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Abstract: We present a detailed analysis based on both experimental and 3D modelling approaches
of the unique silicon nitride precipitation sequence observed in ferritic Fe-Si alloys upon nitriding.
At 570 ◦C, Si3N4 silicon nitride was shown to form as an amorphous phase into α-Fe ferrite matrix,
which is morphologically unstable over time. Precipitates nucleated with a spheroidal shape, then
developed a cuboidal shape for intermediate sizes and octapod-like morphology for a longer time.
Using transmission electron microscopy, we show that the transition between spheroid and cuboid
morphology depended on particle size and resulted from competition between interfacial energy and
elastic strain energy. The resulting morphology was then shown to be a cuboid shape whose faces
were always parallel to the {100} planes of the α-Fe; the <100> directions of the matrix corresponded
to the elastically soft directions. There was a critical size of around 45 nm for which the transition
between the cuboid shape and the octapod-like morphology took place. This was characterised by
a transformation of quasi-flat facets into concave ones and the development of lobes in the <111>
directions of the bcc crystal. To better assess the kinetic effects of diffusion fields and internal
stresses on the morphological instability observed, an original 3D model that explicitly coupled phase
transformations and mechanical fields was developed and applied. The latter, validated on the basis
of model cases, was shown to be able to describe the time-evolution of both chemical and mechanical
fields and their interactions in diffusive mass transport. Using a model system, it was shown that
the concentration field around the precipitates and the internal stresses played opposing roles in the
cuboid to octapod-like morphological instability. This work gives some clarification regarding the
morphological evolution of amorphous Si3N4 precipitates, an important point for controlling the
mechanical properties of nitrogen steels.

Keywords: nitrogen steels; amorphous-precipitate; nitride; morphological stability; diffusion;
internal stresses; modelling; simulation

1. Introduction

The need to improve fuel efficiency and safety has led to a high and growing demand
for high-strength steels in the automotive industry. The potential of weight reduction
directly depends on the improvement of mechanical properties, which are in turn controlled
by the microstructural features. In that context, the precipitation of amorphous Si3N4 into
α-Fe has received a growing attention over the last ten years [1–5]. There are several reasons
for this interest. On the one hand, the nanometric size and high density of these particles
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significantly increase the strength of the alloy [6,7]. On the other hand, the amorphous
Si3N4 has a density half that of iron, imparting a substantial weight saving potential to
Si3N4-containing steel sheets for automotive applications [6].

From a more fundamental point of view, the precipitation of Si3N4 in α-Fe has very
singular characters. (i) The amorphous nature of the precipitates is unusual for nitrides
and carbides in steels and, more generally, for precipitates formed at low temperature in
a metal matrix [1,4]. (ii) These amorphous precipitates are stable over remarkably long
treatment durations and, under certain conditions, can transform into a crystalline phase of
the same composition [5]. (iii) The observed precipitates display a cuboidal shape, which is
remarkable since it is usually explained by crystallographic orientation relationships that
do not exist here since Si3N4 is amorphous [1,4,5]. Indeed, considering solely the interfacial
energy would lead to expect a sphere. (iv) The development of uniquely octapod-shaped
nanosized amorphous silicon nitride precipitates in a ferrite matrix was observed at 650 ◦C
(not at 570 ◦C) [3]. It was explained (but not proved) by the anisotropic growth induced
by the anisotropic stress field around the developing precipitates after nucleation. We will
come back to this point later.

Morphological instabilities are not only fascinating from a scientific point of view, they
also play an important role in the evolution of mechanical properties. For example, the
transformation of a spherical particle into a cubic particle negatively affects the ductility
of the material due to the increase in plastic strain concentration in the particle sharp
corners [8]. In superalloys, it is also recognised that changes in precipitate morphology
during exposure to typical service temperature influence the mechanical properties [9]. It is
therefore important to gain a better understanding of the phenomena behind morphological
instabilities. To this end, a number of studies have been carried out in Ni-based, Ti-Al based,
and Al-based alloys during ageing. For instance, in Ni-based superalloys, sphere-to-cube
and cube-to-plate shape transitions were reported together with the so-called “reverse
coarsening” corresponding to the splitting of a single cuboidal precipitate into a pair of
plates [10–12]. Another well-known example is the evolution of Al3Sc precipitates from
spheres to cuboids and then to petals [13]. Even if it is difficult to summarise all the
conclusions of these studies, given their scale, most of the morphological instabilities can be
explained on the basis of thermodynamic arguments, taking into account the contributions
of interfacial and elastic energies as well as their anisotropies [14]. However, kinetic
instability phenomena can play an important role. Indeed, as suggested very recently in
the case of precipitation of iron-rich precipitates in Cu-Fe-Co alloys, the morphological
instability which turns the flat facets into concave ones cannot be understood by means
of thermodynamic arguments only [15]. The kinetic instability phenomena linked to
diffusional processes necessarily play a significant role in the observed changes.

In this work, we highlight a size-dependent morphological instability that occurs
during the pure growth of Si3N4 in α-ferrite at 570 ◦C. The precipitates nucleate in the form
of spheres and gradually transform into cubes and further, into octapods. To clarify the
mechanisms involved, the microstructural evolutions were investigated using transmission
electron microscopy (TEM) and 3D modelling able to describe the time-evolution of both
chemical and mechanical fields and their interactions. In particular, this work clarifies for
the first time the interplay between diffusional processes and local mechanical fields in the
morphological instability of amorphous Si3N4 precipitates in ferrite during nitriding, an
important point for controlling the mechanical properties of nitrogen steels.

2. Materials and Methods
2.1. Processing and Nitriding

The systems studied in this work are two binary alloys: Fe-1.5wt%Si and Fe-3.3wt%Si.
They were first cast in 60× 125× 240 mm3 ingots. They were then hot rolled down to a
3 mm thickness. The hot rolling end temperature was 850 ◦C. The resulting sheet was cooled
at a rate of 30 ◦C/s down to 580 ◦C and at 20 ◦C/s afterwards down to room temperature.
Prior to nitriding, samples of 1× 10× 75 mm3 were cut from the annealed sheet. They were
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ground on SiC papers down to P2400 grit before being cleaned in an ultrasound cleaner in
ethanol. Specimens were annealed so as to obtain an equiaxed ferritic microstructure with
an average grain size of roughly 35 µm. They were subsequently nitrided through either
gaseous or plasma routes at 570 ◦C for determined durations. After the treatment duration,
the plasma was interrupted, and the samples were left to return to room temperature at
a reduced pressure. During nitriding, nitrogen diffuses into the materials and combines
with alloying elements (here, Fe and Si) to form a compound layer on the surface (visible
on Figure 1) and a diffusion zone underneath. The latter is of particular interest because it
can contain a fine dispersion of silicon nitride, thereby influencing the overall mechanical
properties of the material. The matrix is recrystallised and has a bcc structure, as shown by
both the micrograph and the X-ray diffraction pattern (see Figure 1).
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Figure 1. (a) Cross-section micrograph obtained after nitriding of the Fe-1.5wt%Si sample at 570 ◦C
for 8 h; (b) X-ray diffraction pattern associated. The compound layer on the surface is composed of
γ’-Fe4N and ε-Fe2-3N, and the diffusion zone underneath by α-Fe.

2.2. Sample Characterisation

The TEM observations and analyses were carried out in different ways and using
different microscopes.

All methods started from samples with a surface finish of metallographic quality. Thin
foils were prepared by grinding them down to a 60 µm thickness before punching 3 mm
discs that were electrolytically thinned with a Struers Tenupol 5 (Aimil Ltd., New Delhi,
India) in a 95 vol.% 2-butoxyethanol/5 vol.% perchloric acid electrolytic bath at 27 V, before
thorough rinsing in ethanol. Extractive replicas were prepared from samples etched in
Nital 4% for 30 s, rinsed, and dipped in acetone before being laid face down on a biodene
film. After the acetone dried out, the film was peeled off the sample and a thin layer
of carbon (several nanometers) was sputtered on it. The film was cut in pieces fitting
onto standard 3 mm TEM copper grids and dissolved in butan-2-one (Spectrum Chemical,
New Brunswick, NJ, USA). Several foils were also prepared via focused ion beam (FIB)
milling. Observations were carried out using two TEM, a Philips CM200 equipped (Philips,
Amsterdam, The Netherlands) with an EDAX EDXS as well as a Jeol 2010-F (JEOL, Tokyo,
Japan); both operated at 200 kV.

3. Modelling
3.1. Methodology

The dynamic coupling between diffusive phase transformation and mechanical fields
remains a difficult task for numerical modelling, since it requires to deal with concentration
and pressure jumps at the interface, as well as moving interfaces induced by mass transfers



Metals 2024, 14, 442 4 of 21

between phases [16,17]. The physical models describing phase transformations, with or
without mechano-chemical coupling, can be classified into two main approaches: (i) the
two-field approaches [18,19], in which the mass transport is resolved within each phase
separately, with a condition at the interface for mass conservation which induces the
interface movement; (ii) the one-field approaches in which mass transport and transfer
are modelled by a unique equation for the overall system [20,21]. Phase field modelling
belong to the latter since it is based on a free energy functional defined at every point of the
multi-phase systems [22,23]. They present great advantages for modelling the evolution of
complex 3D microstructures. Within that phase transformation modelling field, there are a
few papers dealing within mechano-chemical coupling of the diffusion mass transport and
transfer at the interface mostly based on phase field modelling [16,17,24].

The problem addressed in the present is a diffusional phase change involving non-
isobaric conditions, described in the framework of a binary system (atoms A and B) and
two-phase (phases α and β) compounds. The algebraic volume-of-fluid (VOF)-based
interface advection method [25] is used to differentiate the two phases and to deal with
interface displacement. The methodology is based, for the overall two-phase system, on a
single diffusional mass transport equation defined trough an extended chemical potential,
described in Equation (1) [21]. This methodology is based on the Darken method [26],
readable in [27], in which the intrinsic fluxes of atoms are coupled with a drift velocity
(Darken velocity) for mass conservation [28]. It was shown that this drift velocity is
that of the interface displacement as well when mass transfers are involved through
the interface [21]. The conservation of total momentum is also written using the one-
field equation described in Equation (2) [29,30]. The mechano-chemical coupling is here
achieved through the formulation of the chemical potential, as well as the variation of
pressure induced by the phase transformation when the partial molar volumes of the atoms
differ from one phase to the other.

3.2. Mass Transport Equation

The mass transport equation system and transfer at the interface, previously developed
for constant pressure and molar volume for A and B within the overall system [21], is here
extended to non-isobaric condition and various molar volumes of A and B, which can be
highly different from one another, and from a phase to the other. It is defined as

∂ck
∂t + V·∇ck = −∇·

(
jd
k

)
− ck∇·V

with
jd
k = −ck

Dk
RT∇µk

µk = µ∗k + RT ln
(

xk
x∗k

)
+ Ωk(p− p∗)

V = VD + Vσ

VD = −∑k=A,B Ωkjd
k

, (1)

where (i) ck is the concentration of the k-species; (ii) jd
k is the intrinsic diffusion flux of the

k-species defined within the lattice frame of reference using intrinsic diffusion coefficient Dk
of the k-atom and the extended chemical potential µk; (iii) µk is defined with the reference
potential µ∗k is the same in both phases at equilibrium, the pure chemical contribution
through the term RT ln

(
xk/x∗k

)
(xk and x∗k being the atom and the equilibrium atom

fractions of the k-species, respectively) and the mechanical contribution through the term
Ωk(p− p∗) (p and p∗ being the pressure and reference pressure, respectively); (iv) V is the
advection velocity which is the same for every species and corresponds to the addition
of the Darken velocity VD and elastic stress relaxation velocity Vσ when mass transfer
at the interface induces pressure variation in relation to the molar volume difference of
atoms between the two phases. The Darken velocity is calculated with the intrinsic flux of
each species and their molar volume Ωk. The stress relaxation velocity Vσ is the result of
the mechanical governing equation solving Equation (2). For the solving of this diffusion
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transport equation, Neumann conditions are considered at system boundaries, ensuring
zero flux at boundaries and thus mass conservation.

3.3. Mechanical Governing Equation and Time Derivative of Variables

The elastic stress relaxation velocity Vσ can be calculated through the conservation of
momentum equation that was developed for fluid/solid or solid/solid systems considering
for solids’ elastic behaviour [29,30]. This equation is written as

ρ

(
∂Vσ

∂t
+ (Vσ · ∇)Vσ

)
= −∇p +∇ · τ, (2)

where ρ = MAcA + MBcB is the density defined using the molar mass MA and MB of the
A and B atoms, respectively, and τ the elastic shear stress tensor.

The time derivative of pressure is defined as

∂p
dt

+ Vσ∇p = − 1
χT

(∇ ·Vσ +∇ ·Vσ
Σ), (3)

where ∇·Vσ
Σ is an equivalent velocity divergence located at the interface and induced by

the molar volume change of the B-atoms during its transfer from the α-phase to the β-phase.
This divergence is defined as

∇·Vσ
Σ = −∂φD

dt
·

(
Ωβ −Ωα

)
Ωα , (4)

where the constant χT is the isothermal compressibility coefficient which depends on
the Young’s modulus EY and the Poisson coefficient ν through the first and second
Lamé’s coefficients µE and λE (χT = (2 µE + 3λE )/3 , with µE = Ey/(2(1 + ν)) and
λE = EY/(1 + ν)(1− 2ν)); dφD/dt is the variation of the phase function induced by the
Darken velocity; and Ωα and Ωβ are the molar volume of both A- and B-atoms in the α and
β phases, respectively.

The time derivative of the elements of the shear stress tensor is defined as

dτij

dt
=

∂τij

∂t
+ Vσ∇τij = 2µE

(
1
2
(
∇Vσ +∇tVσ

)
− 1

3
∇ · (Vσ)I

)
ij

(5)

The displacement of the interface is determined through the advection equation of the
phase function φ:

∂φ

∂t
=
(

VD + Vσ
)
· ∇φ = 0. (6)

During the simulation, the physical characteristics P are updated using the phase
function φ with φ = 0 for the α-phase (matrix) and φ = 1 (particle) for the β-phase, and
the Pα and Pβ constant values characterising the α and β phases, respectively. P defines
either the compressibility coefficient χT , the Lamé’s coefficient µE, the k-species diffusion
coefficient Dk, the equilibrium molar fraction of the k-species x∗k at reference pressure p*, or
the molar mass of the k-species Mk.

P = (1− φ)Pα + φPβ. (7)

Constant external pressure pext = 0 is considered for solving Equation (2), allowing
total elastic strain energy to relax.

3.4. Numerical Methodology and Discretisation

The one-field Equations (1) and (2) are discretised in time and space by explicit/implicit
methods, respectively, on a staggered grid [21,30] using the parallel framework of the Notus
0.6.0 Computational Fluids Dynamics code [31,32]. A second-order centred scheme is used
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for the discretisation of Equation (2) and the diffusion term only in Equations (1) and (2). A
Lax–Wendroff scheme with a super bee flux-limiter [25] is used to solve the advection term
of Equations (1), (3), (5) and (6). Figure 2 shows the two-phase system discretisation and
the matrix/precipitate-interface represented by the value of the phase function φ = 0.5.
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3.5. Modelling Validation
3.5.1. Analytical Kinetic Solutions

The modelling methodology, which aims to deal with mechano-chemical coupling of
diffusion mass transport and transfer through the interface, is here validated.

The simulation results will thus be compared to the exact solution of the spherical
particle growth kinetics developed by Zener [33]. This analytical solution, without any
stress field, was completely described in the previous work dealing with the diffusion-
controlled phase transformation using the Darken method [21]. For homogeneous β-phase
cβ

B = cβ∗
B , assuming Fick’s first law for the diffusion of the B-atoms in the α-phase with

a constant inter-diffusion coefficient D, and considering a semi-infinite system insuring
zero-flux boundary condition, cα

B(x = ∞, t) = cα0
B , the growth kinetics of the particle radius

r is defined by
r(t) = κ

√
4Dt, (8)

where κ is obtained by solving an equation depending on ω [33]. For constant total phase
concentration Cα = Cα = C, the supersaturation degree is defined by

ω =
xα*

B − xα0
B

xα*
B − xβ*

B

, (9)

where xα0
B is the initial atom fraction within the α-phase. The stress field induced by a

misfitting spherical particle into a matrix will modify, through mechano-chemical coupling,
the supersaturation degree ω. To determine ω in the stress field, we first need to know
the pressure jump at the interface (p β − pα

)
from which it is possible to determine the
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displacement of the equilibrium atom fraction xα′
B at the interface on the α-phase side from

the relation:

xα′
B = xα∗

B exp

(
ΩB
(

pβ − pα
)

RT

)
, (10)

assuming that Ωβ
B ≈ Ωα

B = ΩB for low elastic strain deformation. It is interesting to note
that the Equation (10) is identical to the one conventionally used to determine the increase
in solubility in the presence of a stress field [34] since both derived from the criterion of
equality of chemical potential in the presence of stress field.

To determine the pressure jump at the interface, we decided to use the Sherer’s
analytical model [35] which, unlike the classical Eshelby model [36], takes into account the
interaction of stress fields. So, the misfitting spherical β-precipitate of radius r is placed
in a α-matrix. Purely elastic and isotropic behaviour is considered for both phases and
the α/β interface is supposed to be perfect. Their Young moduli Eα

Y and Eβ
Y and their

Poisson coefficients να and νβ can, however, be different. For the sake of simplicity, the
crystallographic modification associated the α→ β transformation of a small volume
element is expressed by the following Eigenstrain tensor that corresponds to hydrostatic
compression or tension:

ε =

 ε∗

0
0

0
ε∗

0

0
0
ε∗

, (11)

where 3ε∗ = Σ = − (Ωβ−Ωα)
Ωα . The misfittig particle characteristics will be defined in the

following by the term Σ. Under these conditions, the author of [35] shows that hydrostatic
stresses are uniform both in the β-precipitate and α-matrix volumes, whatever the volume
fraction of the precipitate fV . Moreover, for low-volume fraction, the level of hydrostatic
stress into the β-phase is higher than in the α-phase. Furthermore, the β-precipitate is
under hydrostatic compression if its molar volume is higher than the one of the α-matrix.
Concerning the shear stress field, it is reduced to zero in the precipitate, and it is non-
uniform in the α-matrix and depends on the distance from the α/β interface. The closer the
distance from the α/β interface, the higher the level of both stresses and strains.

3.5.2. Simulation Results

Two comparative simulations were performed, one without any stress field and
the other with the misfitting particle stress field. For both simulations, shared physical
constants were considered: x∗αB = 0.08; x∗βB = 1.0; x0α

B = 0.1; x0β
B = 1.0; for low elastic

strain deformation Ωβ
B ≈ Ωα

B = ΩB = 7.087 cm3.mol−1, implying that the total phase
concentration Cβ ≈ Cα = C = 1/ΩB can be assumed constant in the overall system;
MA = MB = 55.8 g.mol−1; process temperature T = 823 K. The physical constants specific
to the case of misfitting particle were Ωβ

B = 1.0012 Ωα
B, corresponding to Σ = 0.12%,

and isotropic elastic constants Eα
Y = Eβ

Y = 210 GPa and να = νβ = 0 corresponding to

χα
T = χ

β
T = 1.43× 10−11 Pa−1 and µα

E = µ
β
E = 105 GPa.

The initial configuration for the calculations corresponded to a volume fraction of β-
precipitate of ( fv = 0.052%) and a size defined from the dimensionless number r/L = 0.05,
where L is the simulation box length.

The 3D simulation of the misfitting particle for isotropic elastic constants shows, in
Figure 3, that both the elastic stress and composition fields were isotropic during the begin-
ning of the growth process of precipitate. In that case, both the interfacial concentration
and the diffusion flux were shown to be uniform at all points along the precipitate–matrix
interface and, consequently, the precipitate morphology remained almost spherical. The
characteristics of the hydrostatic and shear stress fields described above were those ex-
pected by the Sherer’s model [35] and particularly the uniform pressure field in both
particle and matrix volumes (see Section 3.5.1).
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Figure 3. Maps within the three equivalent middle planes X = 0.5, Y = 0.5, and Z = 0.5 at
dimensionless time t·D/L2 = 0.15 of (a) molar fraction of B-atoms; (b) pressure. Note that the
positive value of pressure corresponds to compressive pressure, whereas negative value corresponds
to tensile pressure.; (c) Normalized shear stress.

The evolution of hydrostatic stresses in both precipitate and matrix as a function of
the particle radius matched very well with the analytical results of Sherer’s model [35], as
shown in Figure 4. As expected for low-particle-volume fractions, a relatively high com-
pressive pressure was obtained in the precipitate and a low tensile pressure in the matrix.
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Figure 4. Evolution of the pressure characteristics in the system as a function of the dimensionless
particle radius r/L at (a) the (X = 0.5, Y = 0.5, Z = 0.5)-point located in the β-precipitate; (b) the
(X = 0.15, Y = 0.5, Z = 0.5)-point located in the α-matrix. This evolution was compared for some
volume fractions (red dots) to that obtained analytically from Scherer’s model, adapted from Ref. [35].

From this result, the pressure jump (p β − pα
)

at the interface between the particle
and the matrix was able to be precisely determined. It remained constant during the
particle growth and was equal to 56 MPa. As shown in Equation (10), the atom fraction
displacement at the interface was defined by the value x∗′B = 0.085. From this value, we
can calculate the supersaturation degree ω from Equation (9) to determine the κ-kinetic
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coefficient in Equation (8) [33]. Table 1 lists the various physical characteristics used to plot
the theoretical kinetic law for both the unstressed and stressed configurations.

Table 1. Parameters for the calculation of the kinetic coefficients κ for unstressed and stressed
configurations.

xβ*
B xα*

B xα0
B D/L2 (s−1) ω κ

Without stress 1.0 0.08 0.01 1.0 × 10−6 0.021739 0.1151359
With stress 1.0 0.08 0.01 1.0 × 10−6 0.01663 0.0994093

The simulation kinetic results for early times of the precipitation are shown in Figure 5a
in the

(
r2/L2, t.D/L2 ) dimensionless coordinates.
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Figure 5. Comparison of the particle growth kinetics. The blue curve and the red curve correspond,
respectively, to the unstressed and stressed cases: (a) Evolution of the square of the dimensionless
particle radius as a function of dimensionless time. (b) Evolution of the dimensionless particle
radius.The dashed line corresponds to the final equilibrium values.

For both unstressed and stressed systems, the precipitate growth kinetics matched
well their respective theoretical slopes at the beginning of the transformation, as already
highlighted in [37,38]. As expected by the theory, the growth kinetics was strongly influ-
enced without changing the classical t1/2 temporal power law. The elastic effects decreased
both the magnitude of the growth coefficient at early times and the equilibrium radius
of the precipitate, as shown in Figure 5a,b, respectively. The equilibrium particle radius
was able to be determined using the theoretical values of the α-matrix saturation xα∗

B
and xα′∗

B for the unstressed and stressed systems, respectively (Table 1). The values of
r/L = 0.1745 and r/L = 0.1592 represent the asymptotes to the simulation kinetic curves
for the long time of the precipitation process. As shown by the profiles of composition
given in Figure 6, the elastic field shifted the interface composition closer to the far-field
concentration. This tended to decrease the overall growth rate of the precipitate with
respect to the unstressed case.
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Figure 6. Comparison of the atom fraction profiles of B-atoms within the α-phase along the three
equivalent middle lines, the (X/L, Y/L = 0.5, Z/L = 0.5)-line, (X/L = 0.5, Y/L = 0.5, Z/L)-line, and
(X/L = 0.5, Y/L, Z/L = 0.5)-line during the particle growth. The solid lines and the dashed lines
correspond to the unstressed and stressed cases, respectively.

4. Results and Discussions

Intense precipitation was revealed on replica bright field TEM images (Figure 7).
Silicon nitride nanoprecipitates were observed in Fe-1.5wt%Si and Fe-3.3wt%Si binary
alloys nitrided at 570 ◦C. The amorphous nature of the precipitates was verified for all
of the investigated nitriding durations (up to 8 h). They formed homogeneously and
heterogeneously on the ferritic grain boundaries. Regions in the proximity of some grain
boundaries were found to be free of precipitates. These precipitate-free zones (PFZs) can
usually be explained by two possible effects. First, precipitates may nucleate first at the
grain boundaries (GBs), which are prime nucleation sites, thereby depleting the solute from
the adjacent matrix and drastically reducing the driving force for precipitation in this zone.
Second, a grain boundary is a sink for vacancies so that regions adjacent to the boundary
are unable to nucleate the precipitates, even though the matrix may be supersaturated
with solute.

On a larger scale, the majority of precipitates were cuboid in shape. It is worth
noting that the smallest particles adopted a more spheroidal shape (see arrows 1 and 2 in
Figure 8a). This point will be detailed later in the paper. The diffraction pattern from an
isolated extracted particle and the high-resolution image from a thin foil confirmed the
amorphous nature of the precipitates (Figure 8b,c). This result is consistent with earlier
observations [1,2,4,5]. The composition of these precipitates has also been investigated
through various approaches, both direct and indirect [1,4,5]. EPMA measurements showed
that the average ratio of Si/N was 0.76 ± 0.06 to be compared with the expected 0.75
of stoichiometric Si3N4 [1]. Direct electron energy loss spectroscopy (EELS) analyses of
the precipitates in the TEM gave a composition of Si3N3.98±0.16 [4]. These techniques do,
however, raise the question of the precise measurement of nitrogen concentration. Recently,
in the same alloys studied here (Fe-3.5 wt%Si), and using 3D atom probe tomography (3D
ATP), we showed that Si content in silicon nitrides was ≈42 at% and N concentration was
≈55.5 at%, yielding a Si/N ratio of 0.757 [39]. This ratio is in excellent agreement with the
expected 0.75 stoichiometric ratio for Si3N4 and suggests that the precipitates deviate little
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from the Si3N4 stoichiometry. All experimental data converged to a Si3N4 stoichiometric
precipitate in a large range of experimental conditions, which suggests a low tolerance of
the phase for deviation from stoichiometry, as is expected for a covalent compound [39].
Based on these experimental pieces of evidence, it will be assumed in the following that
the amorphous precipitates are stoichiometric Si3N4 silicon nitride.
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Figure 8. (a) Bright field TEM image at 200 kV of a sample of Fe-1.5wt% Si nitrided for 2 h at 570 ◦C.
The arrows numbered 1, 2, and 3 show that the particles can have a quasi-spherical and/or cuboid
morphology. (b) Electron diffraction pattern on isolated particle extracted. (c) The contrast observed
using high-resolution TEM support the amorphous nature of Si3N4.

By positioning the [100] directions of ferrite on a brightfield TEM image taken along
the [001]α−Fe zone axis, it was found that all intragranular precipitates with a cuboid shape
were systematically oriented with respect to the ferrite matrix (Figure 9) [6]. As it can be
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seen in Figure 9, the faces of the cuboidal shapes were always parallel to {100} α-Fe planes.
Upon closer examination using the scanning transmission electron microscopy (STEM)
method (bright field mode), it can be noticed that the shape of the precipitates evolved with
their size (Figure 10). At small sizes, the precipitates had a shape that was close to a sphere,
and as they grew, they turned into cubes with bulging faces. As they grew even further, the
faces became concave, and the corners of the cuboid developed into lobes, resulting in an
ear (or octapod)-like morphology.
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Figure 9. Bright field TEM images of a sample of Fe–1.5wt% Si nitrided for 4 h at 570 ◦C in the
[001]α−Fe zone axis. The images were rotated in such a way that the [100] of the ferrite were repre-
sented in an orthogonal reference frame. The faces of these cuboids were all systematically parallel to
{100} planes of the matrix, as indicated by the arrows.

We were particularly interested in the morphological instability sequence. Working
exclusively on extractive replicas (see an example in the top left insert of Figure 11), the
relationship between equivalent size and morphology was studied for the Fe-1.5wt%Si alloy
nitrided for 8 h. Several fields covering about 1.5 µm2 were analysed, and we proceeded
step by step. Firstly, the different morphologies observed were classified according to three
types: spheroid, cuboid, and octapod-like morphology. Next, the average characteristic
size of particles with the same morphology was measured, with the characteristic size
being taken as the diameter for spheroids and the corner-to-corner distance for cuboids
and octapod-like particles. Although subject to inaccuracies in shape and mean size, this
method nevertheless allows a semi-quantitative study to be carried out. The morphological
instability of precipitates can be further characterised by the non-dimensional length
parameter d1/d2, yielding the largest length of precipitate along the <111> direction and
the smallest length along the <001> direction of the matrix. In the case of spherical particles,
d1/d2 = 1, for cubes, d1/d2 =

√
3, and d1/d2 >

√
3 corresponds to the concave cuboid

shape preceding the octapod-like shape of precipitates. This shows that there was a one-
to-one link between particle size and particle morphology (Figure 11). For an average
characteristic size of less than 25 nm, we found that amorphous Si3N4 particles were
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spheroid-shaped; for sizes between 25 and 45 nm, they were cuboid-shaped; and for sizes
greater than 45 nm, they had an are octapod-like morphology characterised by the formation
of lobes at the corners of the particles which can be described as a branching phenomenon
(see the sequence shown schematically on the left of Figure 11). It is interesting to note
that (i) the cuboid shape observed was characterised by a parameter d1/d2 <

√
3, which

means here that the corners of the cube were smooth; (ii) for d1/d2 >
√

3, we observed the
formation of a concave surface on the (100) faces.
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Figure 10. Bright field image of a thin foil prepared using FIB on Fe-3.3wt%Si nitrided for 4 h at
570 ◦C. There was a correlation between particle size and morphology. The smallest particles were
spheroid-shaped (shown in red), those of intermediate size were cuboid-shaped (shown in green),
and the largest had a concave cuboid shape with lobes formation at the corners (shown in blue).
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Figure 11. Relationship between the measured characteristic sizes of amorphous Si3N4 precipitates,
the dimensionless parameter d1/d2, and their observed morphologies in the Fe-1.5wt% nitride for 8 h.
d1/d2 = 1 for a sphere, d1/d2 =

√
3 for a cube, and d1/d2 >

√
3 corresponds to the concave cuboid

shape preceding the formation of lobes at the corners of the particles. The inserts at the top-left and
in the figure correspond to TEM images obtained on replicas. Morphological instabilities and the
corresponding critical sizes are shown schematically on the right of the figure.
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To analyse the observations made, it should be noted that, on the one hand, the
anisotropy of the interfacial energy between amorphous Si3N4 and ferrite was expected
to be small, analogous to liquid solid interfaces, and consequently, the equilibrium shape
obtained from the Wulff construction would be close to sphere. On the other hand, the
formation of amorphous Si3N4 in the ferrite was accompanied by internal stresses because
the two phases had different molar volumes. Consequently, we must consider that the
equilibrium shape of precipitates from minimising the sum of the interfacial and the elastic
energies at constant volume. The relative contributions of elastic and interfacial energy to
the total energy of the system can be evaluated through the dimensionless parameter λ,
defined as follows [40]:

λ =
ε∗2C44l

γ

where ε∗ is the misfit strain, C44 is an elastic constant of the matrix, l is the characteristic
size of the precipitates, and γ is the surface energy. It is worth noting that the quantity
ε∗2C44 scales the elastic energy density.

Although this approach can only be applied rigorously under specific conditions (for
example, the same elastic constants for the matrix and the precipitates), it nevertheless
provides a simple explanation of our observations on the morphological transition between
spheroid and cuboid shapes. For small λ (i.e., small l and/or small elastic energy density),
interfacial energy is the dominant factor in setting the equilibrium shape. In this case, the
spheroid shape is expected to be stabilised. This corresponds perfectly to our observations,
as most Si3N4 amorphous particles with a characteristic size of less than 25 nm are spheroid-
shaped. Since λ scales linearly with l, it is clear that as the particle increases in size, the
effects of the elastic stress on the equilibrium shape become more important. In that case,
the spherical particle is no longer in equilibrium. The development of a fourfold anisotropy
in the particle shape is then expected and depends on the elastically hard and soft directions
of the matrix [40]. In our case, it is well known that the Young’s modulus of the α-Fe matrix
phase in the <100> directions were lower than in both the <110> and <111> directions, with
the <100> directions corresponding to the elastically soft directions [41]. It was shown in
the 2D section that the high interfacial concentration near the <100> direction resulted in
the flow of mass to the region of the interface near the <110> direction, which was low in
concentration [40]. This would be expected to produce an increase in curvature along the
elastically hard <110> directions and decrease in curvature along the elastically soft <100>
directions of the matrix. The resulting morphology would be a cuboid shape that never
develops the sharp corners of flat sides characteristic of a cube and whose faces would be
always parallel to {100} α-Fe planes. This is in perfect agreement with our observations, as
we have shown that all cuboid-shaped Si3N4 particles had faces parallel to {100} α-Fe planes
(see Figure 9). This work also provides experimental evidence that misfitting particles
with nearly isotropic interfacial energy in an elastically anisotropic medium can exhibit
some degree of fourfold anisotropy and that the magnitude of the fourfold anisotropy will
increase with particle size. The origin of such a phenomenon is mainly linked to the elastic
strain energy. However, large λ does not necessarily mean that the misfit must be large,
since λ scales linearly with the particle size l. Thus, even particles with small misfits will
eventually exhibit the effects of elastic stress for sufficiently large particle sizes.

To better understand the whole sequence of morphological instability, it is now inter-
esting to focus on the transition from cuboid to octapod-like morphology. Observations
show that this transition takes place via a transformation of quasi flat-facets into concave
ones (see Figures 10 and 11). However, neither the elastic strain energy nor the interfacial
energy favours the formation of a concave interface. It is therefore reasonable to suspect
that the morphological instability resulted from kinetic effects. To verify this hypothesis,
we evaluated the effects of diffusion fields alone, in the presence and absence of internal
stresses, using the 3D model developed. The model system chosen corresponded to an A-B
binary composed by two phases α and β. The initial state corresponded to a single particle
β of cubic shape placed in a matrix α. The initial volume fraction of β was fv = 0.1 . The
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isotropic elastic constants used for the simulation corresponded to those of ferrite for the α
phase and Si3N4 for the β phase. These data are given in Table 2.

Table 2. Data used for modelling.

Symbol α-Phase β-Phase

Initial molar fraction x0
B 0.1 1

Equilibrium molar fraction x∗B 0.08 1
Young’s modulus (GPa) EY 178 320

Poisson coefficient ν 0.30 0.26
Compressibility coefficient (Pa−1) χT 6.7× 10−12 4.5× 10−12

First Lamé’s coefficient (GPa) µE 68 130

Figure 12 gives the evolution of both the volume fraction fv and the morphology of a
particle β, initially cubic in shape, as a function of the dimensionless time t·D/L2. Firstly, as
expected, the growth kinetics was lowered when the misfit between particle and the matrix
increased. This was also clearly exhibited on the 3D morphologies obtained at the same
dimensionless time t·D/L2 = 0.3 for which the volume fraction of β was higher as the
misfit decreased (see points 3, 5, and 6 in Figure 12). Secondly, it was clear that the resulting
morphology depended on the misfit and therefore on internal stresses. The formation of
the octapod-like morphology seemed to be favoured in the absence of internal stresses.
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Figure 12. Effect of misfit on the growth kinetics and morphological evolution of the β particle as a
function of dimensionless time. Three misfit values, Σ, were considered: 0.25%, 0.12%, and 0%. Points
2, 4, and 6 and 3, 5, and 6 were located on volume iso-fraction fv = 0.3% and iso-dimensionless time
t.D/L2 = 0.3, respectively. Points 2′ and 4′ corresponded to a volume fraction of 0.5% and misfits of
0.12% and 0.25%, respectively.

It can be seen that when the driving force for growth was relatively high (3 and 5
in Figure 12), the lobes of the cube appeared facetted and, compared with observations,
much less pointed in the <111> directions. This can be explained mainly by the fact that
the interfacial and anisotropic effects of diffusion were neglected to better highlight and to
decouple the effects of stress and diffusion fields on morphological evolution.
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To go further, we considered two different misfit values, Σ = 0% and Σ = 0.12%,
and a volume fraction of β of fv = 0.5% (points 2′ and 4′ in Figure 12). The analysis of
the composition and stress fields in a (110) plane of the matrix α (Figure 13) showed the
following: (i) The composition gradient around the particle was less marked in the presence
of internal stresses (comparison between Figure 13a,b). This was perfectly consistent with
the fact that internal stresses slowed down the growth kinetics of β. (ii) Both composition
and stress fields were anisotropic (see Figure 13b,c). (iii) In both cases, Σ = 0% and
Σ = 0.12%, we observed the formation of lobes in the corners of the cube, i.e., along the
<111> directions of the matrix. The latter was able to appear well before the diffusion
fields overlapped (clearly visible in Figure 13a). It was therefore not mainly linked to the
interaction between the concentration fields around the particle and the boundaries of
the system.
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Figure 13. Distribution of both the composition and stress fields in the (110) plane of the matrix α for
the two points 2′ and 4′ shown in Figure 12 for fv = 0.5%. The particle β is located inside the red
outline. (a) Concentration map of B atoms in the absence of internal stresses (Σ = 0). (b) Concentration
map of B atoms for the misfit Σ = 0.12%. (c) Stress field for Σ = 0.12%.

These general observations provide an overview of the dynamics of the morphological
instability. To refine them, both the concentration and stress profiles were plotted in the
<001> and <111> directions of the matrix as a function of the misfit (Figure 14).

The concentration gradients at the α/β interface were a marker of the interface mobility
and therefore of the growth rate of β into α. When there were internal stresses (for
Σ = 0.12% and Σ = 0.25%), particle β was in compression, and matrix α in tension. The
greater the misfit, the greater the level of stress in the particle β. We clearly show in
Figure 14 that the concentration gradient in the matrix at the α/β interface was steeper
in the <111> direction than in the <001> direction. This explains why the corners of the
cuboid grew faster than the faces.

This process had two consequences. Firstly, accelerated growth of the β phase in the
<111> directions at the expense of growth in the <001> directions. Secondly, the formation
of a concave surface on the faces of the cube. Consequently, the cuboid/octapod-like
morphology instability was indeed the result of a kinetic effect induced by the diffusion
fields. However, internal stresses played an important role in this instability, and then
on morphological evolution. Indeed, we can suspect that the relative growth of β in the
<111> and <001> directions depended on the misfit. To confirm this, the evolution of the
dimensionless parameter d1/d2 yielding the largest length of precipitate along the <111>
direction and the smallest length along the <100> direction was plotted as a function of Σ
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and dimensionless time (Figure 15a). The morphological evolution in the (001) plane of
the matrix was given for three dimensionless times, namely, 0.1, 0.2, and 0.3 (Figure 15b).
Remember that d1/d2 = 1 and d1/d2 =

√
3 correspond to the spherical and cubic shapes,

respectively, with it being clear that the diffusion field alone destabilised the cube to
octapod-like shape (the green curve in Figure 15a and green outline in Figure 15b) because
the d1/d2 ratio increased as the β particle grew. When the internal stresses increased (i.e.,
the misfit), we were able to have two different situations. In one, the d1/d2 ratio increased
as the particle grew for a misfit of 0.12% (blue curve in Figure 15a). In this case, lobes
in the corners of the cube and concavity of the faces of the cube would develop, leading
to the formation of an octapod-like morphology (blue outline in Figure 15b). However,
this process will be kinetically less pronounced than in the absence of internal stresses.
The other was where the d1/d2 ratio decreased as the particle grew for a misfit of 0.25%
(yellow curve in Figure 15a). In that case, the octapod-like morphology was no longer
observed. The internal stresses tended to stabilise the cuboid or even to destabilise cuboid
to spheroid shape (yellow outline in Figure 15b). The origin of such a phenomenon can be
explained from the mechano-chemical potential gradient, which tends to cause the B atoms
to diffuse from the most stressed areas (i.e., the regions located in the immediate vicinity of
the cuboid corners in the matrix; see Figure 13c) towards the least stressed ones (close to
the faces (001); see the white zones in Figure 13c). These results were recently confirmed by
observations and analysis relating to the morphological transition from cube to petal of the
iron-rich particle in the Cu-Fe-Co system formation [15]. Furthermore, it was shown that
one of the conditions for branching instability to occur is that elastic driving force should
be smaller than the chemical driving to permit growth of the particle corners [42]. This is
perfectly consistent with our work.
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Σ = 0 was not plotted because there are no internal stresses in this case.
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Figure 15. Evolution of (a) the dimensionless parameter d1/d2 yielding the largest length of precip-
itate along the <111> direction and the smallest length along the <001> direction as a function of
misfit and dimensionless time; (b) the morphology of precipitate β as a function of misfit and at three
given dimensionless times, namely, 0.1, 0.2, and 0.3 in the (001)-plane.

As a consequence, the morphological instability from cuboid to octapod-like morphol-
ogy observed was linked to the interaction between the diffusion fields and the stress fields
and the result of two antagonistic effects. On the one hand, a stabilising effect linked to
the internal stresses and, on the other, a destabilising effect linked to the anisotropy of the
diffusion fields.

It is interesting to note that the co-formation of crystalline Si3N4 and octapod-shaped
nanosized amorphous Si3N4 precipitates in a ferrite matrix was observed upon the nitriding
of a Fe–4.5 at.% Si alloy for 48h at 650 ◦C [3]. The octapod morphology was attributed
to the highly anisotropic stress field around the developing precipitates, which would
favour the development of lobes in the <111> directions of the matrix. Our findings show
instead that the elastic stress field favoured the growth of a cuboid precipitate to the
detriment of an octapod one. However, this raises questions regarding the presence of an
octapod-like morphology in a system where high internal stresses are expected. In this
work, it was established that the octapod-like morphology formation was the result of a
balance between chemical driving force and elastic driving force. In our experiments, this
was observed when the characteristic size of amorphous Si3N4 was around 45 nm. This
would mean that for particle sizes greater than 45nm, the elastic driving force should be
smaller than the chemical driving force. In the case of nitriding, this hypothesis is very
realistic for two main reasons. Firstly, the system can be considered as open due to the
steady supply of nitrogen atoms from the atmosphere, which enables a large chemical
driving force throughout the process. Secondly, in these systems, many mechanisms of
stress relaxation operate. For example, a local redistribution of nitrogen in specific sites that
accommodate stress is possible. This mechanism has already been observed in Fe–N–Si
sputtered films [43]. Interestingly, it was suggested that the presence of the amorphous
Si3N4 precipitates requires such a stress relaxation mechanism to be operating. Indeed,
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experimentally, it has been shown that amorphous Si3N4 can be destabilised in favour of
crystalline α-Si3N4 [5] in a low-nitrogen-activity atmosphere.

5. Conclusions

In this article, we present a detailed analysis on both experimental and 3D modelling
approaches of the unique Si3N4 precipitation observed in ferritic Fe-Si alloys upon nitriding
at 570 ◦C. During growth, the amorphous Si3N4 experienced shape instability. First, at
the early stage of growth, when the characteristic size of Si3N4 was larger than 25 nm, a
transition between spheroid and cuboid morphology took place. Using TEM, we showed
that it resulted from competition between interfacial energy and elastic energy. Second,
for a critical size of around 45 nm, a transition from the cuboid shape to an octapod-like
shape was observed. This was characterised by a transformation of quasi-flat facets into
concave ones and the development of lobes in the <111> directions of the bcc crystal.
Using a 3D original model that explicitly coupled phase transformations and mechanical
fields, we provided some clarifications regarding the role of both diffusional and stress
fields on the cuboid to octapod-like morphology instability. The latter was shown to be
linked to the interaction between the diffusion fields and the stress fields and resulted from
two antagonistic effects. On the one hand, internal stresses stabilised cuboids, while on the
other, the anisotropy of the diffusion field promoted an octapod-like shape. The obtained
results were in agreement with the experimental observations.
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