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Abstract: Hot-forming technology for 22MnB5 hot-forming steel (22MnB5 HF steel) plates has been
widely used in the automobile manufacturing industry in recent years. Physical simulation and
numerical modeling were carried out in order to determine the forming limit of a 22MnB5 steel
plate for the stamping process. The deformation experiments were performed in a temperature
range of 600~900 ◦C and a strain rate range of 0.1~10 s−1. In the uniaxial tensile tests, it was found
that at the forming temperature of 600 ◦C, the condition of dynamic recrystallization was not fully
reached, and thus the corresponding tensile strength was much larger than that at other deformation
temperatures. In the numerical simulation of bulging experiments, it was found that 22MnB5 steel
had good formability when the initial deformation temperature was high and the forming speed
was low by using the instability criterion, combining the maximum punch force and strain path
transition. The forming limit diagram of 22MnB5 steel at a temperature of 700 ◦C and tool speed of
25 mm/s was obtained by means of simulation and a hot stamping experiment. The establishment of
the forming limit of the 22MnB5 steel plate can provide theoretical and technical guidance for the
hot-forming process.

Keywords: 22MnB5 hot-forming steel; forming limit diagram; fracture criterion; numerical simulation

1. Introduction

With the development of social economy and the improvement in per capita income,
the automobile manufacturing industry has developed rapidly. At the same time, the
automobile manufacturing industry has also put forward higher requirements for material
resources and environmental protection [1–3]. The body steel plate accounts for more
than 20% of the total weight of the vehicle. Experiments have shown that if the vehicle
mass is reduced by 100 kg, the fuel consumption for driving 100 km can be reduced by
0.3–0.6 L. Fuel consumption can be reduced by 0.7% for every 1% reduction in vehicle
weight [4,5]. According to statistics, at present, 90% of the steel plates used in automobiles
are made of HF steel. The use of HF steel plates as automobile body manufacturing
materials has reduced the total mass of automobiles by about 30% compared with the use of
ordinary steel plates. This 22MnB5 steel has the advantages of high strength and excellent
collision resistance. The use of HF steel plates can meet the performance requirements and
achieve lightweight automobiles [6–8]. Therefore, it has become the preferred material for
automobile structural parts of many automobile enterprises [9].

However, the excellent strength also causes many problems and defects in the stamp-
ing process of HF steel at room temperature [10,11]. The hot stamping technology of HF
steel can avoid the disadvantages of easy wrinkling and cracking of materials at room
temperature, the poor forming quality of workpieces, high requirements for equipment
and the easy damage of molds [12–14]. Therefore, the hot-forming technology of the HF
steel plate has become a hot research topic [15,16]. Germany and Sweden have an absolute
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leading position and voice in the R&D field of hot stamping. Melak et al. studied the
influence of plate thickness and cooling medium on the hot stamping quality of the 22MnB5
steel plate by combining experimental and simulation methods. It was found that increas-
ing the plate thickness and changing the cooling medium can improve the strength and
toughness of the parts [17]. Daniel et al. studied the transformation temperature and critical
cooling rate of the 22MnB5 steel plate with Zn–Fe coating during hot forming by means of
microscopic characterization [18]. Venturato et al. established the generalized incremental
stress-state-dependent damage model (GISSMO) to predict the formability in 22MnB5 hot
stamping by means of experiment and numerical simulation [19]. Zhuang et al. conducted
X-ray diffraction and microstructure investigations to study the phase composition and
micro defects, respectively, established a damage-coupled pre-forming constitutive model,
and embedded it into ABAQUS 2016 through the VUMAT interface for simulation [20].
Chen et al. proposed a theoretical prediction model for forming a limit prediction model for
the high temperature forming process of 22MnB5 based on the Norton–Hoff constitutive
model, BBC 2005 yield criterion, and M-K model [21]. Zhou et al. used the combination
of theoretical research, finite element simulation, and an experimental test to realize the
three-field coupling of thermal mechanical damage in the hot stamping process by using the
numerical simulation method [22]. Guo and Zhang et al. introduced the Zener Hollomon
parameter to improve the Cockcroft–Latham criterion, Rice–Tracey criterion, and Oyane
criterion to predict the initial value of damage and fracture of relevant materials [23,24]. But
for the 22MnB5 steel sheet, there is a lack of forming limit research combining simulation
and hot stamping experiments. The plasticity of the material in the high-temperature
forming process will be affected by the temperature and deformation speed. The steel plate
and the heat exchange with the mold will also affect the final experimental results, so it is
difficult to obtain a more accurate thermal forming limit.

In the present study, through hot tensile tests and the numerical simulation of bulging
tests on 22MnB5 steel, the microstructural changes of 22MnB5 steel and the thermoplasticity
of the material under different deformation conditions were analyzed. The fracture criterion
and hot-forming limit diagram were established to predict the fracture failure behavior of
22MnB5 steel.

2. Materials and Methods
2.1. Numerical Simulation of Stamping Forming

The material used in the present study was a 22MnB5 steel plate with a thickness of
1.4 mm, and the chemical composition is summarized in Table 1.

Table 1. Chemical composition of the studied 22MnB5 steel (Mass fraction, at. %).

Element C Mn P S Si Ti + Cr B Fe

Content (at. %) 0.22 1.2 0.019 0.003 0.25 0.229 0.003 Bal.

The hot tensile test of 22MnB5 steel was carried out on the Gleeble1500D thermal
simulation test machine (Poestenkill, NY, USA). The tensile sample width was 14.5 mm
and the length was 60 mm. After the sample was broken, the part near the fracture section
was taken for metallographic observation. The sample was polished with 240–1000 mesh
sandpaper and then mechanically polished to obtain the metallographic sample. The
geometric model of the bulging experiment was established as shown in Figure 1. The
plate thickness of 22MnB5 steel was set to 1.4 mm and the length to 180 mm. To change the
strain path of the 22MnB5 steel plate, 9 different plate widths were set at 20 mm intervals
between 20 mm and 180 mm, and the punch diameter was set to 100 mm. The material
model required by 22MnB5 steel plate and die was obtained, and DYNAFORM 5.9.4 finite
element simulation software was used to simulate the bulging test of the 22MnB5 steel plate.
The initial temperature of the 22MnB5 steel and the stamping deformation speed were
changed, appropriate instability criteria were selected, and the influence of deformation
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conditions on the formed parts was analyzed. The no. 106 material model was selected for
this simulation. The model requires input material density, elastic modulus, Poisson’s ratio,
viscosity parameters C and P, thermal expansion coefficient, and stress–strain data, and
the material parameters required for 22MnB5 steel by performing a tensile test and using
JMatPro V7.0 simulation software. The voce hardening law saturation stress hardening
model was used to perform the flow stress curves, corresponding to different temperatures
of the 22MnB5 steel line fitting. The hot material parameters of 22MnB5 steel and H13
hot-work die steel were obtained using JMatPro simulation software.
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Figure 1. Geometric model of experimental die for Nakazima bulging.

2.2. Selection of Instability Criteria

The 22MnB5 steel is greatly affected by the value of the strain rate sensitivity index in
the hot-forming process, and the error of forming limit diagram (FLD) function directly
provided by the software was very large. Therefore, the instability criterion was needed to
determine whether necking fracture occurred and to find out the fracture time. At present,
the maximum punch force criterion and the strain path transition criterion are commonly
used in the post-processing analysis of 22MnB5 steel numerical simulation.

Figure 2 shows the punch force–time curve corresponding to the samples taken
from 22MnB5 steel plates with widths of 20 mm (Figure 2a), 80 mm (Figure 2b), 100 mm
(Figure 2c), and 180 mm (Figure 2d). Through the cup bulging simulation of 22MnB5 steel
with different plate widths, it was found that the maximum punch force criterion was only
applicable to the small 22MnB5 steel width (20~80 mm). When the 22MnB5 steel width
was relatively large (100~180 mm), the specimen would show a double tension state, and
the punch force would increase with the growth of displacement without peak value.
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Figure 3 presents the transition diagram of the maximum principal strain path cor-
responding to the specimen when the plate widths are 20 mm and 180 mm. It can be
observed that when the plate width is small (less than 100 mm), there will be no inflection
point in the strain path of the maximum principal strain, as shown in Figure 3a. When the
second principal strain value is almost unchanged, but the maximum principal strain value
increases sharply in a vertical shape, the stress state changes to a plane stress state, and the
strain corresponding to the inflection point is the limit strain value, as shown in Figure 3b.
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2.3. Hot-Stamping-Forming Experiment

On a THP-500T isothermal forging press (Genertec Tianduan, Tianjin, China), an
experimental platform for hot stamping was independently set up, including a set of hot
stamping dies according to the Nakazima bulging test standard, as well as displacement
and force-measurement systems, as shown in Figure 4. The material of the hot stamping die
was H13 steel. The hot stamping process parameters referred to the numerical simulation
analysis results. Combined with the time–temperature transformation (TTT) curve of
22MnB5 provided by scholars [25], the steel that achieves austenitizing above 900 ◦C has
better formability. The mold was first heated to 650 ◦C, and then the plate was heated
to 930 ◦C by the resistance furnace, and the heat was maintained for 5 to 10 min. When
the plate temperature was 700 ◦C, the plate was quickly transferred to the mold, and the
experiment was carried out on the THP-500T isothermal forging press.
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3. Results and Discussion
3.1. Mechanical Performance of the Studied 22MnB5 Steel Plate

The material was heated at a constant rate of 15 ◦C/s, the heated to 930 ◦C for 2 min,
and the material was completely austenitized. Then, it was cooled to 600 ◦C~900 ◦C for the
tensile test. The tensile stress–strain curves of 22MnB5 steel under different experimental
conditions are presented in Figure 5. The tensile strength of 22MnB5 increased with the de-
crease in deformation temperature and rise in strain rate. The phenomenon of the strength
obtained at temperature of 600 ◦C being the largest compared to the strength obtained
at the other temperatures could be understood through the thermodynamic equilibrium
transformation law of the studied steel, as is shown in Figure 6. Figure 6a shows the
equilibrium transition diagram of the studied steel calculated through J-mat Pro software,
and it could be seen that the A3, A1 temperatures were similarly determined to be 818 ◦C
and 697 ◦C, and it could be further seen that the tensile temperature zones were mainly
distributed in the dual-phase region consisting of ferrite and austenite. Figure 6b shows
the continuous cooling transformation curves (CCT) of the studied steel calculated through
J-mat Pro software. In accordance with the CCT, it could be seen that the undercooling
austenite of the studied steel began to transform to pearlite when the tensile temperature
decreased to 600 ◦C and 1 ◦C/s was selected as the cooling rate, and the microstructure
was mainly composed of proeutectoid ferrite and pearlite. When the tensile temperature
was increased to a certain temperature above ~650 ◦C, the microstructure of the studied
steel was composed of proeutectoid ferrite and austenite in terms of the CCT, and it could
be further deduced that the strength obtained at the tensile temperature of 600 ◦C was
higher compared to the strength obtained at a tensile temperature above 650 ◦C due to the
presence of the hardened phase of pearlite. According to the flow stress curve of 22MnB5
steel (Figure 5), the tensile strength and fracture strain of different tensile temperatures
and strain rates could be obtained, as shown in Table 2. The fracture strain of the material
increased with the increase in deformation temperature, and the fracture strain increased
first and then decreased with the increase in strain rate (0.1–10 s−1). Therefore, it can be
preliminarily judged that the hot-stamping-forming interval of the 22MnB5 steel plate can
be selected to be between 700 and 900 ◦C.
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Table 2. Tensile strength and fracture strain of 22MnB5 steel under different experimental conditions.

Temperature (◦C) 600 700 800 900

Strain rate (s−1) 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10
Tensile strength (MPa) 250 284 310 158 177 192 127 143 148 98 109 121

Fracture strain 0.228 0.243 0.232 0.271 0.283 0.256 0.299 0.316 0.301 0.301 0.313 0.311

3.2. Influence of Deformation Conditions on Simulation Results under Stamping Experiment

For 180 × 180 mm 22MnB5 steel, the initial deformation temperature of 22MnB5 steel
was set as 600 ◦C, 700 ◦C, 800 ◦C, or 900 ◦C, and the forming speed was 2.5 mm/s, 25 mm/s
or 250 mm/s, respectively. The maximum principal strain unit was found, and the number
of steps corresponding to the critical rupture time of the maximum principal strain unit
was found using the strain path transformation criterion. The different deformations at
critical rupture time were compared and analyzed under the conditions of 22MnB5 steel
temperature field, pressure displacement, and thinning rate.

Figure 7 is the cloud chart of the equivalent plastic strain rate corresponding to
different forming speeds. It can be found that when the forming speed is 2.5 mm/s, the
equivalent plastic strain rate is particularly small, with a maximum of 0.062 s−1. Although
the strain rate nephogram is unevenly distributed, the small value does not affect the
uniformity of the deformation area. With the increase in forming speed, the equivalent
plastic strain rate increases continuously, and the difference in equivalent plastic strain
rate corresponding to different deformation regions becomes larger, resulting in uneven
deformation; fracture occurs more easily in the region with large equivalent strain rate.

Metals 2024, 14, x FOR PEER REVIEW 7 of 14 
 

 

strain rate increases continuously, and the difference in equivalent plastic strain rate cor-
responding to different deformation regions becomes larger, resulting in uneven defor-
mation; fracture occurs more easily in the region with large equivalent strain rate. 

 
Figure 7. Nephogram of equivalent plastic strain rates under different forming speeds: (a) 2.5 mm/s; 
(b) 25 mm/s; (c) 250 mm/s. 

Figure 8 is the nephogram of the plate-pressing displacement corresponding to the 
critical fracture time at different forming speeds. The maximum downforce displacements 
corresponding to the critical fracture time at different forming speeds were 27.308 mm, 
23.506 mm, and 21.903 mm, respectively. By increasing the stamping speed, the heat loss 
becomes lower, the corresponding temperature is higher when the plate breaks, the strain 
hardening index is smaller, and the uniform deformation ability of the plate under load is 
weak. Therefore, the maximum downforce displacement of the plate decreases gradually 
with the increase in the stamping speed. In the forming process, the forming speed should 
be as small as possible. When the material meets the forming performance, the speed can 
be appropriately increased in order to save time and cost. 

 
Figure 8. Nephogram of displacement corresponding to 22MnB5 steel under different forming 
speeds: (a) 2.5 mm/s; (b) 25 mm/s; (c) 250 mm/s. 

Figure 9 is the nephogram of thinning rate corresponding to critical fracture time at 
different forming speeds. The maximum thinning rates corresponding to the critical 
breaking time at different forming speeds are 28.615%, 25.598%, and 19.992%, respec-
tively. With the increase in forming speed, the pressing displacement corresponding to 
the critical breaking time of 22MnB5 steel gradually decreases, the load that can be borne 
in the thickness direction of 22MnB5 steel decreases, and the corresponding thinning rate 
decreases. Under the same thickness, the faster the forming speed, the easier the work-
piece is to crack, and the greater the material thinning rate. Under the same specification, 
the workpiece obtained is light in weight. 

Figure 7. Nephogram of equivalent plastic strain rates under different forming speeds: (a) 2.5 mm/s;
(b) 25 mm/s; (c) 250 mm/s.

Figure 8 is the nephogram of the plate-pressing displacement corresponding to the
critical fracture time at different forming speeds. The maximum downforce displacements
corresponding to the critical fracture time at different forming speeds were 27.308 mm,
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23.506 mm, and 21.903 mm, respectively. By increasing the stamping speed, the heat loss
becomes lower, the corresponding temperature is higher when the plate breaks, the strain
hardening index is smaller, and the uniform deformation ability of the plate under load is
weak. Therefore, the maximum downforce displacement of the plate decreases gradually
with the increase in the stamping speed. In the forming process, the forming speed should
be as small as possible. When the material meets the forming performance, the speed can
be appropriately increased in order to save time and cost.
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Figure 9 is the nephogram of thinning rate corresponding to critical fracture time
at different forming speeds. The maximum thinning rates corresponding to the critical
breaking time at different forming speeds are 28.615%, 25.598%, and 19.992%, respectively.
With the increase in forming speed, the pressing displacement corresponding to the critical
breaking time of 22MnB5 steel gradually decreases, the load that can be borne in the thick-
ness direction of 22MnB5 steel decreases, and the corresponding thinning rate decreases.
Under the same thickness, the faster the forming speed, the easier the workpiece is to crack,
and the greater the material thinning rate. Under the same specification, the workpiece
obtained is light in weight.
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Figure 10 is the cloud diagram of the temperature field corresponding to the critical
fracture time of different initial deformation temperatures. It can be observed that when
the initial forming temperature of the 22MnB5 steel is higher, the higher the temperature
corresponding to the critical fracture time. However, due to the heat transfer and heat
conduction between the 22MnB5 steel and the die and the cooling system, the temperature
field corresponding to the 22MnB5 steel at the critical fracture time is not different. The
temperature in the center of the contact part between the 22MnB5 steel and the punch is the
highest, and the further away from the center, the lower the temperature. The temperature
distribution near the center is uneven.

Figure 11 is the nephogram of displacement corresponding to the critical fracture time
of the 22MnB5 steel under different initial deformation temperatures. It could be found that
the maximum downforce displacement of the plate with different initial deformation tem-
peratures at the critical fracture time was 27.219 mm, 29.037 mm, 25.422 mm or 24.822 mm,
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respectively. The maximum downforce displacement increased with the increase in the
initial deformation temperature, reached the maximum at 700 ◦C, and then decreased with
the increase in the initial deformation temperature.
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Figure 12 is the cloud chart of the thinning rate corresponding to the critical fracture
time at different initial deformation temperatures. It can be seen that the maximum thinning
rate corresponding to different initial forming temperatures at the critical fracture time
was 27.061%, 31.240%, 28.231% and 24.752%, respectively, which was the same as the
law of downforce displacement. It increased with the increase in the initial deformation
temperature of the plate. The greater the downforce displacement, the greater the thinning
rate. The thinning rate reached the maximum at 700 ◦C. Thereafter, the thinning rate
decreased with the increase in the initial deformation temperature of the plate. The area
with the largest thinning rate was located around the contact center between the punch
and the plate. Combined with the analysis of the temperature field nephogram, it was
found that the area with the most serious thinning was located in the area with uneven
temperature distribution.
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3.3. Establishment of Hot-Forming Limit Diagram for 22MnB5 Steel

To study the forming limit of 22MnB5 steel, we set the forming temperature to 700 ◦C,
and the forming speed was set to 25 mm/s to perform the cup bulging simulation on
the 22MnB5 steel plate. To analyze the post-processing results and identify the critical
instability moments for different plate widths, the criterion combining the maximum punch
force with the strain path transition was utilized, and the critical instability moments for
different plate widths were identified. Figures 13 and 14 show the axial and radial strain
nephograms, respectively, at the critical rupture moments for plate widths of 20 mm and
180 mm.

The analysis and extraction of the axial and radial strain points under different strain
paths are depicted in Figures 13 and 14, and their values are shown in Table 3. The hot-
forming limit diagram of the 22MnB5 steel plate can be obtained by fitting (as shown in
Figure 15). It can be found that the primary and secondary strains on the left side of the
FLD curve are linear when the secondary strain is less than 0. For the part where the
secondary strain is greater than 0, the right side of the FLD curve shows a parabolic shape
by quadratic fitting.
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Figure 14. Nephogram of radial strain of critical fracture when plate widths are 20 mm and 180 mm.
(a) 20 mm, (b)180 mm.

Table 3. Axial strain and radial strain points under different strain paths.

Radial strain −0.169 −0.172 −0.186 −0.146 −0.009 −0.05 0.002 0.048 0.103 0.131 0.153

Axial strain 0.441 0.46 0.456 0.422 0.337 0.347 0.311 0.332 0.349 0.366 0.387
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Figure 15. The hot-forming limit diagram of the 22MnB5 high strength steel plate at 700 ◦C.

3.4. Hot-Stamping Experiment of the 22MnB5 High-Strength Steel Plate

The 22MnB5 high strength steel with the same specifications as the simulation was
selected for the hot stamping bulging experiment. Based on the simulation analysis results,
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the hot stamping forming temperature of 700 ◦C and the pressing speed of 2.5 mm/s were
selected to carry out the hot stamping bulging experiment. In order to keep the temperature
field relatively uniform during forming, the hot stamping expansion experiment flow was
as follows: (1) Heat the stamping die to 650 ◦C; (2) heat the 22MnB5 high strength steel
plate to 930 ◦C using a resistance furnace and maintain at this temperature for 10 min. The
plate is then transferred into the stamping die, to wait for the hot stamping experiment
when the plate was cooled to 700 ◦C; (3) obtain force and displacement data from the data
collector. Figure 16 shows the force–displacement curve during stamping when the plate
width is 20 mm. Through curve analysis, record the corresponding pressing depth value
and maximum punch force for plates with different widths after stamping, as shown in
Table 4. It can be found that in addition to the 20 mm wide plate, the stamping depth value
is relatively similar. The maximum punch force increases with the increase in plate width.
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Table 4. Pressing depth and maximum punch force after stamping with different plate widths.

Plate width (mm) 20 40 60 80 100 120 140 160 180
Stamping displacement (mm) 34.0 25.9 27.6 26.7 27.1 25.2 26.3 27.4 27.6

Maximum punch force (T) 1.37 1.98 2.42 3.25 3.83 4.28 5.62 5.78 6.54

The hot stamping experiment was repeated twice, each with a width of 20–180 mm
at 700 ◦C. Figure 17 shows the maximum principal strain diagram of the hot-stamping-
forming simulation and experiment with 22MnB5 steel plate widths of 60 mm and 180 mm,
respectively. It could be found that under the same stamping displacement, for the cor-
responding area to the maximum principal strain, the simulation results were almost the
same as the 22MnB5 steel fracture area after the experiment; Table 5 shows the punch
force corresponding to the experimental and simulation results under the same stamping
displacement. It can be seen that the results of numerical modelling were very close to
the experimental results, indicating that the results obtained by the simulation method
were reliable.
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Table 5. Punch force of the experimental and simulation results under the same downforce
displacement.

Plate width (mm) 20 40 60 80 100 120 140 160 180
Stamping displacement (mm) 30 23 25 25 25 23 24 25 25
Punch force of experiment (T) 0.91 1.8 2.4 3.2 3.8 4.2 5.6 5.6 6.5
Punch force of simulation (T) 0.88 1.5 2.6 3.0 3.75 4.0 5.8 5.5 6.3

4. Conclusions

The applicability of the instability criterion was analyzed by simulating different
sheet widths of 22MnB5 steel. The influence of forming speed and initial deformation
temperature on the formability of the 22MnB5 steel plate was studied, and the forming
limit diagram of 22MnB5 steel at 700 ◦C was investigated. The following conclusions can
be drawn:

1. In the numerical simulation of bulging experiments, the maximum punch force
criterion was applicable to a plate width of 20~80 mm, and the maximum strain path
transition criterion was applicable to 100~180 mm.

2. The formability of 22MnB5 steel decreases with the increase in deformation speed and
increases with the rise in initial deformation temperature of 22MnB5 steel, reaching
the maximum when the initial temperature of 22MnB5 steel is 700 ◦C.

3. The limit strain point is determined by the instability criterion, and the hot-forming
limit diagram of the 22MnB5 HF steel plate at 700 ◦C and 25 mm/s is obtained by
fitting. It is found that the axial strain and radial strains are linear when the radial
strain is less than 0, and the parts where the radial strain is greater than 0 can be fitted
by binomial. Through experimental verification, it is found that the simulation results
obtained by DYNAFORM finite element simulation software are reliable.
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