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Abstract

Based on the innovative mode driven by “data + artificial intelligence”, in this study, three
methods, namely Gaussian noise (GAUSS Noise), the Generative Adversarial Network
(GAN), and the optimized Generative Adversarial Network (GANPro), are adopted to
expand and enhance the collected dataset of element contents and the hardness of the
AlCoCrCuFeNi high-entropy alloy. Bayesian optimization with grid search is used to
determine the optimal combination of hyperparameters, and two interpretability methods,
SHAP and permutation importance, are employed to further explore the relationship be-
tween the element features of high-entropy alloys and hardness. The results show that the
optimal data augmentation method is Gaussian noise enhancement; its accuracy reaches
97.4% under the addition of medium noise (o = 0.003), and an optimal performance predic-
tion model based on the existing dataset is finally constructed. Through the interpretability
method, it is found that the contributions of Al and Ni are the most prominent. When the
Al content exceeds 0.18 mol, it has a positive promoting effect on hardness, while Ni and
Cu exhibit a critical effect of promotion—inhibition near 0.175 mol and 0.14 mol, respec-
tively, revealing the nonlinear regulation law of element contents. This study solves the
problem of revealing the mutual relationship between the element contents and hardness
of high-entropy alloys in the case of a lack of alloy data and provides theoretical guidance
for further improving the performance of high-entropy alloys.

Keywords: high-entropy alloy; machine learning; data augmentation; composition design

1. Introduction

High-entropy alloys (HEAs) are novel multi-principal element alloy materials with
highly heterogeneous properties that have evolved from traditional alloys. By definition,
they are alloys containing five or more elements, with an atomic fraction of each element
ranging from 5% to 35% [1,2]. Different from traditional alloys, in HEAs, multiple elements
are distributed almost in equal proportions, resulting in a more complex crystal structure,
degree of disorder, high hardness, high strength, oxidation resistance, corrosion resistance,
fatigue resistance, and good high-temperature resistance [3-7]. The AICoCrFeNi HEA,
attracting extensive attention due to its excellent mechanical properties, is one of the earliest
and most studied HEAs. It has garnered wide-ranging interest for its high strength, good
ductility, and outstanding high-temperature stability [1,8]. However, due to the extremely
large compositional space of HEAs, involving the interactions of multiple elements and
different microstructural forms, the prediction and optimization of their properties have
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become extremely complex, and it is difficult for the traditional trial-and-error method
to meet the requirements with high efficiency. In recent years, with the combination of
big data and artificial intelligence, materials research has officially entered the stage of
data-driven science, which is the fourth paradigm after experimental science, mathematical
theory, and simulation calculation [9]. Machine learning and data-driven methods have
been introduced into the research of HEAs [10-12]. Li et al. [13] used high-throughput
molecular dynamics simulation combined with machine learning to predict the optimal
composition of CrCoNi-based medium-entropy alloys with high strength and low density.
Feng et al. [14] proposed a universal and transferable deep learning framework to predict
phase formation in small datasets. Lookman et al. [15] reviewed the adaptive experimental
sampling and Bayesian optimization methods and summarized the application of active
learning in accelerating the discovery of new materials. Schmidt et al. [16] took materials
calculation data and machine learning as the main line and carried out a review and
analysis from aspects such as basic principles and algorithms, the machine learning-assisted
discovery of new materials and property prediction, and model interpretability. However,
high-quality experimental sample data in materials data are often scarce, and even for
materials with sufficient data, there is the problem of data imbalance. The shortage of
available data hinders the construction of high-precision machine learning models in
materials research. Therefore, under the condition of a lack of sufficient data samples, data
augmentation techniques have also become increasingly important in the research of HEAs.
Xu et al. [17] created a transfer learning model between a model based on big data and a
model trained with smaller data. Zhao et al. [18] generated more pseudo-data based on a
machine learning model trained with original data. Li et al. [19,20] proposed a Generative
Adversarial Network (GAN) model that can directly generate the new composition of
multi-principal element alloys. The trained generative model was used to generate new
alloy compositions as candidate spaces and predict their phase structures. This model
can significantly improve the efficiency of developing new multi-principal element alloys.
These methods provide new ideas for the composition design and property optimization of
alloys. The introduction of machine learning technology has promoted the transformation
from the “experience + trial-and-error” mode to the “data + artificial intelligence”-driven
innovation mode [15,16,21-24].

In this paper, compared with other HEAs, the AICoCrFeNi HEA has a wide application
prospect in severe wear, such as gears, bearings, and cutting tools. The hardness data for
this HEA is relatively easy to obtain [25-27]. The collection of a large number of hardness
test data samples can effectively adopt machine learning methods to predict the influence
of process parameters on the properties of HEAs. In the process of machine learning,
data augmentation methods such as the GAN and Gaussian noise are adopted, which
can effectively expand the experimental dataset, make up for the shortage of data, and
improve the generalization ability of the model, identify the components and parameters
that have the greatest impact on the properties of HEAs, and thus enhance the accuracy
and reliability of the prediction model.

2. Materials and Methods
2.1. Gaussian Noise

Gaussian noise is a common type of noise, also known as normally distributed noise,
which refers to adding random noise that follows a Gaussian distribution when processing
the original data (Table S1). Material data have the same essence [15,16,21]. The nominal
composition refers to the theoretical composition designed in the experiment, while the
actual composition denotes the composition obtained through practical measurement
during the preparation process. The inevitable weighing and preparation deviations in the
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preparation process were regarded as the inherent characteristics of material data. During
the experimental process, there are inevitably deviations in the weighing and preparation
of the alloys with the nominal composition designed, so the dataset is actually full of
nominal compositions. Gaussian noise is adopted to simulate the composition deviations
in the actual preparation process. By adding some noise to the nominal components,
pseudo-samples can be obtained. In this method, the noise in the material data may be
regarded as an inherent characteristic and further be utilized to generate “pseudo-data”
containing noise. Then, the noise has been introduced into the model to expand the dataset
and enhance the robustness of the model.

A schematic diagram of the process of adding Gaussian noise to the original data to
obtain the “actual composition” is shown in Figure 1. Similarly, there are certain deviations
in the hardness experiment. The hardness in the original dataset is the average value of
multiple measurements, so noise also needs to be added to the output hardness. Therefore,
a noise component with a standard deviation of o = 0.003 and a noise hardness of 0 =5 HV
is introduced into the original data. During the calculation process, a truncation method
was employed to set negative values in the generated data to zero; thereby, unrealistic
data was eliminated. Bayesian optimization was utilized for automatic parameter tuning
to ensure that the generated data fell within a reasonable range. Figure 1a shows the
comparison of the data before and after adding Gaussian noise to the hardness samples.
Gaussian noise is a kind of random number, and its probability density function follows a
Gaussian distribution. As can be seen from Figure 1b, the larger the value of o, the more
significant the effect caused by the noise. This method not only enables our model to better
adapt to the changes and uncertainties in the real world, but it also effectively reduces
the overly optimistic test results caused by the leakage of test data. In this way, by simply
adding Gaussian noise to the samples, the dataset can be doubled.
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Figure 1. Schematic diagram of the process of adding Gaussian noise. (a) Adding Gaussian noise to
the hardness samples. (b) The comparison between the original samples and the noisy samples based
on the sine wave.

It can be found that the introduction of Gaussian noise simulates the random fluctua-
tions and measurement errors in the real environment, making the model more theoretically
complete. In addition, the technique of using Gaussian noise for data augmentation has
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also expanded the sample data to a certain extent. The augmented dataset covers more
combinations and variations, thus improving the model’s ability to capture the elemental
composition of HEAs.

2.2. Generative Adversarial Network
2.2.1. Principle of GAN

In order to fully realize the improvement of the model’s prediction performance based
on data augmentation, this project proposes the GAN and GANpro data augmentation
methods and applies them to the research on the property prediction of HEAs. GAN
originates from the zero-sum game in game theory, which is a non-cooperative game. In
the game, the gain of one of the two participating parties will inevitably lead to the loss
of the other party, resulting in the sum of the gains and losses of the two parties in the
game always being zero. In GAN, there are two neural networks, namely the generator
(generator, G) and the discriminator (discriminator, D). The discriminator D judges the
samples generated by the generator G. The closer the data generated by the generator G are
to the real data, the more difficult it is for the discriminator D to distinguish between true
and false. In the early stage of training, the data generated by the generator G are of poor
quality, so it is easy for the discriminator D to identify them as fake samples. However,
during the training process, the generator G tries to generate data that are real enough
to deceive the discriminator D, while the discriminator D tries to identify the true and
false of each sample. In the process of the mutual game between the two, their respective
generation ability and discrimination ability are continuously improved, and finally, the
two parties reach an equilibrium point, which is called the Nash equilibrium.

The basic network structure of GANAs is shown in Figure 2. The generator G takes
the random vector z that follows the standard normal distribution as the input and outputs
the generated sample G(z). Then, the generated sample G(z) is put into the discriminator D
for discrimination. If G(z) is closer to the real sample x, it is judged as 1. Otherwise, it is

judged as 0.
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Figure 2. Basic network structure of GAN.

Since the samples generated at the beginning of the training are difficult to be close to
the real samples, the entire network needs to be continuously trained and optimized. The
training of GAN is different from the previous single neural network. An alternating itera-
tive training method is adopted, in which either the discriminator is optimized while the
generator is fixed or the generator is optimized while the discriminator is fixed. The entire
GAN can be unified into an objective function, which is shown in the following Formula (1):

minmaxV'(G, D) = Exp(x[10gD(%)] + Ezpz(z) [log (1 = D(G(2)))] ©)
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In Formula (1), x is a sample from the real data distribution Pd(x). z is a noise sample
from the pre-defined random noise distribution Pd(x), and E is the expected value of the
distribution function.

When the discriminator D is fixed and the generator G is optimized, the generated
samples output by the generator G are judged as true or false by the discriminator D, and
the discrimination loss is fed back to the generator G. The final result is that the generator
can generate samples that can deceive the current discriminator D, and the discrimination
result of the discriminator is close to 1. Therefore, the objective function for optimizing the
generator is expressed as Formula (2):

rnGinV(G, D) = EZsz(z) [log(l - D(G))] (2)

When optimizing the discriminator D, the generator G is fixed. The discriminator
improves its discrimination ability by continuously judging the real samples and the
generated samples. The specific optimization function is shown in Formula (3):

mDaXV(G/ D) = EXNPd(X) [ZOgD(x)] + EZNPZ(Z) [Zog(l - D(G(Z)))] 3)

A visualization of the GAN training process is shown in Figure 3. The equidistant
points on the horizontal line z indicate that the data follow a uniform distribution. The
arrow pointing from z to x represents that the random noise vector z is output by the
generator G to generate the sample G(z). The green solid line represents the probability
distribution of the generator, the black dotted line represents the probability distribution
of the real data, and the blue dotted line represents the output of the discriminator. In
Figure 3, there is a large difference between the probability distributions of the generated
data and the real data. The output value of the discriminator (blue dotted line) is higher
on the left and lower on the right, indicating that it can distinguish between true and
false data well. With the increase in training, Figure 3 (after updating D) shows that by
fixing G first and training D, the discrimination ability of the discriminator is improved. In
Figure 3 (after updating G), by fixing D and training G with the information fed back by
D, the distribution of the generated data approaches that of the real data. After multiple
alternating trainings of D and G, the distribution of the generated data coincides well with
that of the real data, as shown in Figure 3 (mixed strategy equilibrium). At this time, the
discriminator can no longer distinguish between the generated data and the real data and
guesses the truth or falsehood of the samples with a probability of 50%.

T

Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

X

Figure 3. Visualization of the GAN training process.
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2.2.2. Principle of GANPro

In this project, based on GAN, a method for expanding data applicable to regression
problems, namely the GANPro expansion method, is proposed, and the entire workflow of
this method is shown in Figure 4. This method can perform data augmentation in regression
tasks with a small number of training samples and improve the prediction model of the
regression model by enhancing the quality of the features and labels of the generated data.
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Figure 4. The basic network structure of GANPro. (a) Feature generation; (b) label generation;
(c) construction of the machine learning model.

2.3. Machine Learning Evaluation Index

In the training of the regression model, the contents of six elemental components are
selected as the input features, and the hardness is taken as the output label. Before the
model training, the dataset should be normalized. For each feature shown in Formula (4),
X; replaces an original value, where X™" and X™3X, respectively, replace the minimum and
maximum values in this feature.

. ymin
xorm _ Xl Xi
i

- Xmax _ ymin (4)
i i

Different from the machine learning classification task, where only component noise
is added, in the regression task, in addition to the component noise, noise also needs to
be added to the hardness, which serves as the output. Moreover, since the output of the
regression task is a continuous result, the change in data will have a more obvious impact.
In this paper, the coefficient of determination (R2) shown in Formula (5) and the root mean
square error (RMSE) shown in Formula (6) are selected as the evaluation criteria for the
regression model. In Formulas (5) and (6), yj is the true value in the dataset. i represents
the average value of all y in the dataset, and i is the predicted value of the model.

~ N2

RMSE = 4/ i — ) (6)
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3. Results

Referring to previous work, this study collected data on the HEAs of the AlxCoy-
CrzCuuFevNiw system from the literature [25-27]. Among them, X, y, z, u, v, and w are the
molar fractions of each element, which are constrained by x + y + z + u + v + w = 100%. All
alloy samples were prepared by vacuum arc melting, and their hardness was measured
in the as-cast state. The original data information includes the composition of the alloy
and the experimental hardness. Considering the data from different literature sources due
to experimental equipment and error factors, alloy samples with the same composition
but a large difference in the experimental hardness value were excluded when collecting
data. For samples with a small difference in hardness, the average value was taken as the
final hardness value. Finally, a hardness dataset of 205 AICoCrCuFeNi alloy samples was
obtained. The distribution of the alloy composition data is shown in Figure 5, in which the

element Fe appears 201 times at the highest frequency.

100

r75

64
Eu 50

ll
WWHWWWWWIIII

Figure 5. Distribution of elements in the hardness dataset of AICoCrCuFeNi alloy.

In order to improve the generalization ability of the model and avoid overfitting,
the 10-fold cross-validation method is adopted in this experiment to find the optimal
hyperparameters. In addition, to reduce the impact of data leakage on the test accuracy,
we have taken the following two key steps. Firstly, after integrating the noisy samples, the
augmented data are randomly shuffled. Secondly, we divide the dataset into a validation
set and a training set, which can also be regarded as a way of experimental verification.

The original data are analyzed, and the relationship between the content of each alloy
element in the dataset and the hardness is shown in Figure 6. From the original dataset
containing 205 hardness samples, 10% of the samples are retained as the validation set,
that is, 21 hardness samples. The remaining 184 hardness samples are trained through
10-fold cross-validation. In this way, the data of the validation set will not be used during
the training process, thus avoiding the inflated impact of data leakage on the accuracy of
the test set. In order to simulate the possible composition deviation in the actual situation,
we generate noisy samples by adding Gaussian noise to the composition content of the
original samples. In the alloy experiment, this is equivalent to the variation introduced due
to the deviation between the nominal composition and the actual composition during the
weighing and preparation processes.
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Figure 6. Changes in the hardness of alloys in the dataset with the content of elements. (a) Al content;
(b) Co content; (c) Cr content; (d) Cu content; (e) Fe content; (f) Ni content.

3.1. Enhancement and Expansion of the Alloy Dataset Using Gaussian Noise and Analysis of
Performance Improvement

3.1.1. Analysis of Data Augmentation by Adding Different Noises

In the regression task, to enhance the sample augmentation effect, we add noise not
only to the input features but also to the output hardness values. Since the results of the
regression task are continuous, the impact of data changes on the model performance is
more significant. Therefore, in this experiment, three different noise levels are set to increase
the diversity of the data samples. Specifically, in this experiment, three noise components
are considered, namely a low-noise component with o = 0.001, a medium-noise component
with o = 0.003, and a high-noise component with o = 0.005. In addition, according to the
empirical fluctuations of the hardness of HEAs, a hardness with o = 2 HV is regarded as
low noise hardness, a hardness with o =5 HV is regarded as medium noise hardness, and a
hardness with o = 8 HV is regarded as high noise hardness. By adding these different levels
of noise to the original data, a new augmented dataset is generated, as shown in Table 1.

Table 1. Distribution of real and different noise data.

Materials Raw Data 0.001 Noise 0.003 Noise 0.005 Noise

Al 0.2310 0.2314 0.2327 0.2339
Co 0.1540 0.1541 0.1548 0.1555
Cr 0.1540 0.1514 0.1466 0.1418
Cu 0.1540 0.1536 0.1532 0.1528
Fe 0.1540 0.1547 0.1565 0.1583
Ni 0.1540 0.1545 0.1559 0.1574
HV 498 496 497 488

Tables 2 and 3 compare the statistical characteristics of real data and generated data,
including means, standard deviations, minimums, and maximums, where Raw data de-
notes the real data, and Min and Max denote the generated data after adding different
noises, respectively. From the three tables, it can be seen that the statistical characteristics of
real data and generated data are well aligned. Here, the quality of features in the generated
data is only evaluated with statistical metrics; the quality of labels should not be simply
measured with statistical metrics, but the generated data should be added to the training set
to retrain the model and evaluated based on the prediction performance of the new model.
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Table 2. Means and standard deviations of real and generated data.
Number Mean Std
Raw 0.001 0.003 0.005 Raw 0.001 0.003 0.005
data noise noise noise data noise noise noise
1 0.2209 0.2207 0.2205 0.2203 0.1442 0.1442 0.1442 0.1442
2 0.1543 0.1544 0.1548 0.1547 0.0924 0.0924 0.0924 0.0925
3 0.1828 0.1828 0.1828 0.1829 0.0875 0.0874 0.0873 0.0874
4 0.0906 0.0906 0.0905 0.0904 0.0895 0.0895 0.0894 0.0894
5 0.1649 0.1648 0.1649 0.1650 0.0775 0.0776 0.0776 0.0778
6 0.1865 0.1865 0.1865 0.1866 0.1026 0.1024 0.1022 0.1020

Table 3. Maximum and minimum values of real and generated data.

Number Min Max

Raw 0.001 0.003 0.005 Raw 0.001 0.003 0.005

data noise noise noise data noise noise noise
1 0 0 0 0 0.470 0.472 0.476 0.480
2 0 0 0 0 0.333 0.428 0.429 0.430
3 0 0 0 0 0.317 0.554 0.551 0.549
4 0 0 0 0 0.225 0.290 0290 0.291
5 0 0 0 0 0.317 0.470 0.475 0.479
6 0 0 0 0 0.385 0.500 0.501 0.502

Sixty sets of sample data were randomly selected, and 3D waterfall plots were drawn
to show the data distribution under different noise conditions. As shown in Figure 7, it can
be clearly seen from the graph that the data distribution after adding different degrees of
noise is basically the same as the fluctuation of the original data. This indicates that the
overall trend and characteristics of the data remain stable even with the introduction of
noise, which does not cause significant shifts or distortions in the data. Specifically, the
fluctuations of the 0.001 low-noise, 0.003 medium-noise, and 0.005 high-noise samples in
all dimensions do not significantly deviate from the distribution of the original data, which
verifies the reasonableness and validity of our noise addition method.

] *"{w‘ ‘!

800
g 600 - 0.001 noise
=
2 4001

200 raw data

0 T T T T T T
10 20 30 40 50 60

Figure 7. Three-dimensional waterfall plot of sample data distribution under different noise conditions.
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3.1.2. Effect of Different Noise on Model Performance

By further adding different noise samples to the original data, the results of the study
show that the new dataset enhanced with noise samples can make the model perform better.
The new dataset, containing the original data and the enhanced data with different noise
levels, was used in the experiments. The histograms in Figure 8 show the accuracy of the
models based on different enhanced datasets on the test set. Specifically, the following four
datasets are included in the figure: a dataset containing only the original data, a dataset
containing the original data and 0.001 noise low-noise samples, a dataset containing the
original data and 0.003 noise medium-noise samples, and a dataset containing the original
data and 0.005 noise high-noise samples. In Figure 8a, the black bars on the left axis are the
test set R2 averages, and the red bars on the right axis are the RMSE averages. The RMSE is
more sensitive to having larger values for the error; so, for example, the RMSE of the three
models enhanced with noise samples is lower than that of the initial model. The RMSE
of the four augmented models have smaller relative errors, and the accuracy of the three
models based on augmented data has been improved to some extent compared with using
only the original data. In addition, it can be seen from the change in R2 that the augmented
dataset helps improve the predictive ability of the models, which makes the models perform
better on the test set. These results show that the noise sample enhancement technique not
only effectively expands the dataset but also significantly improves the prediction accuracy
and robustness of the models, confirming that the sample-enhanced models have a better
fit and provide a more reliable technical means for the prediction of the properties of HEAs.
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Figure 8. The accuracy of the models based on different enhanced datasets on the test set.
(a) Evaluation of the test set under different noises, (b) evaluation of the validation set under different
noises, (c) hardness distribution of original and validation data.

Although it is a random process for data reading and processing, noisy data is not
actually the same as the original data. Therefore, validation data that the model has never
seen before is needed. The line graphs in Figure 8b show the R2 and RMSE of the model
based on different augmented datasets on the validation dataset. The experimental results
show that the test accuracy of the model is significantly improved by adding noisy samples.
In particular, the introduction of medium- and high-noise samples enables the model to
better capture complex patterns in the data, which improves the prediction performance.
Among them, the 0.003 medium-noise-enhanced model has the highest R2 (0.974) and the
lowest RMSE (36.952). This suggests that data enhancement by adding different levels of
noise samples in the regression task can indeed effectively improve the performance of the
model, resulting in greater robustness and higher prediction accuracy for brand-new data.

To further eliminate tendencies in data selection, we compared the distributions of
the original and validation data. Specifically, we statistically analyzed the hardness values
of the original and validation datasets and plotted histograms of their distributions. As
shown in Figure 8c, the hardness distribution of the validation set is almost similar to that
of the original data at every interval. This indicates that we did not introduce any obvious
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bias in the selection of the validation dataset, ensuring the reliability and representativeness
of the validation results.

As shown in Figure 9a—c, sample data with hardness values in the range of
400-600 are selected, and the confidence intervals of the samples with different levels
of noise added are plotted, respectively, from which it can be seen that the fluctuation
ranges of the sample data change significantly with the increase in the degree of noise, but
the overall trend is still consistent with the original data. Figure 9 clearly demonstrates the
impact of different noise levels on the sample data, further verifying the robustness of the
model under different noise conditions.
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Figure 9. Confidence intervals of sample data under different noise conditions. (a) Confidence
intervals of sample data under low-noise conditions; (b) confidence intervals of sample data under
medium-noise conditions; (c) confidence intervals of sample data under high-noise conditions.

Then, the effect of adding more noise-enhanced data on the model was further
tested, as shown in Figure 10. Where 2 x R represents that the raw data is enhanced
twice. L represents low-noise data, M represents medium-noise, and H represents high-
noise enhancement. In addition, 3 x R represents that the raw data is enhanced twice.
L + M represents raw data, low-noise data, and medium-noise data. L + H represents raw
data, low-noise data, and high-noise data. M + H represents raw data, medium-noise data,
and high-noise data. Also, 4 x R represents that the raw data is enhanced three times.
L + M + H represents raw data, low-noise data, medium-noise data, and high-noise data.
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Figure 10. Test set RMSE and validation set RMSE calculated for different data.

As can be seen from Figure 10, showing the test RMSE and validation RMSE of the
model with different data, it can be found that the test RMSE decreases instead with the
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increase in data, indicating that the model is well fitted. However, the validation RMSE
shows an overall increasing trend with increasing data, indicating that the generalization
ability of the model is decreasing. The high fit and generalization ability of the model prove
that the model is overfitted. This is due to the fact that noisy data is generated from the
original data, and adding too much is bound to lead to data leakage problems. Adding
more data only improves the fit of the model but does not have much impact on improving
the generalization ability of the model. Overall, noise sample enhancement can only be
used once.

3.2. Enhancement and Expansion of the Alloy Dataset Using Generative Adversarial Networks
(GAN) and Its Performance Improvement Analysis

In order to test its performance, in this experiment, the same 205 HEAs” hardness val-
ues with Gaussian noise were still used, and after the steps of feature construction, feature
selection, model evaluation, and parameter optimization, the original model with excellent
performance was trained. Then, on this basis, the effectiveness of the GAN and GANpro
expansion methods is evaluated, and the effect of different sample numbers of generated
data on model performance improvement is explored. Finally, the generalization ability of
the new model after data augmentation is evaluated on 18 alloy samples independent of
the training dataset. The results show that the GANpro expansion method proposed in this
paper can effectively alleviate the data shortage problem in the HEA regression problem
and provide a demonstration of application potential under the specific conditions for
HEA performance prediction and composition design studies. This is consistent with the
machine learning method based on GAN and NN proposed by Roy et al. [28] for the effi-
cient design of high-hardness multi-principal element alloys (MPEAs). They autonomously
generated new alloys in the composition space containing 18 elements through GAN and
used the NN model to screen out candidate materials with significantly improved hardness.
The hardness of the optimal composition (Co-Fe-Ni-Al-Cr-Mo-Ti system) reached 941 HV,
which was 10% higher than the highest value (857 HV) in the training data, breaking
through the composition limitations of the traditional Al-Co-Cr-Fe-Ni system. Looking at
the feature importance analysis from the visualization point of view, as shown in Figure 11a,
it is easy to intuitively find the important role of Al and Ni. Here, the average scores of the
input features are given using different machine learning algorithms to give their respective
feature importance scores, which are then ranked according to the average importance
score of each feature. These algorithms include Linear Base Kernel Support Vector Ma-
chine (SVR linear), Random Forest (RF), Extreme Gradient Boosting Tree (XGboost), Linear
Regression, and Ridge Regression. Too many feature dimensions may contain repetitive
or redundant information, which can easily cause the overfitting of the machine learning
model and affect the prediction performance and generalization ability. Therefore, using
compositional information as feature input can explain the prediction results of the model
more easily, and it is possible to intuitively understand how the increase or decrease in
a certain element affects the hardness of the alloy, and its related heat map is shown in
Figure 11b. We can clearly see the relationship between different element contents and alloy
hardness. The thermogram demonstrates the correlation between the elemental content
and the hardness value, and the strength and direction of this relationship are shown by
the change in colour. This visual representation allows us to quickly understand the trend
of how an increase or decrease in an element affects the hardness of an alloy.
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Figure 11. The feature importance analysis: (a) average scores of input features and (b) relevant heat map.

3.2.1. Evaluation of Different Algorithm Modelling

Next, we evaluated nine different types of machine learning algorithms, including
Linear, Ridge, Linear Kernel Support Vector Machines (SVR-linear), Polynomial Ker-
nel Support Vector Machines (SVR-poly), Radial Basis Kernel Support Vector Machines
(SVR-rbf), Nearest Neighbour Model (KNN), Random Forest (RF), Extreme Gradient
Boosted Tree (XGBoost), and ExtremeTree. All of these algorithms use six elemental
components as inputs to build corresponding machine learning models to evaluate the
performance of each model, and RMSE and R2, which have large error fluctuations, are
chosen as the criteria for the error evaluation of the regression models. In the model
evaluation process, the dataset is divided into a 90% training set and a 10% test set. In
order to eliminate the randomness associated with a single dataset division and to perform
hyperparameter optimization, 10-fold cross-validation was used; 10-fold cross-validation is
a commonly used evaluation method, which is performed by dividing the dataset into 10
mutually exclusive subsets, and each time, one of the subsets is used as the validation set,
and the remaining subset is used as the training set. This is carried out 10 times to ensure
that each subset is used as a validation set once, and finally, the average of all validation
results is taken as the basis of model performance evaluation. This method can effectively
reduce the impact of randomness due to a single dataset division and ensure the reliability
and stability of the model evaluation results. By comparing the performance of different
algorithms, we are able to identify the model with the best performance on the HEAs
dataset, which guides the choice of the most suitable algorithm in practical applications, as
shown in Table 4.

Table 4. Description of the regression algorithm.

Algorithm

RF

Linear Ridge SVR-Linear SVR-Poly SVR-rbf KNN XGBoost

R2(100%)

92.1

87.3 90.6 90.8 92.6 96.4 93.6 90.2

The RMSE and error bar results under different models are shown in Figure 12. The
evaluation results show that different algorithms have different performances when dealing
with the same dataset, and it can be seen that the linear model Linear performs the worst,
which indicates that the relationship between the six component features and the hardness
is not just a simple linear relationship, and a more complex model is needed to map the
relationship between the features and the mapping. The prediction results of the three
models, Ridge, SVR-linear, and SVR-poly, are also not ideal. The SVR-rbf model performed
the best, which is also in line with the best models obtained from several studies that are
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suitable for the hardness prediction of HEAs. In addition, the same model selection results
can be obtained by evaluating the best performance index of SVR-rbf model based on the
regression coefficients.

80

60 I

.

RMSE

20 4

$
Qg &
W

& &
D R
& & &€
&

%e

& &
& ¢ £ @

Ly

Figure 12. Cross-validation results of different models.

The setting of hyperparameters of machine learning models is crucial to model per-
formance, and this subsection takes the SVR-rbf model as an example to illustrate the
optimization of model hyperparameters during the establishment of a high-entropy alloy
hardness prediction model. Compared with the traditional grid search and random grid
search methods, Bayesian optimization is able to use the previous historical results in the
search process to guide the selection of hyperparameters in the next search, so Bayesian
optimization methods are used to find the best combination of hyperparameters for the
high-entropy alloy hardness model. The 10-fold cross-validation method is used to eval-
uate the method to optimize the hyperparameters. Le., the objective value of Bayesian
optimization is the average error of the 10-fold cross-validation; the hyperparameters to be
optimized for the SVR-rbf model are C, epsilon, and gamma; the search ranges of the three
important parameters are (1, 8000), (1, 30), and (0.0001, 2); and the other parameters are
all chosen as the default values for all other parameters. Figure 13 shows the trend of the
objective function value during 150 searches, and it can be seen that the error curve of the
minimum value is basically unchanged after gradually decreasing from a high value, which
indicates that 150 searches are sufficient for the current model, and it also shows that the
Bayesian optimization will refer to the historical search results to give the hyperparameters
of the next search, so that the value of the objective function is steadily improved with the
number of searches.
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Figure 13. Search for hyperparameters using Bayesian optimization.
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In addition, a contour plot of the variation in the objective values during the hyper-
parameter optimization process is given in Figure 14, showing the variation in the three
hyperparameters with respect to the value of the objective function during the hyperpa-
rameter search process. It can be seen that the optimal hyperparameters corresponding
to the SVR-rbf model for HEAs” hardness prediction are in the range of approximately
2136 for C, 15 for epsilon, and 0.3 for gamma, which will provide the parameter ranges for
our subsequent fine-tuning of the model. The results of the hyperparameter visualization
provide more detail on the optimization process and allow us to understand the model
itself better.
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Figure 14. Contour plot between optimized hyperparameters and target values.

3.2.2. Distribution of Generated Data

The premise that the GANpro expansion method can improve the prediction accuracy
of the model is that the first step is to generate generated data with the same distribution
as the real data to achieve the purpose of expanding the samples of the training set, and the
key lies in the quality of the generated data features and labels. Table 5 summarizes the
network structure of the GAN in the GANPro method for HEAs hardness prediction.

Table 5. GAN structure of GANPro expansion method in HEAs hardness prediction.

Generator Network Discriminator Network

Layer Type Dimension  Layer Type Dimension
Input Latent 10 Input Latent 6
Dense layer 128 Dense layer 128
, Batch normalization . Batch normalization
Hiddenl LeakyRelu Hiddenl LeakyRelu
Dense layer 64 Dense layer 64
Batch normalization Batch normalization
Hidden2 LeakyRelu Hidden2 LeakyRelu
Dense layer 32 Dense layer 32
, Batch normalization . Batch normalization
Hidden3 LeakyRelu Hidden3 LeakyRelu
output Dense layer 6 output Dense layer 7

Tanh activation

Tanh activation
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In order to evaluate the ability of the GANpro expansion method in simulating the
real data distribution and generating data with the same distribution, the real features of
the training set are fed into the GAN training. Then, 400 features of the generated data are
generated by sampling from the learned distribution, and then the generated features are
predicted to achieve the generated labels with the best model obtained based on the training
set; in this way, we obtain the generated data based on the GANpro expansion method. As
a comparison, the features and labels of the same training data are directly obtained by
inputting the features and labels of the generated data into the GAN together. As shown in
Figure 15, the distributions of features and labels for the 400 pieces of generated sample
data are shown in the form of radar charts, respectively, to visualize the distribution trend of
the whole dataset in each dimension in general by representing the values of all dimensions
comprehensively on the polar axes, where Figure 15a is the original sample data, Figure 15b
is the sample data generated under the GAN method, and Figure 15c¢ is the sample data
generated under the GANpro method. It can be seen that the features of the data generated
by either the ordinary GAN or GANpro expansion method are extremely similar to the real
features of the training set, indicating that, in terms of generating features, the two data
expansion methods can realistically simulate the distribution of features in the training set.

Figure 15. Radar plots of real and generated data in the high-entropy alloy dataset.
(a) Original data distribution; (b) GAN model expanded data distribution; (c) GANPro model
expanded data distribution.

Tables 6 and 7 compare the statistical characteristics of raw data and generated data,
including means, standard deviations, minimums, and maximums, where Raw denotes
the raw data and GAN and GANpro denote the GAN method and GANpro expansion
method, respectively. As can be seen from Tables 6 and 7, the statistical features of the raw
and generated data are well aligned. Here, only the quality of features in the generated
data is evaluated with statistical metrics, and the generated data is subsequently added to
the training set to retrain the model and evaluated based on the prediction performance of
the new model.

Table 6. Means and standard deviations of raw and generated data.

Number Mean Std
Raw GAN GANpro Raw GAN GANpro
1 0.221 0.222 0.223 0.001 0.062 0.226
2 0.153 0.152 0.149 0.148 0.019 0.019
3 0.185 0.175 0.183 0.058 0.029 0.010
4 0.091 0.089 0.089 0.129 0.014 0.188
5 0.164 0.160 0.165 0.058 0.012 0.131
6 0.185 0.185 0.185 0.097 0.037 0.085
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Table 7. Maximum and minimum values for raw and generated data.
Number Min Max
Raw GAN GANpro Raw GAN GANpro
1 0 0 0 0.470 0.049 0.469
2 0 0 0 0.429 0.338 0.409
3 0 0 0 0.556 0.501 0.551
4 0 0 0 0.290 0.272 0288
5 0 0 0 0.469 0.407 0.422
6 0 0 0 0.500 0.471 0.498

In summary, both the GANpro expansion method and the ordinary GAN are able to
generate additional generative data from raw data, and the difference between the two
lies in their different ways of handling the labels in the generative data. The former is
to predict the generative features based on the best model of the raw data, in order to
achieve the generative labels. This different process allows GANpro to potentially have
some advantages in generating high-quality labels, especially when the label information
is more complex or the data distribution is not uniform. The latter, on the other hand, uses
the label information as a dimension of the GAN input and generates features and labels
directly through GAN training. In this aspect of feature generation, there is no essential
difference between the two, so both are able to generate features that are consistent with
the distribution in the real data very well.

3.2.3. Impact of the Amount of Generated Data on Model Performance

Visualizing the feature distribution through radar distribution plots has demonstrated
that both the GANpro expansion method and plain GAN can generate features well. On
the other hand, in order to explore the impact of data augmentation methods on model
performance under different generated dataset sizes, different amounts of generated data
are added to the training set to retrain the model, the impact of the generated data on model
performance is evaluated in the same test set, and the two data augmentation methods
are compared. Specifically, the dataset was randomly separated 10 times; each time,
90% of the dataset was taken as the training set and 10% as the test set, different amounts
of generated data were generated from the training set, and the RMSE of the model was
evaluated in the same test set under the premise of fairness. Finally, the average of the
10 results was taken for the evaluation in order to avoid the randomness generated by
randomly dividing the dataset. Test errors of the three models with different numbers of
generated data are shown in Figure 16. In Figure 16a, the black dashed line in the figure
indicates the best model obtained by training with the real training set, and the orange and
green bar distributions indicate the new models obtained by the ordinary GAN method
and the GANPro expansion method. The results show that for GANPro, the number of
generated data significantly affects the prediction of the model, and the average error of
the model shows a general trend of decreasing and then increasing with the number of
generated data and exhibits the minimum error when 400 generated data are added. This is
because when the number of generated data is small, the additional information provided
by the expanded data is limited, whereas if the number of generated data is too large, this
tends to bring in redundant and irrelevant information, making the model overfitted, and
the same conclusion can be obtained in the GAN model as a whole. In addition, the figure
further shows that GANPro significantly outperforms GAN, and both outperform Raw,
which is another proof that data augmentation for GAN is beneficial to improve model
performance. In addition, Figure 16b shows the R2 generated under different algebraic
models. This figure further shows that GANPro significantly outperforms model-1, and
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both outperform GAN, which is another proof that the data augmentation of the GAN
method is beneficial to enhance the model performance. In order to further compare the
quality of the generated data produced by the GANPro expansion method and the normal
GAN method, we trained the machine learning models on the generated data only. That is,
under the condition of removing the raw data from the training set, GAN and GANPro
were retrained again, and the calculated error average results for different numbers of
generated data are shown in Figure 16c.
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Figure 16. Test errors of the three models with different numbers of generated data: (a) RMSE,
(b) R2 test error of the three models with different numbers of generated data, and (c) test errors of
different models trained using only generated data.

3.3. Comparison Between Gaussian Noise and Generative Adversarial Network in Regression
Data Augmentation

In the field of data augmentation for regression-type machine learning tasks, Gaussian
noise injection and Generative Adversarial Networks, as two typical data augmentation
strategies, exhibit significant performance differentiation characteristics. Through sys-
tematic experimental comparisons, this study has found that although both methods
are significantly superior to the original dataset in terms of data augmentation effect
(p < 0.01), there are essential differences in their mechanisms of action and applicable
scenarios. Gaussian noise augmentation has the advantage of linear time complexity by
injecting random perturbations that conform to the normal distribution into the feature
space. This parameterized augmentation method shows good computational economy in
scenarios with scarce data (n < 10%), especially for medium- and low-dimensional regression
problems with a feature dimension d < 10, and it can effectively alleviate the overfitting
tendency of the model. In the GAN framework, the generator G and the discriminator D
are trained through the minimax game. This adversarial training mechanism enables the
generator to learn the latent distribution characteristics of the data manifold. Theoretical
studies have shown that when the Nash equilibrium condition is satisfied, this character-
istic enables it to exhibit stronger distribution approximation ability in high-dimensional
nonlinear regression problems (d > 10).

Although GAN theoretically has a better distribution modelling ability, the regression
task experiment of this project, based on the AICoCrCuFeNi HEAs dataset, shows in the
RMSE and R2 indicators that the Gaussian noise augmentation method has a relatively
higher improvement in the prediction accuracy of the test set, and the accuracy reaches
97.4% under medium noise. Gaussian noise in the low-dimensional feature space is
sufficient to simulate the perturbation pattern, while it is difficult to train a stable GAN
with a small sample size. Follow-up research will explore (1) the critical points of different
dimensional noise methods and (2) a hybrid noise scheme combining GAN generation and
Gaussian perturbation.
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3.4. Interpretability Analysis of HEAs" Hardness Prediction

In this experiment, two interpretability methods, including feature importance and
the SHAP interpretation method (Shapley Additive Explanations) [28], are applied to the
previously established HEA hardness prediction model for interpretability analysis. The
outputs of these interpretive methods can help us understand the basis on which the model
makes prediction decisions, providing the importance of features to the model’s prediction
and the influence of different feature values on the prediction results.

The permutation importance method and the SHAP method are used to obtain the
global and local importance of the model. Global importance is used to understand how
the model makes predictions based on the overall understanding of the model, while local
feature importance is based on how each feature affects the prediction result of a single
sample. These methods do not make any assumptions about the model structure, so they
can be applied to any prediction model. First, the permutation importance method is used
to evaluate the importance of each feature in terms of the overall prediction performance.
Specifically, after obtaining the trained SVR—rbf model, the values of each column of
features are shuffled in turn while keeping the data in other columns unchanged, and
predictions are made on the resulting dataset. If the model is highly dependent on the
randomly shuffled column of features, the degree of attenuation of the model performance
will also be greater. Therefore, the amount of attenuation of the model performance after
shuffling a certain column of features represents the importance of that feature. The results
are shown in Figure 17.
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Figure 17. Global feature importance based on the ranking importance approach.

It can be seen that the order of elemental importance of HEA hardness prediction
obtained from the SVR-rbf model based on the ranked importance method is Al, Ni, Cu,
Fe, Co, and Cr. In the figure, the number on the right side of the bar indicates how much
the model prediction error increases when disrupting the feature. Each feature has a large
effect on the overall prediction error of the model, which indicates that all six features have
an important effect. The Al and Ni parameters are the two most important features, which
also correspond to the original data at the very beginning.

Next, the SHAP method is used to calculate the SHAP value of the features to measure
the importance of the features from a local point of view. The SHAP value represents
the weighted average of the boundary contribution of a feature among all the features,
which expresses the prediction value of the model as the sum of the contribution value of
each input feature. Taking the first sample in the dataset as an example, a waterfall plot is
generated using the shap.plots.waterfall method to show the contribution of each feature
to the model’s predicted value step by step, as shown in Figure 18. Each bar in the plot
represents a feature, and its length indicates the positive or negative impact of the feature
on the predicted value.
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Figure 18. Waterfall plot of feature contributions for a single sample.

The shap.force_plot method is used to display the pushing and pulling effects of the
features of the first sample on the prediction result in terms of force, showing how the
features push the baseline value towards the final prediction value, as shown in Figure 19.
The direction and length of each force indicate the contribution degree of the features to the
prediction value. Among them, red represents the positive force that pushes the prediction
value to increase, and blue represents the negative force that pushes the prediction value
to decrease. It can be intuitively seen how each feature interacts and the overall impact
on the final prediction value. In Figure 19, the base value = 493.7 is the baseline value,
representing the average prediction value of the model over the entire sample dataset, and
f(x) = 529.05 represents the prediction value of the model for the current sample. It can be
seen from the figure that the features that have a positive impact on the prediction of the
current sample are Cr, Fe, Ni, and Cu, while the features that have a negative impact on
the prediction are Co and Al. These features work together through positive and negative
forces to push the baseline value towards the final prediction value, which helps explain
the prediction result of the model.
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Figure 19. Predictive explanatory power plot for a single sample.

Next, multiple samples are interpreted, and the first 150 samples are selected and
placed horizontally by rotating the above force diagram form by 90° to obtain a variant of
the force diagram, which can be displayed by choosing different horizontal and vertical
coordinates. As shown in Figure 20, the ordering of these samples is according to the
similarity of feature importance. In Figure 20a, the X-axis represents the number of samples,
and the Y-axis represents the sum of the SHAP values for each sample. It can be seen
that the leftmost blue area is the negative SHAP gain area, and it can be seen that it is the
features Fe, Cu, Ni, and Al that have a negative gain for most of the samples; in the interval
of 70-110 samples, it is shown as a red area, which indicates that the Al, Ni, and Cr features
have a positive contribution to these samples. With such a visualization approach, we
are able to visualize the overall influence of different features in the sample set. Multiple
samples are sorted according to the output values predicted by the model, as shown in
Figure 20b. With this sorting and visualization method, the distribution of the red and blue
regions clearly shows the contribution of different features in different intervals of predicted
values. It can be seen that on the left side, red is the positive gain, and Ni’s features perform
significantly, and on the right side, blue is the negative gain, and Al’s features perform
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significantly. This visualization method makes the influence of features on the predicted
values more transparent and easier to interpret, helping us gain insight into the role and
function of features in model prediction. At the same time, this analysis also reveals the
importance of features when the model deals with different samples, which in turn guides
us to make more informed decisions on model improvement and feature engineering.
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Figure 20. The samples ordered according to the similarity of feature importance. (a) Similarity
ranking of feature importance for multiple samples; (b) ordering of model-predicted output values
for multiple samples.

Next, Figure 21 represents the SHAP values of all sample points in the original data;
each blue point and red point in the figure indicates a sample, the horizontal coordinate
indicates the size of the SHAP values of all sample data, and the grey line in the middle is
the split line between positive and negative SHAP values. Positive SHAP values indicate
sample points that positively contribute to the hardness prediction, and negative values
indicate sample points that negatively inhibit the prediction. The redder the colour, the
larger the eigenvalue of the sample point, and the vertical coordinate is the ordering of the
features, with decreasing SHAP values from top to bottom.
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Figure 21. SHAP values for all samples in the dataset.
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SHAP value for
Al

The SHAP interpretation plots for individual samples give an idea of the positive
and negative impact of each feature on the predictions and the extent of the impact, but
the perspective analysis of the sample instances may be subject to chance and bias and
is not representative of the impact of feature changes in the dataset as a whole on the
predictions. In order to more fully understand how features affect the model’s predictions,
the SHAP values calculated for each feature component of each sample can be utilized.
SHAP values can be calculated for each feature component of each sample, and a partial
dependency plot based on the SHAP values can represent how the model’s predictions
change when the values of individual features change. In addition, the partial dependency
graph can also reveal the predictive behaviour of a complex model under the condition of
multiple feature changes by calculating the functional relationship between two features
and the predictions of the complex model and then interpreting the two interacting features.
The partial dependency plot of SHAP values for the alloy element features is shown in
Figure 22. From Figure 22a, it can be seen that the Al elemental feature has the strongest
interaction with that of the element Cr. As for Figure 22b, Ni and Cu have the strongest
interaction; for Figure 22¢, these are Cu and Al; for Figure 22d, these are Fe and Cr; for
Figure 22e, these are Co and Al; for Figure 22f, these are Co and Al The green line
represents the critical line where the magnitude of the values of the two interacting features
shift. In the AlICoCrCuFeNi HEA dataset, the Al element exhibits a significant monotonic
increasing characteristic. With the increase in its content, its contribution to hardness
shows a systematic transition, gradually changing from the strongest negative effect to the
strongest positive promotion effect, which is consistent with the experimental conclusion
of Sharma et al. [29]. The increase in Al content enhances the stability of the BCC phase,
thereby improving the hardness. For Ni and Cu, when the characteristic values increase,
the SHAP values decrease from the positive maximum to the negative maximum. For the
three features with lower feature importance, the sample points are relatively dispersed and
show no obvious trend, among which most of the Cr characteristic values are concentrated
in the range of 0.1-0.4.
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Figure 22. Partial dependence diagram of SHAP values for features. (a) Al; (b) Ni; (c) Cu; (d) Fe;

(e) Co; (f) Cr.

Figure 23 shows the relationship between the SHAP values of the feature elements Al,
Ni, and Cu and the feature values, distinguishing between positive and negative SHAP
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—~
=]
—

SHAP value for
Al

values by colour. The red dots indicate positive SHAP values for the sample, suggesting
that the value of the feature positively promotes the hardness prediction, and blue dots
indicate negative SHAP values, suggesting that the value of the feature negatively inhibits
the hardness prediction. The green line represents the critical line where the magnitude of
the values of the two interacting features shift. It can be seen that there is a clear boundary
of 0.18 between the positive and negative SHAP values of this feature for the element Al,
which changes the effect of this important feature on the prediction of high hardness from
inhibition to facilitation. The element Ni exhibits a positive gain before the percentage
of 0.175 and a negative inhibition after 0.175. The element Cu exhibits a positive gain
before the percentage of 0.14 and a negative inhibition after 0.14. The element Cu exhibits a
positive gain before the percentage of 0.14 and a negative inhibition after 0.14. By analyzing
the SHAP values of these characteristic elements, the specific influence of each element on
the hardness prediction can be more clearly understood, thus providing a more scientific
basis for the design and optimization of HEAs. These findings help to clarify the critical
content range of each element and guide the precise adjustment of the material composition
to achieve the desired hardness and properties.
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Figure 23. Partial element dependency graph based on SHAP. (a) Al. (b) Ni. (c) Cu.

4. Conclusions

In this study, three methods, namely Gaussian Noise, GAN, and the optimized GAN-
Pro, were used to expand and augment the collected dataset of the elemental content and
hardness of the AlICoCrCuFeNi HEA. Bayesian optimization with grid search was em-
ployed to determine the optimal combination of hyperparameters, and samples consistent
with the distribution of real data were generated, effectively increasing the training sample
size and significantly improving the accuracy of the prediction model. Two interpretability
methods, SHAP and permutation importance, were used to further investigate the rela-
tionship between the elemental characteristics of the HEA and its hardness. The results
show that the optimal data augmentation method is Gaussian noise augmentation, with an
accuracy of 97.4% when medium noise (o = 0.003) is added. Finally, a prediction model
with optimal performance based on the existing dataset was constructed. Through the
interpretability method, it was found that the contributions of Al and Ni are the most
prominent. When the Al content exceeds 0.18 mol, it has a positive promoting effect
on the hardness, while Ni and Cu exhibit a critical effect of promotion—-inhibition near
0.175 mol and 0.14 mol, respectively. This reveals the nonlinear regulation law of the
elemental content. It not only improves the transparency of the model but also solves the
problem of the lack of alloy data. This result reveals the relationship between the elemental
content of the HEA and its hardness and provides valuable guidance for the design and
optimization of HEAs.
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