that the yield strain was about 9%, 

similar to the pop-in strain for nano-indentation measurement shown in Figure 11. This high value of 

yield strain is partly because of the high strain rates of the simulation and a small sample size. They 

noted very inhomogeneous atomic displacement during the flow. Later simulations [80–82] confirmed 

these points. The size of the models in early simulations was of the order of 2–3 nm, comparable to the 

width of the shear bands, not large enough to simulate the formation of shear bands. As the computer 
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power was improved simulations with models of large sizes were carried out and showed how shear 

bands develop out of fluctuations in stress or stress concentration (Figure 14) [81,82]. A large number 

of papers using computer simulation focused on the atomistic mechanism of deformation, which will 

be addressed later. 

Figure 14. Simulation of deformation in Cu64Zr36 glass (288,000 atom model) at 300 K 

showing the formation of a shear band [82]. 

 

4.2.2. Equivalence of Stress and Temperature  

It is well-known that the applied stress can accelerate local atomic rearrangement leading to 

deformation. For instance in the Eyring’s rate theory [83], 
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(19) 

where Ω is the activation volume of the mobile defect and σ is the applied stress. Now, we can define 

viscosity by η = σ/γ. Then, 
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(20)

where    01 τ 2 exp aT E kT  . Thus viscosity decreases with stress, a phenomenon known as 

shear-thinning. In general applying the stress has a similar effect as increasing the temperature. In that 

sense stress and temperature are equivalent [84].  

Now for the steady-state flow it is informative to plot the equal-viscosity lines for the T-σ  

plane [60,85]. As shown in Figure 15a these lines are self-similar, and can be collapsed into a universal 

curve as in Figure 15b,  
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where T0(η) is the temperature where viscosity is η at σ = 0, and σ 0 is the stress where viscosity is η at 

T = 0. Interestingly this implies 

   
2σ

σ 0
2a a effE E V
G

 
 

(22)

rather than Equation (20). So the stress affects the activation energy not through the activation volume 

but through the elastic self-energy. This result is inconsistent with the idea of activation volume. 

Actually it is inconsistent with the idea that a well-defined defect creates viscoelastic flow.  

Figure 15. (a) The equal-viscosity lines for the T-σ plane simulated for Zr50Cu40Al10.  

(b) The scaled and collapsed equal-viscosity lines [60]. 
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More importantly, this result directly connects the glass transition and mechanical failure, and 

suggests that mechanical failure is caused by the stress-induced glass transition. Therefore it is an 

intrinsic property of a glass, not involving defects. It is well-known that crystals deform through the 

motion of defects, such as dislocations. Naturally there have been numerous attempts to define defects 

which are responsible for the mechanical failure of metallic glasses, such as the free-volume [7] and 

distributed free-volume [51,86], with the hope that manipulating these defects may lead to 

improvement of the properties, such as ductility. Unfortunately the results above show that the flow 

behavior of metallic glasses is intrinsic, and is not controlled by defects. 

Actually if defects are controlling failure, the fracture strength should vary depending on the 

preparation of the sample. That is exactly what is observed for crystalline materials where the yield 

stress can vary by more than two orders of magnitude, and various metallurgical processes were 

invented to strengthen the materials. In comparison the fracture strengths of metallic glasses are 

remarkably uniform, always around 2% in strain [4], and is controlled by the flow stress. This also 

supports the idea that the failure is an intrinsic process for metallic glasses. 

However, the defects are important in initiating failure through yielding as discussed above. Just 

before yielding, when the applied stress is already higher than the flow stress (see Figure 12), a surface 

defects, such as oxide inclusion, can create stress localization and nucleate a shear band. Thus, failure 

is initiated by microscopic, but not atomistic, defects. Ironically this results in the flow stress, an 

intrinsic property, controlling the strength. 
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4.2.3. Non-Linear Constitutive Law and Scaling Behavior  

The constitutive law of flow, Equation (16), is a strong function of temperature as shown in  

Figure 16a [60]. It is interesting that the log-log plot of stress-strain rate is linear, indicating a power 

law, at Tg. It is concave below Tg, with stress saturating at a constant value for slow strain rates, as 

expected for a solid. In the liquid state the plot is convex, and at high temperatures σ is proportional to 
 , a Newtonian liquid behavior. Because viscosity is given by η σ   , the result can be re-plotted as 

η against σ, as in Figure 16b. In high-temperature liquids η is only weakly dependent on σ, whereas it 

is very strongly dependent on σ in glasses, becoming almost vertical at low temperatures. 

Figure 16. (a) Flow stress σ, as a function of strain rate,  , simulated for Zr50Cu40Al10 at 

various temperatures [60]. Tg = 860 K for this system. (b) The same data plotted as 

viscosity, η, against σ. 
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Interestingly the η-σ data can be collapsed into a universal curves by scaling; 
α β

0 0

η η 1 , σ σ 1T T

T T

T T



   
 

(23)

with α = 1.23, β = 0.60, as plotted in Figure 17, resembling the critical behavior at the phase  

transition [60]. A similar behavior was found for a hard-sphere model, in this case using the particle 

density ϕ as the variable, instead of temperature [87]. Of course the glass transition is not a phase 

transition, because a glass is just a slow liquid. Also Tg depends on the time-scale of the measurement. 

However, the data in Figures 16 and 17 are all in the steady-state, not in the non-equilibrium state. So 

they are not affected by the time-scale problem. In addition the critical behavior in crystalline systems 

is observed only in close vicinity of the critical temperature, whereas this scaling shown in Figure 17 is 

observed over a surprisingly wide temperature range. In spite of these differences the similarity of the 

scaling behavior of a liquid near the glass transition to the critical behavior near the second-order 

transition is remarkable. It is not clear if it means that there is a hidden second-order transition behind 

the glass transition, as suggested by many [88]. But it appears to imply these two phenomena share the 

same physics somewhere very deep.  
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Figure 17. The scaling behavior of viscosity η, and flow stress σ, simulated for 

Zr50Cu40Al10 [60]. Tg = 860 K for this system. 

 

Now in the glassy state  does not depend strongly on   (Figure 16a), thus η is a very strong 

function of σ, as shown in Figure 16b. Because G∞ does not depend strongly on temperature τM (η/G∞) 

is also a strong function of σ, and diverges at small σ, which makes sense in the glassy state. τM 
becomes quickly reduced with increasing σ. Yielding occurs when 1 τM   . But τM is not necessarily 

the same as τα. Of interest here is the competition between the strain rate  , thus τM, and the structural 

relaxation rate τα. At low temperatures τα is longer than τM, so that the structure cannot follow the 

stress, and overshooting becomes necessary. At high temperatures τα is comparable to τM, so that the 

“structure” can follow the stress without overshooting. In fact the same happens if the temperature is 
kept constant and the strain rate is varied. Strain localization and stress overshoot happens when   is 

high enough. So the strain localization and the formation of shear band, even though it has a huge 

impact on the performance of a metallic glass as a structural material, is not an essential feature of 

deformation of metallic glasses. It simply depends on the experimental condition.  

The flow stress is a weak function of the strain rate (Figure 12a). But the strain rates achieved in 

computer simulation are extremely high in real units, so we need strong extrapolations. Even so, it 

appears that at a low rate the flow strain appears to extrapolate around 2%, close to the experimentally 

observed yield strain. This again confirms that in a macroscopic sample the yield stress is close to the 

flow stress, because the flow is always initiated by defects, and stress overshoot (Figure 12)  

never happens.  

5. Atomistic Mechanism of Deformation 

5.1. Theories of Mechanical Deformation 

A number of theories have been proposed to explain the deformation behavior of metallic glasses. 

For instance the most widely used theory is the free-volume theory of Spaepen [7], whereas the  

shear-transformation-zone (STZ) theory of Langer and Falk [89,90] is most detailed and 

mathematically advanced. They assume different microscopic mechanisms, free-volume and STZ, for 

deformation. However, both theories are actually very similar in the logical construct, and similar in 

underlying physics at a phenomenological level. These and all other theories propose a specific form 

of the constitutive law, Equation (16), and the definition of the structural parameter ϕ, based upon the 

specific model.  
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In the free-volume theory a strong case is made for expressing the effective temperature, Teff, in 

terms of the free-volume νf, by 

     v v αvf eff f g g eff gT T T T  
 

(24)

where α is excess thermal expansion (αliq − αglass, Figure 13) and νg is the volume per atom at Tg [68]. 

Here νf is determined from the macroscopic volume of the system, not the microscopic free-volume 

element which provides mobility. The ratio, νf/νg, is of the order of 10−2. So the ratio, ν*/νf, where ν* is 

the minimum free-volume to accept an atom (ν*~νg), is large, about 40. Diffusivity is given by 
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v f
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where ζ~1 [68]. Thus the free-volume theory nicely explains why a small change in νf gives rise to a 

large change in diffusivity. The change in νf due to the structural relaxation is less than one percent [3], 

but has profound effects on the properties.  

In the STZ theory Teff is defined by 
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v
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(26)

where n∞(χ) is the equilibrium STZ density, v0 is the atomic (molecular) volume, χ = kBTeff/eZ, and eZ is 

the STZ formation energy. Because increasing n(χ) results in the increase in volume through lattice 

anharmonicity, vf and n(χ) may be describing the same physical state of the system, in spite of the 

differences in the model. For instance free-volume could well be just a parameter to describe the STZ 

density, not necessarily the physical free-volume. It appears that the connection between  and the 

microscopic state of the system is a separate subject which needs more work through experiment and 

simulation. It is most likely that the relationship among different structural parameters depend also on 

details of the material. For instance the relevance of free-volume in the deformation mechanism 

depends upon the lattice anharmonicity of the interatomic potential as discussed below.  

In general the constitutive law may be written as 
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(27)

where 1/τ0 is the attempt frequency, γ0 is the strain unit which is of the order of unity, R± is the jump 

probability for forward (+) and backward (−) jump, and n is the density of defects at forward or 

backward position. In the free-volume theory [7], 

ζv* σΩ 2
exp , exp

v

m

f

G
n n R

kT


  

   
             

(28)

where Gm is the height of the potential barrier for motion. Thus,  
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(29)

For small σ Equation (29) becomes linear in , and the Newtonian behavior is recovered.  
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Now a non-linear behavior is caused by the feedback from strain to . In the free-volume theory the 

rate of increase for free-volume is given by 
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(30)

where S = 2G(1 + ν)/(1 −ν), and ν is the Poisson’s ratio. In the STZ theory [89,90] the feedback 

equation is 
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where   is the attempt frequency, and is given by 
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(32)

where ρ (z) is of the order of unity in the liquid state, and decreases quickly below Tg, and σ0 was 

found to be the yield stress at low temperatures. In either theory the constitutive law and the feedback 

equation have to be solved self-consistently to produce the answer. 

These theories have been successful in reproducing the deformation behavior. Figure 18 shows the 

stress-strain curve predicted by the shear-transformation-zone (STZ) theory [90], which nicely 

explains the stress overshoot and its temperature dependence. The key here is the competition between 
the strain rate  , and the structural relaxation rate, 1/τα., to change ϕ, in this case the STZ density n(χ). 

At low temperatures 1/τα is slower than  , so that ϕ cannot follow the stress, and overshooting occurs. 

After the yield stress is reached, however, n(χ) quickly increases and softening takes place. The  

steady-state flow is achieved with a newly stabilized effective temperature χ, which is much higher 
than the initial real temperature. At high temperatures 1/τα is faster than  , so that n(χ) can follow the 

stress without overshooting. In fact the same happens if the temperature is kept constant and the strain 
rate is varied. Strain localization and stress overshoot happens when   is high enough [90]. In this 

sense the strain localization and the formation of shear band depends on the experimental condition. 

Figure 18. Theoretical stress-strain curves by the shear-transformation-zone (STZ)  

theory [90]. At low temperatures and high strain rates stress overshooting occurs. 
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The mode-coupling theory (MCT) was formulated in order to explain the rapid rise in the relaxation 

time as the glass transition is approached from high temperatures [91]. But it can be extended to 

describe the mechanical response through the constitutive law, 

 σ 0
σ τ, dτv G 


  

 

(33)

where G(τ,  ) is the time-dependent transient dynamical shear modulus, and vσ is a coupling  

constant [91,92]. G(τ, ) is approximated by ψ2(t), where ψ(t) is the density correlation function, 

     
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q q
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(34)

where ρq(t) is the q component of the density function. As the value of q usually the position of the 

maximum in the structure function, S(Q), is used. The function ψ(t) can be calculated using the MCT. 

This extension allows the shear viscosity of a liquid to be calculated with the MCT [92,93].  

In the free-volume theory the value of vf is determined by experiment. Similarly S(Q) is usually 

imported from experimental results. In the STZ theory n(χ) is determined through fitting of the theory 

to experimental data on mechanical properties. In principle it is possible to compare them in the same 

sample. For instance the effective temperature can be determined for each value of other structural 

parameters, such as S(Q). The effective temperatures thus determined for the same sample may not be 

the same. It will be an interesting project of research.  

5.2. Atomistic Models of Mechanical Deformation 

5.2.1. Nature of “Structural Defects” in Glasses 

Crystalline solids mechanically fail through motion of lattice defects, such as dislocations at low 

temperatures and vacancies and grain boundaries at high temperatures. Naturally various defect models 

were proposed as the deformation mechanism in metallic glasses. Free-volume [7] and distributed  

free-volume [86] are the most widely used defect models. However, there are important distinctions 

between the defects in crystalline materials and “defects” in glasses. The crystalline lattice has a  

long-range order, and is fundamentally unyielding. In order to create a flow in a crystalline solid the 

topological long-range order has to be broken by defects. In terms of the topology of atomic 

connectivity the defect is clearly distinct from the lattice.  

A glass, on the other hand, is just an extremely slow liquid. The glass transition is not a phase 

transition, but merely a crossover point where the relaxation time of the system exceeds the 

experimental time-scale. Therefore flow can be induced simply by reducing the relaxation time by 

increasing the effective temperature. A liquid state is characterized by distributed local topology of 

atomic connectivity, such as the local coordination number, as discussed below. The distribution can 

be changed continuously, which corresponds to varying the effective temperature continuously. 

Because the local structure varies from an atom to another the local response to external stress is 

heterogeneous; some atoms are more easily moved than others. In that sense it is reasonable to call 

more mobile atoms as “defects”. However, these “defects” are not separated from “non-defects” in a 

clearly distinguishable way. We have to define some cut-off in the continuous distribution of some 
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structural parameter to define them. For instance in the free-volume model the minimum size of the 

space where an atom can move in, ν*, is the cut-off to define the free-volume [68]. In general we can 

think of a local effective temperature which corresponds to the specific local structure, and define the 

area with the local Teff higher than the cut-off value, Teff(defect), as defects. Defect is a useful concept 

even in glasses, but we have to be careful about the arbitrary nature of definition and judicious about 

the use of this concept. Below we review some of the most widely used concepts of defects, namely 

the free-volume and shear-transformation-zone, and introduce a more recent concept of defects based 

upon the atomic-level stresses. 

5.2.2. Free-Volume Mechanism 

Volume is one of the physical properties easier to measure, and is the most intuitive structural 

parameter to express the effective temperature. It has long been recognized that volume increases more 

rapidly with temperature in liquids compared to glasses (Figure 13), and the excess volume due to the 

extra thermal expansion, free-volume, in the liquid is directly related to diffusivity, through the works 

of Batschinski [94], Doolittle [95], and Williams, Landel and Ferry [96]. But the series of papers by 

Cohen and Turnbull [68,97,98] established this idea as the free-volume theory of diffusion in the liquid 

state. Free-volume is similar to vacancy in the lattice, and only when the local free-volume exceeds the 

critical value mentioned above, ν*, atom can move into the local free-volume.  

Spaepen [7] extended this idea to the description of plastic deformation, noting that any atomic 

transport, including shear deformation, requires local free-volume. Even though in a homogeneous 

system volume responds directly only to pressure and not to shear stress, in an inhomogeneous system 

volume can locally couple to the shear stress. However, the free-volume theory was developed for the 

hard-sphere systems, such as organic liquids. Metallic solids are not hard-sphere-like, because the 

interatomic potential for metals are dominated by the Friedel oscillation [27], and is thus more 

harmonic [99]. This point was already recognized by Cohen and Turnbull in the original paper who 

noted that in metallic systems atoms are compressive, so the ν*/ν0 ratio is ~0.1, smaller by an order of 

magnitude compared to the hard-sphere systems [68]. Thus the microscopic picture of the free-volume 

theory needs modifications when it is applied to metallic system.  

For instance, the effect of the externally applied pressure on the strength is very small, so the 

strengths in compression and tensile tests are practically the same [100], even though a strong 

dependence is expected for the standard free-volume mechanism. As Cohen and Turnbull already 

noted [68] the pressure dependence of diffusivity in metallic liquids is much weaker than predicted by 

the free-volume theory [101,102]. An argument in defense of the free-volume theory for this pressure 

effect is that the pressure applied externally to the glass does not change the amount of free-volume in 

the glass, because the glass is already frozen and does not reach the equilibrium state under pressure. 

However, this argument is incorrect. As we discussed above, the mechanical strength is determined by 

the flow stress, because the flow is initiated always by extrinsic defects such as inclusions. During the 

flow the shear deformation rate is equal to the inverse of the relaxation time, so the system has time to 

respond to pressure to increase the free-volume in the flowing liquid. Thus the flow stress, therefore 

the strength, should depend on external pressure in the free-volume theory. The fact that the strength 
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does not depend on pressure [100] implies weak sensitivity of the flow mechanism to pressure, a 

signature not consistent with the original free-volume picture. 

The small value of the ν*/ν0 ratio is consistent with the observation that a vacancy is unstable in 

metallic glasses, and breaks up into smaller volumes [103]. The idea of “distributed free-volume” was 

first proposed by Argon along this line [86]. However, once the free-volume is distributed into small 

pieces there is no need of preserving the concept of original free-volume. It becomes the same as the 

modified free-volume theory with a small value of the ν*/ν0 ratio. Now when the ν*/ν0 ratio is small 

the original idea that an atom can move into this space becomes unrealistic, because such an action 

will require a large amount of energy. So in the “distributed free-volume” picture the volume aspect is 

not important any more. It is just a region which is easier to shear. So the concept evolved into the idea 

of shear-transformation-zone, STZ [104], the region where shear transformation occurs.  

Another problem is that the fraction of the free-volume, νf/ν0, is small, and amounts only to a few 

percent. Free-volume is reminiscent of a vacancy in the lattice. In crystalline solids, the density of 

lattice defects is very low, but because they are topologically very different from the matrix and highly 

mobile they totally control the mechanical deformation. In glasses, however, defects are different from 

the matrix only quantitatively, but not qualitatively. Thus it is unlikely that a small number of defects 

can carry the entire load of deformation. The density of “defects” estimated by the topological 

fluctuation theory [43] and the elastic deformation as discussed above (Equation (14)) [42] is about  

ρdef = 24%, larger by an order of magnitude compared to the free-volume. This is because in the 

topological fluctuation theory both negative and positive density fluctuations (free-volume and  

anti-free-volume) are considered [13,14,43]. On the other hand if we use ν*/ν0 = 0.1 [68] and define 

the defect density by νf/ν*, then it is the same order of magnitude as ρdef above. In the topological 

fluctuation theory the defects are defined by the volume strain larger than 0.11 [43]. This value is close 

to the ν*/ν0 ratio for metallic liquids [68].  

In spite of various problems in practice the free-volume theory works well, because, as we pointed 

out above, the theoretical structure of the free-volume theory is similar to other theories, such as the 

STZ theory, even when different microscopic mechanisms are assumed. When parameters are chosen 

appropriately it can describe the experimental results quite well. In converse, however, the success of 

the free-volume theory in reproducing experimental results does not justify the physical reality of  

the model. 

5.2.3. Shear-Transformation-Zones (STZ) Theory 

For the STZ concept the “volume” character is less important, but weakness of resistance to shear, 

or low local shear modulus, is the main characteristics. Johnson and Samwer [105] used the STZ 

theory in the framework of the energy landscape theory [106] to explain the magnitude and 

temperature dependence of the yielding strain in a number of metallic glasses. They made a number of 

assumptions to develop the theory, but came to the conclusion that the STZ is made of about  

100 atoms or more, a rather large number of atoms. From what we know today, however, this number 

is a gross overestimate and the actual size of the STZ is much smaller as we discuss below. As we 

found in Equation (22) the stress dependence of the potential barrier cannot be described by the 

activation volume model as they did in [105]. The activation volume concept is valid when the defect 
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is clearly distinct from the matrix and has a well-defined volume. But STZ is buried in the matrix, and 

the concept of activation volume probably is a poor approximation. Also a simple sinusoidal model of 

the local potential landscape which is directly related to the yield strain cannot be justified. This model 

needs to be reassessed with the aid of realistic simulation.  

The STZ theory by Langer and Falk [89,90] does not even refer to free-volume. It is not specific 

about the detailed physical state of STZ, except that it is the site where atomic rearrangements, such as 

bond-switching as in Figure 8, take place. As the structural parameter the effective temperature, 

Equation (25), is used instead of free-volume. The STZ theory is successful not only in reproducing 

the macroscopic deformation behavior but also the internal friction, as shown in Figure 19a [107], as 

well as the stress-driven viscous behavior of a liquid (Figure 16a) [108,109] as shown in Figure 19b. 

Note that the results shown in Figure 16a and reproduced in Figure 19b include data for liquids at 

temperatures much above Tg. A liquid behaves like a solid up to the time-scale of the Maxwell 

relaxation time, τM. On the other hand the time-scale of the STZ, the time it takes for the system to 

make a jump over the STZ barrier, is of the order of ps. Therefore the STZ theory should be valid 

down to the time-scale of ps. For this reason even though the STZ theory was created for glass the STZ 

apparently works for supercooled liquids as well.  

Figure 19. (a) G'()/G∞ (red) and G''()/G∞ (blue) for a metallic glass. Experimental 
values (�,) [107], and theoretical fit by the STZ theory (lines) [105]. (b) Flow stress s, 

plotted against the strain rate, q, at various temperatures. Circles are by simulation  

(Figure 16a [60]), and lines are by the STZ theory [108]. 

 
(a) (b) 

5.2.4. Mode-Coupling Theory 

As mentioned above the mode-coupling theory can be extended to account for the flow behavior of 

a liquid under shear stress. Indeed the results shown in Figures 16a and 19b were nicely reproduced by 

the MCT [93]. In the MCT the structural parameter is S(Q), the structure function, which can be 

measured by experiment [40,41], computed by simulation, or calculated by theory [110]. In the case of 

hard-sphere systems which do not have an energy-scale, thus temperature, the physical density plays 

the role of ϕ. Because the MCT is a phenomenological theory its atomistic base is unclear. The 

physical details of the “slow mode” coupling to which produces increase in viscosity remain 
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unspecified. It is interesting to see how other atomistic theories or simulation will provide the basis for 

the MCT.  

5.2.5. Local Configurational Excitations 

It is very difficult to characterize the structure of liquids and glasses because of the absence of 

symmetry and their strong disorder. The most common method is to consider the topology of atomic 

connectivity, by defining the nearest neighbors [111–113]. Even in metallic systems, where chemical 

bonds are usually weak, the nearest neighbors are reasonably well-separated from the second nearest 

neighbors in the PDF. During the simulation of flow under shear stress [24] we found that the process 

of the nearest neighbor becoming the second neighbor (bond-cutting) and that of the second nearest 

neighbor becoming the nearest neighbor (bond-creation) were always characterized by sharp jump in 

the interatomic distance as shown in Figure 20. The jump is even sharper if the inherent structure [59] 

was calculated at every step of the way. Thus bond cutting/creation is a well-defined process of change 

in atomic connectivity.  

Figure 20. Typical changes in the interatomic distance as a bond between i and j is broken 

(red symbol) and a bond is formed among the common neighbors of i and j (green symbol). 

The horizontal line is the cut-off line between the first and the second nearest neighbors [24].  

 

The nearest neighbors are usually defined by the Voronoi construction [111,112]. A drawback of 

this method is that often a small face in the Voronoi polyhedron is counted as the basis for the 

additional nearest neighbor, even when the atom is actually far way. Because the PDF shows a deep 

minimum between the first and second peaks, most of the time we use a simpler procedure of defining 

the nearest neighbor by the position of the PDF minimum.  

In covalent glasses, such as amorphous silicon or silicate, chemistry places strong restriction on 

local topology. In such a case it is natural to define defects as deviations from dominant topology, for 

instance from the ring statistics [114,115]. In metallic systems, however, the local topology has wide 

distribution without a dominant one. In this case it is much more difficult, or less meaningful, to define 

defects from the topology alone, and the physical properties have to be taken into consideration. A 

direct relation is known to exist between the local topology of atomic connectivity and the atomic-level 

stresses [13]. For instance the coordination number, NC, is linearly related to the atomic-level  
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pressure [14]. If one places an atom A with radius rA in a glass of atom B with radius rB, the average 

coordination number of A depends on the ratio, x = rA/rB [116]. In converse, if a B atom is placed in the 

site where A atom is happy, the B atom will be under pressure. This is the origin of the atomic-level 

pressure. When the atomic-level stresses were defined the purpose was to define the defect in terms of 

the excessive stress level [13]. However, the correlation between the stress and the magnitude of local 

displacement under shear is not strong. It is possible that not the stress itself but its gradient, which is 

related to the elastic incompatibility [16], is more important in triggering the local deformation event.  

Nevertheless, local topology of atomic connectivity was found to be the key in defining the local 

deformation event. It was found that during the shear flow right after a bond oriented in the 

compressive direction (~45 away from the direction of the shear flow) is cut, a new bond is formed in 

the perpendicular direction (inset of Figure 21a [24]), resulting in the bond exchange as in Figure 8. 

The time delay between the two actions, cutting and forming, is of the order of 10−13 s, much shorter 

than the Maxwell relaxation time, and is comparable to the time for a sound wave to travel from one 

atom to the nearest neighbor (Figure 21a). Therefore this action to produce bond exchange is a coupled 

action through the elastic field, and should be considered as one local configurational excitation 

(LCE). We now define the lifetime of local topology, LT, as the time to lose or gain ONE nearest 

neighbor atom, because by losing or gaining one neighbor the local topology of that atom is changed. 
The simulation result in Figure 21b [24] shows that σ τ 2LTG   . Because  τ η σM G G     , 

this means connected to the lifetime of local topology, a microscopic quantity. The factor of 1/2 

reflects the fact that two topology actions, bond cutting and bond creation, are coupled. This shows 

that the bond exchange shown in Figure 8 is indeed the elementary atomistic mechanism  

of deformation. 

Figure 21. (a) Distribution of the delay time between cutting the bond A–B and forming 

the bond C–D. τ0 = 0.761  10−13 s [24]. (b) Instantaneous strain, σ/G∞, compared to the 
atomic level strains, NNS

zx  (nearest neighbor strain) and / 2LT  (strain due to local 

topology) [24]. See [24] and text for the meaning. 

 
(a) (b) 

Such local configurational excitations are the elementary unit of STZ. However, LCE distorts the 

glass locally, resulting in strong stress field. This stress field triggers another LCE in the immediate 
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neighborhood, and produces cascade of LCE actions as shown in Figure 22. The time-scale for the 

cascade is a few 100 fs shorter than the time-scale for each LCE (~100 fs). There are many reports of 

chain-like action for diffusion [117], but in our view they are cascade action, and are not dynamic 

collective mode. Indeed the time-scale of dynamic heterogeneity [117–119] is much longer than τLT.  

Figure 22. Location where atomic bonds are cut during the shear flow for   = 0.001 τ0
−1 at 

300 K, within two intervals of 250 fs (= 3.29 τ0, τ0 = 0.761  10−13 s). The progress in time 

is shown by color. The cut bonds are clustered suggesting cascade chain reactions. Here the 

bond lifetime is 81 τ0. The size of the box is 59.34 × 10 × 59.34 Å3. This figure was 

generated from the model used in [24]. 

 

5.2.6. Atomic Structure during the Flow 

Because a liquid under shear flow can sustain a shear stress, its structure cannot be isotropic, but 

should resemble that of a solid under stress. This is indeed the case, and as shown in Figure 23 the 
anisotropic PDF of the liquid under shear is nearly proportional to  0

0d dg r r , as is the case for elastic 

deformation. A liquid, however, respond elastically only within the time-scale of τM. Accordingly the 

elastic structural change cannot be long-range, but is limited to a finite lengthscale [24]. The spatial 

extension of the elastically deformed region ζ, depends on both temperature and shear rate. The 

temperature dependence is weak; ζT = 10.56 Å at 300 K, 10.85 Å at 500 K, 11.06 Å at 700 K, and 

11.12 Å at 900 K. But ζ, depends significantly on the shear rate at high rates, and ζ extrapolates to zero 
at a critical shear rate, C . This is also related to the communication via the sound waves. At very high 

shear rates the local structure changes faster than the time for a sound wave to travel from one atom to 

another, so communication cannot be achieved, and elastic correlation does not have time to develop. 
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Figure 23. (a) Anisotropic PDF, gzx(r), of a liquid under flow, compared to the derivative 

of the isotropic PDF [24], (b) dependence of ζ on the strain rate [24]. 

 
(a) (b) 

6. Conclusions  

At a first look the mechanical properties of metallic glasses do not appear to reflect the disordered 

nature of the atomic structure, because they seem to be superficially similar to those of crystalline 

metals. Upon a closer look, however, we recognize that the structure has profound and intricate effects 

on the mechanical properties. This is because at the atomic level the local response of a metallic glass 

to the external stress field is strongly heterogeneous. Even in the case of elastic response to a uniform 

stress the local compliance is not uniform. And yet each local portion of the system cannot 

independently respond to the stress, because they are connected to each other, and thus have to satisfy 

the elastic compatibility condition. Similarly in plastic deformation local structural changes create 

long-range stress fields and affect each other, as a consequence of satisfying the elastic compatibility 

condition. In addition local structural changes alter the effective, or fictive, temperature. Here we 

reviewed recent advances in our understanding of such unique features of elastic, anelastic and plastic 

deformation of metallic glasses, focusing on the atomic-level phenomena. A large amount of 

researches on the mesoscopic behavior, such as the effect of shear bands, are not included in this 

review, even though they are important in understanding the actual behavior of a macroscopic sample.  

Many issues remain poorly understood, and several competing theories are used by different 

researchers. Different theories define the effective temperature in its own way. In the free-volume 

theory it is expressed as free-volume (Equation (24)), whereas in the STZ theory it represents the STZ 

density (Equation (26)). In the MCT the structure factor, S(Q), plays that role. They are nearly linearly 

related to each other, thus they are practically equivalent. In each case it is a phenomenological 

parameter in the equation, and the connection to the microscopic details is not obvious. This point has 

to be clarified by further simulations and experiments.  

One issue we particularly emphasized in this article is the role and nature of the defects. Because 

crystalline solids fail due to the motion of lattice defects much effort has been directed to define the 

defects in metallic glasses. In glasses, however, defects are not topologically distinct. They are those at 

the edges of wide distribution of the local states, with the cut-off in some parameter which is chosen by 



Metals 2013, 3 107 

 

 

taking the properties into account. They are a part of the structure which is in equilibrium at the 

effective temperature. Therefore the critical parameter is the effective temperature, and the physical 

reality of the defects is of secondary importance to the success of the theory in reproducing the data. 

That is why various theories, such as the free-volume theory and the STZ theory, are equally 

successful, even though they are based on quite different microscopic mechanisms. Conversely, 

successful reproduction of the data for macroscopic experiments does not guarantee the correctness of 

the microscopic picture in the theory. After all microscopic details can be determined only either by 

microscopic experiments or by atomic-level simulation. Because of the complex nature of the atomic 

structure a truly microscopic theory of deformation in metallic glasses is yet to be developed.  

On the other hand macroscopic defects, such as inclusions, play an important role in initiating the 

local plastic flow and formation of shear bands. That is why the flow stress, not the local yield stress, 

determines the strength of a bulk metallic glass. Ironically because the flow stress is an intrinsic 

property, not affected by extrinsic defects, mechanical failure of a metallic glass is an intrinsic 

behavior, a consequence of the stress-induced glass transition. 
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