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Abstract: Acoustic nonlinearity derived from microstructural evolution of metallic materi-
als during plastic deformation has been found to be a promising nondestructive technique
to identify early stage plastic damage in metallic structural components. In the current
investigation, the propagation of longitudinal ultrasonic waves in plastically deformed
35CrMoA steel plates was simulated using finite element (FE) methods based on the theory
of dislocation-induced acoustic nonlinearity to establish the relationship between acoustic
nonlinearity parameters and plastic strain. Experiments were conducted to validate the nu-
merical model. Both simulated and experimental results demonstrate a monotonic increase
in the acoustic nonlinearity parameter with applied plastic strain. The simulated ultrasonic
nonlinear parameters deviate from experimental measurements in a two-stage pattern. In
the low-strain regime (plastic strain < 8.5%), FE predictions underestimate experimental
values, possibly due to dislocation entanglement in high-density regions that restricts
dislocation mobility and suppresses acoustic nonlinearity. The FE model overestimates the
parameters when plastic strain exceeds about 8.5%. This reversal is related to the formation
of dislocation cells and walls with enhanced acoustic nonlinearity.

Keywords: 35CrMoA steel; ultrasonic nonlinearity; second-harmonic generation; plastic
damage; finite element simulation

1. Introduction

Plastic deformation is a fundamental phenomenon in the manufacture and service
of metallic materials. Plastic damage is generated with the accumulation of plastic de-
formation resulting from changes in microstructure, such as dislocation multiplication,
annihilation, and subgrain initiation.

Failure occurs when the level of plastic damage exceeds a certain threshold [1-3].
Therefore, the quantitative detection of plastic damage is of great significance in predicting
the residual service life of metallic structures. Nonlinear ultrasonics is considered to be
one of the effective methods for assessing early-stage damage of materials, such as plastic
damage, fatigue damage, and creep damage [4-6].

The ultrasonic nonlinearity arises from the nonlinear stress—strain relationship result-
ing from the evolution of microstructures, such as crystal lattices and dislocations. The
magnitude of damage in metal materials can be characterized by cumulative plasticity
resulting from changes in microstructure, such as dislocation density. The magnitude of
ultrasonic nonlinearity exhibits distinct differences between intact and damaged material
states. This discrepancy enables the evaluation of material degradation through ultrasonic
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nonlinearity measurements, which are quantified by analyzing harmonic amplitudes in
propagated ultrasonic waves [7-9]. To quantitatively describe the relationship between
ultrasonic nonlinearity and material microstructure, a series of theoretical models have
been established, including the dislocation string model, dislocation dipole model, and
cumulative plastic strain model [10-13]. Hikata et al. [14] modeled the dislocation motion
contribution to acoustic nonlinearity based on the dislocation string vibration model of
Granato and Liicke [15] and experimentally verified in a high purity single crystal alu-
minum. The Hikata et al. model was later extended by Cash and Cai [16] to take into
consideration orientation-dependent line energy and verified with dislocation dynamics
simulations. Zhang et al. [17] improved the Hikata et al. model by taking into account the
nonlinearity arising from screw and edge dislocations. However, it is still a challenge to
capture the integrating quantitative microstructural contributions (e.g., dislocation density,
precipitation, etc.) by experimental observation to establish the damage to constitutive
relationships. Numerical simulations have been increasingly applied in ultrasonic non-
linearity studies due to their high efficiency and low cost. Some numerical models have
been proposed to simulate the ultrasonic nonlinearity of media and/or damage, such as the
finite element method (FEM) [18], finite difference time domain method (FDTD) [19], and
local interaction simulation approach (LISA) [20]. Zhu et al. [21] simulated the longitudinal
wave propagation in plastically deformed 30Cr2Ni4MoV martensite stainless steel and a
monotonically increasing tendency of the acoustic nonlinearity parameter as a function
of plastic strain was found. Wang et al. [22] modeled the effect of porosity on ultrasonic
nonlinearity. The results showed that the relative nonlinear coefficient increases with
the increasing pore length and decreases with the increasing pore width. Kim et al. [23]
presents a non-destructive method for quantitative assessment of fatigue damage of ma-
terials with linear elastic properties. The semi-analytical finite element (SAFE) technique
was used to obtain the phase-matching modes of the specimens. Li et al. [24] proposed a
2D hybrid spectral/finite element scheme for numerically resolving crack-induced contact
acoustic nonlinearity in solid structures. Cao et al. [25] proposed a dedicated FE model
to scrutinize the modulation mechanism of various modalities of pitting damage on the
probing ultrasonic waves. Chen et al. [26] simulated the nonlinear mixed-frequency ultra-
sonic wave transmission mechanism from the cracks with different depths and the excited
frequency. However, it is still a challenge to directly model the microscopic microstructure
(e.g., dislocations, precipitates, etc.) of a macroscopic engineering structure due to the huge
computational cost.

In the current investigation, a finite element model based on the dislocation-induced
ultrasonic nonlinearity theory was established to simulate the ultrasonic nonlinearity of
plastically deformed material. The Kocks—-Mecking model was used to simulate the evo-
lution of dislocation density. The ultrasonic nonlinear coefficients of material at different
plastic damages were simulated to obtain the relationship between plastic damage, dislo-
cation evolution and ultrasonic nonlinearity of the material. Subsequently, experimental
validation was carried out to verify the accuracy of this model. The simulated results
provide a theoretical foundation for the ultrasonic nonlinear evaluation of plastic damage
of metal material.

2. Experimental Procedure

The material used in this study is 35CrMoA steel with the following chemical compo-
sition (wt. %): C 0.357, Cr 1.025, Mo 0.188, Si 0.212, Mn 0.688, P’ 0.015, 5 0.0048, and Fe as
the balance. The dimensions of the specimens are shown in Figure 1. Initially, the speci-
mens were stretched to a predefined strain at room temperature using a universal testing
machine with a controlled strain rate of 2.0 mm/min. A total of six groups of specimens
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were prepared, each containing two specimens in each group. Group A0 represented the
original specimen used as a reference while group A5 was stretched until it fractured to
determine the maximum elongation. Groups Al to A4 were stretched to 20%, 40%, . . ., 80%
of the maximum elongation, respectively, resulting in the corresponding strain values of
0.4%, 3.5%, 6.8% and 11.2%, respectively.
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Figure 1. Dimensions of the specimen (Unit: mm).

Subsequently, the acoustic nonlinearity coefficients of both the original and plasti-
cally deformed specimens were measured using the RITEC SNAP RAM-5000 nonlinear
ultrasonic testing system (RITEC Inc., Warwick, RI, USA). The experimental setup for
nonlinear ultrasonic measurements is shown in Figure 2. A calibration step was conducted
using a pulse-echo setup before the nonlinearity measurements to obtain the calibration
function. The calibration function converts the electrical output of the receiving transducer
into displacement amplitude to compensate for the coupling effect of the receiving trans-
ducer [27]. It is important to maintain the same contact condition between the specimen
and the transducers in all tests. For this purpose, a specially designed fixture was used
to secure the transducers, ensuring that a constant pressure of 3 kg x 9.8 = 29.40 N was
applied in all tests.
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Figure 2. Experimental setup for nonlinear ultrasonic measurements.

To generate and measure the longitudinal wave, two commercial piezoelectric trans-
ducers with a diameter of ® = 8 mm were positioned at the center of the top and bottom
surfaces of the specimens. A narrow-band longitudinal piezoelectric transducer was used
to transmit a high-power fundamental wave while the receive transducer operated in
pulse-echo mode and was excited with a broadband signal. The central frequencies of
the transmitter and receiver are 5 MHz and 10 MHz, receptively, to the second harmonic
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components of longitudinal wave. The cutoff frequencies of the low- and high-pass filters
are 1 and 20 MHz, respectively. The transmitter is operated with a voltage of 450 V. A
high-voltage tone-burst signal consisting of 5 cycles, with a spatial length of approximately
8.0 mm, is modulated using a Hanning window and then fed into the transmitter. The

transmitted signal waveform is shown in Figure 3.
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Figure 3. Waveform of the transmitted signal.

The one-dimensional nonlinear constitutive equation in an isotropic solid medium
can be described as [28]:
Oxx = Eex(1+ Bex+...) (1)

where, E is the elastic modulus, oy, is stress, ¢, is the strain, x is the material coordinate,
and f is the second-order nonlinear coefficient. When the strain is small, the relationship
between strain and displacement is given by:

_du

== @

Ex
where, u is displacement. Ignoring the effects of scattering and attenuation, the wave
equation of one-dimensional longitudinal wave in the solid medium is:

Pu _ doxx
o = or ©
where p is the density of the medium, and ¢ is time. By substituting Equations (1) and
(2) into Equation (3) and ignoring the high order terms, the one-dimensional longitudinal
wave equation in nonlinear media can be derived as:

Fu _ du du o°u

Por ~ B3z Y 92 @

Consider a single-frequency sinusoidal incident wave, namely u# = Aj sin(wt), where

amplitude of fundamental wave is A; and w is angular velocity. According to the perturba-
tion theory, the solution of the wave equation is [29]:

u = Aj sin(kx — wt) — %ﬁsz%x cos 2(kx — wt) (5)
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where, k is the wave number of the propagating wave. According to Equation (5), amplitude
A of the second harmonic is:

1
A= Bk>A2x (6)
Then, the second-order nonlinear coefficient of the material can be expressed as:

_8 A
o k2x A?

p @)

According to Equation (7), the second order acoustics nonlinear coefficient of the
material can be obtained through the Fast Fourier transform (FFT) transformation of the
experimentally measured time domain received signal. Subsequently, the amplitudes
Aj and Aj of the fundamental wave and the second harmonic in the received signal can
be determined. To minimize the influence of ultrasonic near-field effects, the secondary
reflected echo from both the lower and upper surfaces of the specimen was selected for
measuring the second order acoustics nonlinear coefficient. The frequency scan range of
the received signals begins at 1 MHz and extends up to 20 MHz. Each received signal
file comprises approximately 1200 data points, providing detailed information at various
frequencies. Additionally, a post-averaging process was applied to the harmonic signals
to enhance stability. This process ensures that the measured values accurately reflect the
overall level of the nonlinear effect present in each plastically deformed specimen. Through
post-averaging, the values are smoothed and become more consistent, thus improving the
reliability of the results. To reduce the testing error, each sample was measured three times.
Figure 4 illustrates one of the frequency spectrum curves of the received signal of the Group
A4 specimen, highlighting the features of received signal.
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Figure 4. Frequency spectrum curve of the received signal of group A4 specimen.

From Figure 4, both the 5 MHz fundamental wave (A;) and the 10 MHz second
harmonic wave (A;) were captured by the receiver. The amplitude of fundamental wave
(A1) is nearly 4.5 V, whereas the amplitude of the second harmonic wave (4;) is less
than 0.1 V. This indicates that the acoustics nonlinearity of plastically deformed 35CrMoA
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steel is relatively weak, and generating an observable second harmonic wave requires a
high-power fundamental wave.

3. Mathematical and Finite Element Models
3.1. Theory of Dislocation-Induced Acoustics Nonlinearity

The plastic damage in metal materials is closely related to the evolution of dislocation
structure. When subjected to an external load, dislocations within the material nucleate,
accumulate and become entangled, resulting in changes to ultrasonic nonlinear parameters.
Gliding dislocations are impeded by impurity atoms and precipitation phase particles
within the material. Under stress, the dislocation line between two adjacent pinning points
deforms into a bow-like string. When a periodic stress wave is applied to this dislocation
string, it undergoes forced vibration, leading to waveform distortion of the incident wave
and the generation of high-order harmonics.

The propagation of ultrasonic waves generates a small oscillatory stress with an
amplitude of Ao in addition to the applied stress and results in an additional stran Ae. The
relation between the additional stress Ac and the additional strain Ae caused by elastic
wave in crystal can be expressed as [30]:

2 2
AT = % (Ae) + 595 (8e)* + (8)
— A(De) + 1B(Ae)? +
where 1
_ 2 -
Ao [é{+4(130).91\y“<(1+vf5—20f3) 1}
H
-3 (23)3 +15*2(1*U)3'Q[:3L§2Ra 'Ub'(1+vfs2vf8)3} ©)
2

B =

3
4(1— 2 -1
{Al?_i_ (31;) 'QA}{LR(l—i-ZJfS—ZUfg) }

where y is the shear modulus, b is the modulus of the Burgers vector, v is Poisson’s ratio, A
is the dislocation density, L is half of the length of the dislocation string, o, is the back stress,
) and R are the conversion factors of shear strain and shear stress to longitudinal strain
and longitudinal stress respectively. A% and All are the second-order and third-order
Huang coefficients of the lattice respectively, and f, and f; are the fractions of edge and
screw dislocations in total dislocations, respectively. Ultrasonic nonlinear coefficient § can
be expressed as:

AH 3 4R3 -3
B _(A§>3+%(1_U) 'QﬁsLbzR <0y - (1+vfs — 20fe)

IB:_Z_ 4(1 2 2
@4_ (E;v)'QA;R(1+UfS_2Ufe)71

(10)

In most cases, 4(1 — v)QAL?R(1 + vf; — vae)il /3y is much smaller than 1/ A} and
can be neglected. Therefore, the ultrasonic nonlinear coefficient  can be further simpli-
fied as
AP 192(1 — 0)® AL*QR3 (AL’

-3
T aH 5 R X 03(2 — v+ 3vcos20) (11)

B =

where 0 is the angle between the dislocation line and the Burgers vector.
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3.2. Dislocation Density Evolution Model

The plastic deformation of metal materials is related to the dislocation motion. Ac-
cording to the Kocks—-Mecking model [31], the flow stress o is solely related to dislocation
density A, which can be expressed as:

s = 09 + aubVA (1) (12)

where « is a constant, which is 0.5 for most metals. During plastic deformation, the change
rate of dislocation density is given as

dA

- = kivVA — kA (2) (13)
where k; and k; are dislocation formation and annihilation coefficients, respectively. Dislo-
cation annihilation is the result of dynamic recovery process, and its effect can be neglected
in room temperature tensile. The coefficient k; can be obtained by fitting the flow curve of

35CrMOoA steel.

3.3. Finite Element Simulation

In the current investigation, the commercial finite element software COMSOL Mul-
tiphysics (V6.2, COMSOL Inc., Stockholm, Sweden) was used to model the constitutive
equation of acoustics nonlinearity and simulate the propagation of ultrasonic nonlinearity
in a plastically deformed 35CrMoA steel specimen. In homogeneous isotropic media, ul-
trasonic nonlinearity arises from material nonlinearity, geometric nonlinearity, and plastic
deformation. It is generally believed that the ultrasonic nonlinearity caused by plastic
damage mainly results from the evolution of dislocations in materials. The finite element
model is shown in Figure 5.

Excitation

Low reflecting boundary * ‘ * Low reflecting boundary
\

|‘§\J\Receiving
100

Figure 5. Schematic diagram of the simulation model (Unit: mm).

The top and bottom sides, except for the area where the excitation signal is applied,
are stress-free and non-reflecting boundary conditions are prescribed for the lateral sides.
The fundamental wave was excited by imposing longitudinal stress loadings with a 5-cycle
Hanning-windowed sinusoidal tone burst at 5.0 MHz. The width of the excited area is 8 mm
(identical to the diameter of the transducers) and the amplitude of the fundamental wave
is 20 MPa. The received signal was obtained by extracting the longitudinal displacement
at the center of the bottom edge. Subsequently, a Fast Fourier transformation (FFT) was
performed on the extracted time domain signal to get the amplitudes of the fundamental
and second harmonic signals. Finally, the acoustic nonlinearity parameters can be calculated
using Equation (7).

The fourth-order Lagrange element was used in the FE model. To ensure the con-
vergence of calculation, each wavelength should contain at least approximately 1.5 grid
elements [32]. The wavelength of an ultrasonic longitudinal wave in steel is approximately
1.2 mm, so the grid size of finite element model elements is selected as 0.8 mm. According
to the Fourier or von Neumann stability analysis [33], the time step, At, should be smaller
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than the time required for the longitudinal wave to travel across the element length, which
is expressed as:

At < — (14)

cL

where c; is the longitudinal wave velocity in steel and Ay is the length of element. The
material parameters used in the calculation were A? = —BA? =195 GPa, n = 82 GPa,
v=0.3,b=25nm, L =23 nm, and the conversion factors () and R were chosen as 0.33 [34].
The edge dislocation and the screw dislocation were assumed to each make up half of the
total dislocations. Figure 6 shows the propagation of the ultrasonic wave in the specimen
when the plastic strain € = 0.112.

t=05ps _ |
T =
t=1.0us i‘——zi | —
t=15us iéi ——
t=2.0us = |
______________________ =
t=25ps = =
t=3.0ps i.; 3 i —
£ /10-5_ |

-20 15 -10 -5 0 5 10 15 20

Figure 6. Propagation of elastic waves in the specimen.

It can be seen that the ultrasonic waves propagate to the bottom edge of the specimen
after about t = 1.4 ps, and reflect several times on the bottom and top edges. For the
simulated specimens in this investigation, the ultrasonic nonlinearity mainly arises from
the material nonlinearity. The received signal in the time and frequency domain of the
received signal in Figure 6 is shown in Figure 7.

The first wave is the signal that the transmitted signal directly reaches the receiving
probe on the bottom edge, while the second wave is the signal that the transmitted signal
reaches the receiving probe after being reflected once each from the bottom and top edges
of the specimen, respectively. The Hanning window is used to intercept the second wave
(t = 4-5.5 us) of the received signal in Figure 7a, and then the Fast Fourier transform (FFT)
was performed on this signal to obtain the spectrum distribution of the received signal. It
can be seen that due to the nonlinear stress—strain relationship of the material, the second
harmonic at 2f frequency is generated in the received signal.
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Figure 7. Received signal in time (a) and frequency (b) domain.

4. Discussion

The normalized relative nonlinearity parameters of the plastically deformed specimens
with respect to the ultrasonic nonlinear parameters B of the original unstretched specimens
were defined as a function of the plastic strain. The results from experimental measurement
and finite element simulation are shown in Figure 8.

24

—&— Experiment
Simulation

2.2

2.0
18}
%‘? I
= 16}

1.4
1.2

1.0

08 | L 1 M 1 L | L | L 1 s
0 2 4 6 8 10 12

Plastic strain, ¢/ %

Figure 8. Effect of plastic strain on normalized nonlinearity parameter.

From Figure 8, it is evident that the ultrasonic nonlinear coefficient increases with
the increase in plastic deformation. In the early stage of plastic deformation, the rise in
the ultrasonic nonlinear coefficient can be mainly attributed to the increase in dislocation
density. However, in the late stage of plastic deformation, the increase of the ultrasonic
nonlinear coefficient is primarily associated with the formation of dislocation walls and
dislocation cells [29].

The simulated ultrasonic nonlinear parameters exhibit a two-stage deviation pattern
compared to experimental measurements. In the low-strain regime (plastic strain < 8.5%),
the finite element (FE) predictions systematically underestimate experimental values. This
deviation likely originates from dislocation entanglement mechanisms in high-density
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References

regions, where mutually trapped dislocations restrict their mobility and thereby suppress
dislocation-induced ultrasonic nonlinearity [10]. In contrast, a crossover phenomenon
emerges at plastic strains exceeding 8.5%, with the FE model overestimating the exper-
imental ultrasonic nonlinear parameters. This reversal correlates with microstructural
evolution during plastic deformation: Progressive dislocation accumulation leads to self-
organization into cellular structures (dislocation walls/cells) that demonstrate enhanced
acoustic nonlinearity compared to planar dislocation configurations [29]. Notably, the
current modeling framework exclusively accounts for planar dislocation dynamics, failing
to capture the diminished nonlinear response associated with these three-dimensional
dislocation structures. This modeling limitation explains the increasing discrepancy at
advanced deformation stages.

5. Conclusions

Investigations into the propagation of longitudinal waves and the ultrasonic nonlinear
response of plastically deformed 35CrMoA steel were conducted through experiments and
finite element simulations, ultilizing the dislocation-induced acoustic nonlinearity theory
as a basis. The following conclusions have been drawn:

(1) Simulated and experimental results show a strong correlation between the acoustic
nonlinearity parameter and plastic strain. Both simulated and experimental results demon-
strate a monotonic increase in the nonlinear acoustic parameter with applied plastic strain.

(2) The simulation results for the ultrasonic nonlinear coefficient are lower than the
experimental results when the plastic strain is lower than about 8.5%. This difference may
be attributed to the dislocation entanglement in the areas with high dislocation density
during the early stage of plastic deformation, which hinders dislocation movement and
consequently reduces the nonlinear ultrasonic response of dislocations.

(3) When the plastic strains exceed about 8.5%, as dislocation density increases, the
dislocations pile up with each other, forming dislocation cells and dislocation walls. The
ultrasonic nonlinear response induced by dislocation cells and dislocation walls is higher
than that of plane dislocations. Therefore, the calculated results for ultrasonic nonlinear
coefficients in the later stage of plastic deformation are lower than the experimental results.
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