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Abstract: This study investigates the sensitivity of the square cup forming process. It analyses how
the uncertainties in the material properties, friction and process conditions affect the results of the
square cup, such as equivalent plastic strain, geometry change, thickness reduction, punch force and
springback. The cup flange and the die curvature region are identified as highly affected areas, while
the cup bottom is least affected by the uncertainties. Two sensitivity analysis techniques, PAWN and
Sobol indices, are compared. In particular, the study shows that PAWN indices require a significantly
smaller number of simulations than Sobol indices, making them a more efficient choice for sensitivity
analysis. While both PAWN and Sobol indices generally give comparable results, discrepancies
arise in the analysis of springback, where PAWN indices show superior accuracy, particularly when
dealing with multimodal distributions. This observation highlights the importance of selecting the
appropriate sensitivity analysis method based on the nature of the data being analysed. These results
provide insights for optimizing stamping processes to reduce production time and costs.

Keywords: square cup; sensitivity analysis; PAWN indices; sobol indices

1. Introduction

Metal forming processes are widely used in automotive, aerospace, and metalworking
industries due to their ability to produce complex shapes with high precision and effi-
ciency [1]. These processes cover a wide range of techniques, including stamping, forging
and extrusion, each tailored to specific applications and material properties. With the
increasing demand for lightweight components with improved mechanical properties, the
optimization of metal forming processes has become critical to maintaining competitiveness
in the global marketplace.

Finite Element Analysis (FEA) plays a key role in predicting deformation processes
and identifying factors that limit component formability. It enables the simulation of com-
plex forming processes and the performance evaluation of different tool configurations and
process parameters. However, conventional FEA approaches often overlook the inevitable
uncertainties present in real-world industrial environments, a concern highlighted by sev-
eral researchers [2,3]. These uncertainties arise from a variety of sources, including material
variability, geometric imperfections, and process variations, and can have a significant im-
pact on the reliability and robustness of forming simulations [4–6]. In addition, the authors
in [2] pointed out that these uncertainties can change over time (e.g., due to tool wear).
Ignoring these uncertainties leads to sub-optimal or unreliable forming process designs [7],
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which in turn has a significant impact on component quality, scrap rates and manufacturing
costs, for example due to downtime for troubleshooting and maintenance [8].

With the increasing availability of large amounts of data and improved computational
capabilities, interest in stochastic modelling and quantification of uncertainties in sheet
metal forming processes have been growing [9–12]. Several researchers have modelled and
quantified the influence of different uncertainty sources on the final product, by resorting
to distinct methods, such as Monte Carlo simulation [13,14], the design of experimental
techniques [15,16] and metamodels [17,18]. In [12], an uncertainty analysis combining FEA
and Monte Carlo simulation was designed to evaluate the influence of uncertainty sources
on the end product. Also, in [16], the influence of the material and friction variability on
the geometry of a U-channel was studied using an analysis of variance (ANOVA), with
them reaching the conclusion that the parameters C and n of the Swift hardening law were
the most influential factors in the springback and maximum thinning results. In another
piece of research, [18], a metamodel was used based on machine learning techniques to
predict the occurrence of defects, considering the variability in the material properties and
process parameters. In [17], the authors compared the performance of various metamodel
techniques by considering the uncertainties in the material behaviour and sheet thickness.
The authors concluded that some metamodel techniques are able to accurately predict
the forming process results. The application of any of the presented methods requires
the execution of several numerical simulations of the forming process. To reduce the
computational cost of these strategies, screening techniques can be used to select the main
sources of uncertainty to be considered in the stochastic model [16].

A sensitivity analysis is traditionally performed using analysis of variance (factorial
ANOVA). However, this approach assumes a unimodal distribution of results, which is
not necessarily true. Factorial ANOVA also requires a model to be predefined to establish
a correlation between the factors and the results [16]. Sobol indices (also referred to as
functional ANOVA [19]) can address this problem by not requiring a hypothesis in the form
of a model, but have the limitation of only being reliable for unimodal data. The PAWN
indices appear as a technique that can overcome both of these vulnerabilities [20,21], as
they do not rely on a statistical second-order moment (i.e., variance) [22]. Instead, PAWN
indices use the Cumulative Distribution Functions to evaluate the influence of the different
factors on the results.

Although PAWN sensitivity analysis can present a promising alternative to the above-
mentioned approaches, its application in the sheet metal forming process is still unexplored.
The goal of this work is to explore the use of PAWN sensitivity analysis, by investigating the
sensitivity of the square cup forming process to material properties, friction, and process
conditions. The results of the PAWN indices will be compared to the Sobol indices, obtained
in a previous sensitivity analysis [23]. By employing sensitivity analysis techniques such as
PAWN and Sobol indices, the aim is to identify key parameters influencing the forming
process of a square cup and provide insights for optimizing process parameters to mitigate
the effects of uncertainties.

2. Numerical Model

A schematic representation of the square cup forming process is shown in Figure 1,
with tool geometries based on the benchmark proposed by the NUMISHEET’ 93 confer-
ence [24]. Throughout the process, a constant blank holder force (BHF) is used to control
the material flow. The punch is then advanced to a total displacement of 40 mm. At the end,
the square cup is extracted from the tools, promoting the springback of the square cup. To
optimize the computational efficiency, only a quarter of the model is simulated, taking ad-
vantage of material and geometric symmetries. The square blank, with an initial thickness
of t0 and a side length of 75 mm, is discretized into 1800 elements using 8-node hexahedral
solids, with 2 elements in thickness and 30 elements per side. This mesh guarantees an error
inferior to 1% in the maximum yield stress and a simulation time inferior to 5 min (as can be
concluded from Figure 1c). The interaction between the blank and the tools is governed by
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Coulomb’s law, using a constant coefficient of friction µ0. The contact with friction problem
is solved using the augmented Lagrangian method. The tools are rigid, represented using
Nagata patches [25], and are only allowed to displace on the vertical direction, being the
displacement of the blank holder controlled by the imposed force (BHF). Computational
simulations were performed using the in-house code DD3IMP (Deep Drawing 3D Implicit
Code) [26], which uses an updated Lagrangian scheme to integrate the constitutive law in
an implicit way. All numerical simulations were performed on computers equipped with
an Intel® Core™ i7-8700K Hexa-Core processor 4.7 GHz. On average, each simulation took
approximately 4 min and 34 s to complete.
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Figure 1. Square cup forming process: (a) dimensions of the tools in mm; (b) numerical model.
adapted with permission from [18]; (c) mesh sensitivity.

A low-carbon steel (DC06) was considered as the material of the sheet. The plastic
behaviour is described by the Hill’48 orthotropic yield criterion [27] and the Swift work
hardening law [28]. The Hill’48 orthotropic yield criterion is defined as follows:

F
(
σyy − σzz

)2
+ G(σzz − σxx)

2 + H
(
σxx − σyy

)2
+ 2Lτ2

yz + 2Mτ2
xz + 2Nτ2

xy = Y2, (1)

where Y is the yield stress; F, G, H, L, M and N are the parameters that define the shape
of the yield surface; and σxx, σyy, σzz, τxy, τxz and τyz are components of the Cauchy stress
tensor, written in the orthotropic coordinate system 0xyz. In this work, it is assumed that
L = M = 1.5 (identical to von Mises) and the condition G + H = 1, meaning that the yield
stress, Y, is comparable to the uniaxial tensile stress aligned with the rolling direction.

The anisotropy coefficients for 0◦, 45◦ and 90◦ (relative to the rolling direction), respec-
tively denoted by r0, r45 and r90, can be determined by following the equations:

r0 =
H
G

, (2)

r45 =
N

F + G
− 1

2
, (3)

r90 =
H
F

, (4)

The yield stress (Y ) evolution with plastic deformation is described by the Swift
hardening law:

Y = C (ε0 + εp)n, (5)
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where C, ε0 and n are material constants, and εp represents the equivalent plastic strain
derived from the Hill’48 orthotropic yield criterion by assuming an associated flow rule.
The initial yield stress, Y0, is given by:

Y0 = Cεn
0. (6)

This study will focus on investigating the influence of the uncertainty in the material
properties, friction and the forming process conditions on the stamping of the square cup.
Therefore, the input parameters of the numerical model whose influence will be studied
are Young’s modulus (E), Poisson’s ratio (ν), anisotropy coefficients (r0, r45 and r90,), the
initial yield strength (Y0), the hardening coefficient (n), the parameter C of the Swift law, the
initial sheet thickness (t0), the coefficient of friction (µ0) and the blank holder force (BHF).
The uncertainty in the input parameters, associated with the material properties, friction,
and process conditions, is assumed to follow a normal distribution with a given mean
(µ) and standard deviation (σ), as shown in Table 1. The mean values of the constitutive
parameters, blank thickness and friction coefficient were obtained from [16] based on the
NUMISHEET’ 93 Benchmark. The mean value of the blank holder force was optimized in a
previous work [17]. The standard deviations were obtained from [16] based on a literature
review, except the Poisson ratio, friction coefficient and blank holder force that were based
on empirical assumptions made in [17].

Table 1. Input’s mean and standard deviation, reprinted with permission from [16] AIP publishing
2018 and [17].

E [GPa] ν r0 r45 r90 Y0 [MPa] n C [MPa] t0 [mm] µ0 BHF [N]

µ 206.00 0.300 1.790 1.510 2.270 157.12 0.259 565.32 0.780 0.1440 9800.0

σ 3.85 0.015 0.051 0.037 0.121 7.16 0.018 26.85 0.013 0.0288 490

The influence of the uncertainty in these input parameters was studied on the nu-
merical results of the square cup, i.e., the output parameters of the model: punch force
(PF), equivalent plastic strain (EPS), thickness reduction (TR), geometry changes (GC)
and springback (SB). The PF and the EPS values are directly obtained from the numerical
simulation, while the TR, the GC and SB are defined by:

TR [%] = 100 ×
(

t0 − t f

)
/t0, (7)

GC [mm] =

√(
x f − x f

)2
+

(
y f − y f

)2
+

(
z f − z f

)2
, (8)

SB [mm] =

√(
x f − xbs

)2
+

(
y f − ybs

)2
+

(
z f − zbs

)2
, (9)

where t0 and t f are the initial and final sheet thickness, respectively, evaluated for each node
of the square cup numerical model; (x f , y f , z f ) and (x f , y f , z f ) are, respectively, the final
spatial position of a given node for the numerical simulation with and without uncertainty
(i.e., using the mean values of Table 1); and (xbs, ybs, zbs) is the spatial position of a given
node before the springback, i.e., before removing the tools. The GC quantifies the positional
difference of a given node between the deterministic and the stochastic simulation, i.e., it is
a measure of the shape accuracy between the desired cup shape and the final shape that
is affected by the uncertainty. The SB quantifies the positional difference of a given node
before and after removing the tools, i.e., it is a measure of the springback.

The variability in the forming results was evaluated using a quasi-Monte Carlo method
coupled with Sobol sequence to generate the sample of input parameters according to the
normal distributions given in Table 1. A sample size of 3000 simulations of the square
cup was chosen to ensure the convergence of the statistical measures, mean and standard
deviation. Figure 2 shows the mean and standard deviation for the results of EPS, TR,
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GC and SB along the square cup [23]. From this figure, it can be seen that the equivalent
plastic strain reached its maximum at the wall and side edges of the flange, with the most
pronounced dispersion of its values occurring in the latter region. In the case of thickness
reduction, the highest mean values occurred at the cup wall, with significant standard
deviation values only at the flange edge. The mean and standard deviation value for the
geometry changes were higher at the flange edge and wall. The highest mean and standard
deviation values for the springback occurred at the flange edge. The bottom of the cup is
the only area where the uncertainty of the input parameters did not affect the cup results,
making a sensitivity analysis in this area unnecessary. Figure 3 shows the evolution of
the mean and standard deviation of the force applied by the punch as a function of its
displacement. The force reaches maximum values between 17 and 30 mm of displacement
and the standard deviation was higher within this range of values, indicating that it is
during this phase of displacement that the uncertainty of the input parameters has the
greatest effect on the force variability of the punch.

Metals 2024, 14, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. Plots of mean and standard deviation for (a) EPS, (b) TR, (c) GC, (d) SB. 

 

Figure 2. Plots of mean and standard deviation for (a) EPS, (b) TR, (c) GC, (d) SB.



Metals 2024, 14, 432 6 of 18

Metals 2024, 14, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 2. Plots of mean and standard deviation for (a) EPS, (b) TR, (c) GC, (d) SB. 
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Figure 4 shows the distributions of the maximum values of each output parameter
(i.e., forming results). All outputs follow central tendency distributions, except for the
springback (Figure 4e). It is important to consider the distributions of each output variable
because, as noted above, the distributions of the results limit the sensitivity analysis that
can be applied. In particular, the distribution associated with springback (Figure 4e) is an
obstacle to the use of variance-based approaches (e.g., Sobol indices and factorial ANOVA),
as these are not appropriate for data that do not follow a distribution with central tendency.
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3. Sensitivity Analysis

The PAWN indices are a sensitivity analysis technique based on the cumulative distri-
bution function of a given data sample, as opposed to other techniques (Sobol and factorial
ANOVA) based on the variance of the probability density functions [20]. This allows PAWN
indices to be applied to samples that follow more complex distributions, i.e., multimodal
distributions. The basic concept behind these indices is that the influence of an input is
related to the change produced in the cumulative distribution function of an output.

The first approach proposed for deriving PAWN indices, for a given output y, is to
compare cumulative distribution functions [20]. Specifically, the cumulative distribution
function obtained by assuming that all input parameters vary, F̂y(y), is compared with other
n functions, F̂y|xi

(y), obtained by assuming a fixed value for a particular input parameter,
xi, while varying the remaining input parameters. The n functions F̂y|xi

(y) are derived
for different fixed values of xi. The PAWN index, Pi, for the parameter xi was obtained
through a statistical measure, such as the average of the Kolmogorov–Smirnov statistics
between the function F̂y(y) and the n functions F̂y|xi

(y) with the input parameter xi fixed.
The PAWN index, Pi, is defined by the following equation:

Pi = meanxi= xi
(1), xi

(2),..., xi
(n)

(
K̂S(xi)

)
, (10)

where K̂S(xi) is the Kolmogorov–Smirnov statistic that quantifies the difference between the
cumulative distribution functions F̂y(y) and one of the n cumulative distribution functions
F̂y|xi

(y) when the input parameter xi is fixed at a given value xi
(n). The statistic K̂S(xi) is

obtained by the following expression:

K̂S(xi) =
∣∣∣F̂y(y)− F̂y|xi

(y)
∣∣∣, (11)

Subsequently, a more efficient approach [21] was proposed that allows the use of
generic sampling (i.e., it is not mandatory to assume fixed values for the input parameter
xi). The new approach allows PAWN indices to be calculated, starting by dividing the
input parameter domain xi into n equal intervals and obtaining the cumulative distribution
functions for each of the n subdomains, F̂y|xi

(y). In addition, the cumulative distribution,
F̂y(y), was calculated for the entire data set, i.e., the entire domain of xi. Similarly to the first
approach, the maximum vertical difference was calculated (using the Kolmogorov–Smirnov
statistic) between the cumulative distribution curve of each data interval, F̂y|xi

(y), and the
cumulative distribution curve of the entire data set, F̂y(y). The value of the PAWN index,
Pi, for the parameter xi was calculated using Equation (9).

The Sobol indices are a sensitivity analysis technique based on the calculation of the
variance (i.e., based on the probability distribution function), unlike the PAWN indices
which are based on the calculation of the cumulative distribution function. The variance
is a parameter of central tendency that represents the average of the squares of the differ-
ence between the value of the mean of a given distribution and the value of each of its
constituent points. The Sobol Indices (total sensitivity indices) were calculated using the
following equation [29]:

ST
i = 1 − V[E(y|x∼i)]

V(y)
, (12)

where V(y) is the unconditional variance of the output parameter y and V[E(y|x∼i)] is the
conditional variance of the expected value of the output parameter y when varying all the
input parameters except x∼i.

The fact that Sobol indices are based on variance means that they only have accurate
results for unimodal distributions. Bearing this in mind, it is expected that the results
obtained by the PAWN indices for the springback output parameter will be different
from the results obtained by the Sobol indices for the same parameter. On the other
hand, PAWN indices have the disadvantage of requiring the calculation of cumulative
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distribution functions, whereas Sobol indices only require the calculation of variance.
Another disadvantage of PAWN indices is that it is necessary to define the number of
intervals into which the data are divided, which is another factor that can influence the
results. Both indices quantify the influence of the parameter uncertainty on the forming
results in the same way; i.e., the higher their values are, the higher is the influence of a given
input uncertainty on the result variability. For indices close to zero there is no influence on
the result.

3.1. Stabilization Analysis

The indices are considered to be stabilized when their variation is equal to or less than
5%. This stabilization criterion is the same for all input parameters and is validated for suc-
cessive intervals of 500 simulations, i.e., for 500, 1000, 1500, 2000, 2500 and 3000 simulations.
The stabilization analysis of the indices was calculated considering the maximum values
of the output parameters. From Figure 5, in the case of punch force, equivalent plastic
strain and thickness reduction, the value of the PAWN and Sobol indices stabilized with the
use of 2500 and 1500 base simulations, respectively. For the geometry change, the PAWN
and Sobol indices stabilized their value when more than 2000 simulations were used. For
the springback, the PAWN and Sobol indices stabilized when more than 1500 simulations
were used. It is worth noting that in the case of the Sobol indices, a base sample of m
simulations requires a total of m × (11+2) simulations to evaluate the sensitivity indices for
the 11 input parameters, according to the traditional procedure [30]. It is therefore evident
that the computation of the PAWN indices is clearly more efficient.

Figure 6 shows the results of the PAWN and Sobol indices for the maximum values
of the output parameters. The figure shows that the uncertainty in the C parameter of
Swift’s law has the greatest influence on the variability of the punch force (Figure 6a).
The variability in the equivalent plastic strain is most influenced by the uncertainty in the
hardening coefficient n, and in the anisotropy coefficient, r90 (Figure 6b). The variability in
the thickness reduction is most affected by the hardening coefficient n, and the anisotropy
coefficient, r90 (Figure 6c). As for the variability in the geometry changes (Figure 6d),
the anisotropy coefficients r90 and r0 are the ones that have greater importance for the
PAWN indices. For the Sobol indices, r90 and r45 are the most important inputs. In the
springback (Figure 6e), the results are similar in terms of which parameters are more
influential, although there is a significant discrepancy in the values of the indices. The
most influential parameters in this case are the hardening coefficient n, the parameter C
and the blank holder force. The uncertainties that most influence the variability in the
punch force, equivalent plastic strain and thickness reduction, are similar for the PAWN
and Sobol indices. However, for the geometry change and springback, the most influential
uncertainties are different for the PAWN and Sobol indices.

3.2. Pareto Analysis

In this section, a Pareto analysis is performed on the results of the indices to separate
the more important from the less important input parameters. Figures 7 and 8 show
the graphs corresponding to the Pareto analysis for both sensitivity analysis techniques,
where the vertical bars represent the absolute value of the index for the parameter in
question and the black curve represents the accumulated percentage. According to Pareto,
the most important parameters are those that contribute to 80% of the variability of the
output parameters. From Figures 7 and 8, it can be observed that the results of the Sobol
indices consider that a small number of uncertainty factors (at most six input parameters)
are responsible for 80% of the output variability. On the other hand, the PAWN indices
consider that a large number of uncertainty factors (at least six input parameters) are
responsible for 80% of the output variability.
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From Figures 7 and 8, it can be concluded that for the punch force, according to the
Sobol indices, 80% of the variability is associated with the uncertainties in the C parameter
of Swift’s law and the initial thickness (Figure 8a). In addition to these parameters, the
PAWN indices also identify the uncertainties in the hardening coefficient, the anisotropy
coefficients at 45◦ and 90◦, and the Poisson ratio as being responsible. As for the equivalent
plastic strain, the Sobol indices (Figure 8b), 80% of the variability comes from the uncer-
tainties in the hardening coefficient and the anisotropy coefficient at 90◦. In addition to
these parameters, the PAWN indices (Figure 7b) show that 80% of the variability in the
equivalent plastic strain is caused by the uncertainty in the anisotropy coefficients at 0◦

and 45◦, the initial yield stress and the initial blank thickness.
The variability in the thickness reduction is significantly affected by the uncertainty

in the hardening coefficient, the anisotropy coefficients at 0◦, 45◦ and 90◦, the BHF and
the initial thickness, according to the PAWN indices (Figure 7c). For the Sobol indices
(Figure 8c), only the uncertainties of the hardening coefficient and the anisotropy coefficients
at 45◦ and 90◦ account for 80% of the thickness reduction variability. For the PAWN
indices, the variability in the geometry changes is due to the uncertainties in the anisotropy
coefficients at 0◦, 45◦ and 90◦ and the hardening coefficient, the Poisson ratio and the BHF
(Figure 7d). In the case of the Sobol indices (Figure 8d), the uncertainty in the anisotropy
coefficients and the hardening coefficient are the most important. For the springback, both
indices (Figures 7e and 8e) assume that 80% of the variability is due to the uncertainty in the
parameter C of Swift’s law, the BHF, the hardening coefficient, the anisotropy coefficients
at 90◦, and the Young’s modulus (for PAWN indices) or the initial yield stress (for Sobol
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indices). In summary, the main uncertainty factors are similar for both sensitivity analyses,
although the PAWN sensitivity shows that the results are influenced by more factors.

3.3. Sensitivity Indices per Region of the Square Cup

Sensitivity indices are calculated for the different regions of the square cup. The aim
of this analysis is to understand, for the different output parameters, which uncertainties in
the input parameters are most influential in different regions of the cup. For the equivalent
plastic strain, the uncertainty in the hardening coefficient (Figure 9a) has a significant
influence in the central region of the wall and at the radius of curvature of the punch.
Since the maximum variability of the equivalent plastic strain is observed in the central
region of the wall (see Figure 2a), it is therefore essential to control the uncertainty in the
hardening coefficient. The uncertainty in the anisotropy coefficient at 90◦ significantly
influences the equivalent plastic strain variability in the radius of curvature of the die and
in the upper region of the cup wall, which is also a critical region with a high variability in
the equivalent plastic strain values (see Figure 2a). The results obtained are qualitatively
similar for both indices.
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From Figure 10, it can be concluded that the variability in the thickness reduction,
at the bottom of the cup, along the radius of curvature of the punch and in the central
region of the wall (Figure 10a) is significantly influenced by the uncertainty in the strain
hardening coefficient. Although the variability at the bottom of the cup is not significant
(see Figure 2b), along the radius of curvature of the punch and in the central region of
the wall there is a significant variability in the thickness reduction (see Figure 2b), so
the uncertainty in the hardening coefficient is essential to control. The uncertainty in the
anisotropy coefficient at 90◦ (Figure 10b) significantly affects the variability of the thickness
reduction in the cup wall, the radius of curvature of the die and the flange. However, only
the wall zone has a significant variability in thickness reduction (see Figure 2b), which
means that the uncertainty of the anisotropy coefficient at 90◦ is particularly critical in this
region. The results obtained are qualitatively similar for both indices.
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Figure 10. Distribution of PAWN (left) and Sobol (right) indices for thickness reduction: (a) n; (b) r90.

Figure 11a shows that the variability in the geometry changes is influenced by the
hardening coefficient at the bottom of the wall and at the bottom of the cup. The uncertainty
in the anisotropy coefficients at 0◦ and 90◦ (Figure 11b,c) largely influence the variability of
the geometry changes in the upper part of the square cup. These areas coincide with the
regions of the cup where the variability in the geometry change is significant (see Figure 2c).
Therefore, to control the variability of the geometry change, it is more important to control
the uncertainty in the anisotropy coefficients at 0◦ and 90◦ than in the hardening coefficient.
The results obtained were qualitatively similar for both indices.
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The springback variability throughout the cup is mainly influenced by the uncertainty
in the blank holder force, BHF, the anisotropy coefficient at 90◦ and the C parameter
of Swift’s law (Figure 12a). However, it can be noted that among these parameters, the
parameter C of Swift’s law is the most critical (Figure 12b), since it has a greater effect in
areas where the springback variability reaches higher values. For springback, it is clear that
the distributions of the Sobol and PAWN indices are different. This is to be expected as the
springback distribution (see Figure 4) is bimodal and therefore a sensitivity analysis using
Sobol indices is not appropriate in this case.
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3.4. Maximum Sensitivity Indices per Region of the Square Cup

Figure 13 shows the input parameters for which the PAWN or Sobol indices are
maximum in each zone of the square cup. For the equivalent plastic strain (Figure 13a),
the geometry changes (Figure 13b), the thickness reduction (Figure 13c), the uncertainty
in the anisotropy coefficient at 90◦ and the hardening coefficient were the most important
in a large part of the cup; the uncertainty in the anisotropy coefficient at 0◦ also presented
some areas of significant importance. The springback variability throughout the cup was
significantly affected by the uncertainty in the blank holder force and the parameter C,
with the uncertainty in the anisotropy coefficients at 45◦ and 90◦ also influential in certain
locations of the cup (Figure 13d). As expected, the results for the PAWN and Sobol indices
were identical for all output parameters except springback. The main difference was at
the bottom and wall of the cup, where the PAWN indices indicate that the uncertainty in



Metals 2024, 14, 432 15 of 18

the anisotropy coefficient at 45◦ is the most important parameter, while the Sobol indices
consider the BHF to be the most important parameter.
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3.5. Evolution of Sensitivity Indices for the Punch Force

Figure 14 shows the evolution of the PAWN and Sobol indices for the punch force as
a function of its displacement. It can be seen that the influence of the uncertainty in the
parameter C on the punch force variability increases with the punch displacement. The
influence of the uncertainties in the hardening coefficient, n, and the yield stress, Y0, on
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the punch force variability increased initially but lost influence with the punch displace-
ment. The uncertainty in the initial thickness has a constant influence on the punch force
throughout its displacement. The primary distinction between the results obtained from the
two-sensitivity analysis is the influence of the uncertainty in the anisotropy coefficient, r0.
However, the r0 significant variations between 0 and 12 mm (for the Sobol indices) is
artificial, i.e., it comes from errors in the calculation of Equation (12), when both variances
in the dividend and divisor were approximately 0.
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4. Conclusions

The main objective of this study was to quantify the influence of the uncertainty in
material, friction, and process parameters on the forming results of a square cup. For this, a
sensitivity analysis was carried out using two different techniques. It was concluded that
the bottom of the cup is the area least affected by the uncertainty in the material, friction
and process parameters. On the other hand, the flange, the radius of curvature of the die
and the wall are the areas that show the greatest variability. For the equivalent plastic strain,
the variability is more pronounced at the flange, as for geometry changes and springback.
The uncertainty in the parameter C of Swift’s law, the hardening coefficient and the initial
sheet thickness significantly influence the variability of the punch force. The variability
of equivalent plastic strain, thickness reduction and geometry changes are significantly
influenced by the uncertainty in the hardening coefficient and the anisotropy coefficients.
The variability of springback is significantly influenced by the uncertainty of parameter C
of Swift’s law, the hardening coefficient, the anisotropy coefficient at 90◦ and the blank
holder force. It is worth noting that there is a difference between the results obtained
using PAWN and Sobol indices, particularly in the case of the springback response. The
study emphasizes that the type of distribution of the results plays a crucial role in the
quality of the results, and it is therefore crucial to select the most appropriate sensitivity
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analysis technique. For example, springback has a bimodal distribution, making PAWN
indices more suitable for sensitivity analysis. The PAWN sensitivity analysis proved to be
more computationally efficient than the Sobol sensitivity analysis, with improved accuracy
for results following multimodal distributions. Although the PAWN indices are more
efficient, evaluating them still requires a significant number of numerical simulations. To
reduce the computational cost without compromising the quality of the results, we propose
exploring the use of metamodelling techniques to evaluate both indices. This will allow to
perform sensitivity analysis on more complex numerical models, that for instance consider
deformable tools or the use of more advanced constitutive models that can describe texture
evolution and the Bauschinger effect.

Author Contributions: Conceptualization, D.C.R. and A.F.G.P.; methodology, T.G.P., D.C.R. and
A.F.G.P.; software, D.C.R. and A.F.G.P.; validation, T.G.P., D.C.R. and A.F.G.P.; formal analysis.
D.C.R., T.G.P., M.C.O., A.F.G.P., P.A.P. and N.A.S.; writing—original draft preparation, T.G.P., D.C.R.;
writing—review and editing, T.G.P., D.C.R., M.C.O., A.F.G.P., P.A.P. and N.A.S.; supervision, A.F.G.P.;
project administration, A.F.G.P.; funding acquisition, A.F.G.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was sponsored by FEDER funds through the program COMPETE (Programa
Operacional Factores de Competitividade), by national funds through FCT (Fundação para a Ciência e
a Tecnologia) under the projects UIDB/00285/2020, UIDB/00481/2020, UIDP/00481/2020, CENTRO-
01-0145-FEDER-022083, LA/P/0104/2020 and LA/P/0112/2020. It was also supported by the project
RealForm (reference 2022.02370.PTDC), funded by Portuguese Foundation for Science and Technology.

Data Availability Statement: The data presented in this study are available on request from the
corresponding. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gronostajski, Z.; Pater, Z.; Madej, L.; Gontarz, A.; Lisiecki, L.; Łukaszek-Sołek, A.; Łuksza, J.; Mróz, S.; Muskalski, Z.; Muzykiewicz,

W.; et al. Recent Development Trends in Metal Forming. Arch. Civ. Mech. Eng. 2019, 19, 898–941. [CrossRef]
2. de Souza, T.; Rolfe, B. Multivariate Modelling of Variability in Sheet Metal Forming. J. Mater. Process. Technol. 2008, 203, 1–12.

[CrossRef]
3. Lim, Y.; Venugopal, R.; Ulsoy, A.G. Advances in the Control of Sheet Metal Forming. IFAC Proc. Vol. 2008, 41, 1875–1883.

[CrossRef]
4. Hazra, S.; Williams, D.; Roy, R.; Aylmore, R.; Smith, A. Effect of Material and Process Variability on the Formability of Aluminium

Alloys. J. Mater. Process. Technol. 2011, 211, 1516–1526. [CrossRef]
5. Han, S.S. The Influence of Tool Geometry on Friction Behavior in Sheet Metal Forming. J. Mater. Process. Technol. 1997, 63, 129–133.

[CrossRef]
6. Majeske, K.D.; Hammett, P.C. Identifying Sources of Variation in Sheet Metal Stamping. Int. J. Flex. Manuf. Syst. 2003, 15, 5–18.

[CrossRef]
7. Li, Y.Q.; Cui, Z.S.; Ruan, X.Y.; Zhang, D.J. Application of Six Sigma Robust Optimization in Sheet Metal Forming. In Proceedings

of the 6th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Process, Detroit, MI,
USA, 15–19 August 2005; Volume 778 A, pp. 819–824.

8. Faes, M.; Van Doninck, B.; Imholz, M.; Moens, D. Product Reliability Optimization under Plate Sheet Forming Process Variability.
In Proceedings of the 8th International Workshop on Reliable Computing, Liverpool, UK, 16–18 July 2018.

9. Ledoux, Y.; Sergent, A.; Arrieux, R. Impact of the Material Variability on the Stamping Process: Numerical and Analytical
Analysis. In AIP Conference Proceedings, Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming
Processes, Porto, Portugal, 17–21 June 2007; AIP Publishing: New York, NY, USA, 2007; Volume 908, pp. 1213–1218.

10. Marretta, L.; Di Lorenzo, R. Influence of Material Properties Variability on Springback and Thinning in Sheet Stamping Processes:
A Stochastic Analysis. Int. J. Adv. Manuf. Technol. 2010, 51, 117–134. [CrossRef]

11. Strano, M. A Technique for FEM Optimization under Reliability Constraint of Process Variables in Sheet Metal Forming. Int. J.
Mater. Form. 2008, 1, 13–20. [CrossRef]

12. Huang, C.; Radi, B.; Hami, A. El Uncertainty Analysis of Deep Drawing Using Surrogate Model Based Probabilistic Method. Int.
J. Adv. Manuf. Technol. 2016, 86, 3229–3240. [CrossRef]

13. Arnst, M.; Ponthot, J.P.; Boman, R. Comparison of Stochastic and Interval Methods for Uncertainty Quantification of Metal
Forming Processes. Comptes Rendus-Mec. 2018, 346, 634–646. [CrossRef]

https://doi.org/10.1016/j.acme.2019.04.005
https://doi.org/10.1016/j.jmatprotec.2007.09.075
https://doi.org/10.3182/20080706-5-KR-1001.00320
https://doi.org/10.1016/j.jmatprotec.2011.04.001
https://doi.org/10.1016/S0924-0136(96)02612-X
https://doi.org/10.1023/A:1023993806025
https://doi.org/10.1007/s00170-010-2624-4
https://doi.org/10.1007/s12289-008-0001-8
https://doi.org/10.1007/s00170-016-8436-4
https://doi.org/10.1016/j.crme.2018.06.007


Metals 2024, 14, 432 18 of 18

14. Shahi, V.J.; Masoumi, A.; Franciosa, P.; Ceglarek, D. Quality-Driven Optimization of Assembly Line Configuration for Multi-
Station Assembly Systems with Compliant Non-Ideal Sheet Metal Parts. Procedia CIRP 2018, 75, 45–50. [CrossRef]

15. Dwivedy, M.; Kalluri, V. The Effect of Process Parameters on Forming Forces in Single Point Incremental Forming. Procedia Manuf.
2019, 29, 120–128. [CrossRef]

16. Prates, P.A.; Adaixo, A.S.; Oliveira, M.C.; Fernandes, J.V. Numerical Study on the Effect of Mechanical Properties Variability in
Sheet Metal Forming Processes. Int. J. Adv. Manuf. Technol. 2018, 96, 561–580. [CrossRef]

17. Marques, A.E.; Prates, P.A.; Pereira, A.F.G.; Oliveira, M.C.; Fernandes, J.V.; Ribeiro, B.M. Performance Comparison of Parametric
and Non-Parametric Regression Models for Uncertainty Analysis of Sheet Metal Forming Processes. Metals 2020, 10, 457.
[CrossRef]

18. Dib, M.A.; Oliveira, N.J.; Marques, A.E.; Oliveira, M.C.; Fernandes, J.V.; Ribeiro, B.M.; Prates, P.A. Single and Ensemble Classifiers
for Defect Prediction in Sheet Metal Forming under Variability. Neural Comput. Appl. 2020, 32, 12335–12349. [CrossRef]

19. Bérend, N.; Le Riche, R. Comparison of Different Global Sensitivity Analysis Methods for Aerospace Vehicle Optimal Design.
In Proceedings of the 10th World Congress on Structural and Multidisciplinary Optimization, Orlando, FL, USA, 19–24 May 2013.

20. Pianosi, F.; Wagener, T. A Simple and Efficient Method for Global Sensitivity Analysis Based On cumulative Distribution Functions.
Environ. Model. Softw. 2015, 67, 1–11. [CrossRef]

21. Pianosi, F.; Wagener, T. Distribution-Based Sensitivity Analysis from a Generic Input-Output Sample. Environ. Model. Softw. 2018,
108, 197–207. [CrossRef]

22. Puy, A.; Lo Piano, S.; Saltelli, A. A Sensitivity Analysis of the PAWN Sensitivity Index. Environ. Model. Softw. 2020, 127, 104679.
[CrossRef]

23. Pereira, A.F.G.; Ruivo, M.F.; Oliveira, M.C.; Fernandes, J.V.; Prates, P.A. Numerical Study of the Square Cup Stamping Process:
A Stochastic Analysis. In Proceedings of the ESAFORM 2021—24th International Conference on Material Forming, Liege, Belgium,
16–14 April 2021; PoPuPS (University of Liege Library): Liège, Belgium, 2021.
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