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Abstract: TiCx/Al composites were successfully prepared in this study by dissolving graphite
particles in Al-Ti melt based on the principle of a solid–liquid in situ reaction. It was observed that
the microstructure of the TiCx/Al composites changed with changes in the reaction temperature and
graphite particle size. With an increase in reaction temperature, the TiCx particles in the TiCx/Al
composites transitioned from a spider-like distribution to being evenly dispersed in the Al matrix.
Additionally, the morphology of the TiCx particles changed from polygons of various sizes to quasi-
spherical shapes with a uniform particle size, while the presence of Al4C3 and Al3Ti in the matrix
diminished. The size variation of the graphite particles had minimal impact on the particle size
and stoichiometric ratio of TiCx generated in the sample. Furthermore, an appropriate graphite
particle size was found to mitigate the agglomeration and residue of graphite particles during the
in situ reaction.

Keywords: particle-reinforced composites; Al-Ti alloy; TiCx; microstructure formation mechanism

1. Introduction

Aluminum-based composites (Al-based composites) are widely used to prepare
lightweight equipment such as radiators, cylinder liners, and brake devices due to their
high specific strength, specific elastic modulus, good wear resistance, and low thermal
expansion coefficient [1–4]. High-performance Al-based composites can be obtained by
introducing ceramic particles with high strength, good conductivity, and stability (such
as carbides, oxides, borides, etc. [5–12]) into the Al matrix. Among them, TiCx is widely
used to prepare Al-based composites due to its high elastic modulus, high hardness, and
high-temperature stability.

Currently, various methods for the preparation of TiCx/Al composites have been de-
veloped (including discharge plasma sintering, mechanical mixing method, melt infiltration,
powder metallurgy method, contact reaction method, etc. [13–18]). These methods are pri-
marily categorized into ex situ and in situ methods, differing mainly in the introduction of
the ceramic reinforcement phase. In the ex situ method, ceramic particles are directly added
to the metal matrix from the outside, whereas in the in situ method, ceramic reinforcement
phases are generated within the matrix directly through chemical reactions. Generally, the
interface between the reinforcement phase and the metal matrix in composites synthesized
by in situ methods is cleaner and straighter, and it exhibits a higher bonding strength
compared to composites synthesized by ex situ methods [19,20]. In TiCx/Al composites
prepared through the in situ method, TiCx forms a strong interface bond with the Al matrix,
resulting in stronger mechanical properties and higher hardness than the matrix alloy. This
method is crucial for the preparation of high-performance TiCx/Al composites [21–23].
However, the traditional in situ method usually uses powdered raw materials to synthesize
TiCx/Al composites at a higher cost, which is generally more than four times that of bulk
raw materials. At the same time, oxygen (O) easily forms an oxide layer on the surface of
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titanium (Ti) powder, causing the oxide layer to dissolve into the matrix as a solid solute
during the in situ preparation of TiCx/Cu composites, reducing material performance.

The performance of in situ synthesized TiCx/Al composites has been found to be
mainly influenced by the stoichiometric ratio, distribution, and morphology of the TiCx
reinforcement phase, as well as the residual amount of harmful phases (Al4C3 and Al3Ti)
in the material [24–28]. Among these factors, the strengthening mechanism of TiCx/Al
composites is determined by the stoichiometric ratio, distribution, and morphology size of
TiCx, thereby affecting the physical and mechanical properties such as the flexural strength
and wear resistance of the material. The performance of the material is improved when the
TiCx particle distribution in the TiCx/Al composites is more uniform [29]. A large number
of harmful phases (Al4C3 and Al3Ti) are prepared in TiCx/Al composite matrices using
the traditional in situ method. The performance of the TiCx/Al composites is affected
by these two phases, damaging the interface between them and the matrix. Al4C3 is the
product of the direct reaction between Al and C in the early stage of the in situ reaction of
the Al-Ti-C system. It is easily decomposed into Al(OH)3 and CH4 by a hydrolysis reaction
with H2O, resulting in interface damage between the Al4C3 and the matrix. This affects
the transfer of stress between the Al4C3 and the matrix, thereby seriously damaging the
stability of the composite properties [30]. The TiCx/Al composite components undergo
a slight deformation when exposed to moist air for a long time. Lu et al. [27] found that
with the hydrolysis of Al4C3 in diamond/Al composites, the thermal conductivity and
tensile strength of the material continued to decrease. Al3Ti is a brittle phase and is easily
broken under load, resulting in poor plasticity of TiCx/Al composites. Yang et al. [28]
found that reducing or eliminating the residual Al3Ti phase in TiCx/Al composites can
further improve the tensile elongation and ultimate tensile strength of the composites.
Therefore, the prerequisites for preparing high-performance and cost-effective TiCx/Al
composites include avoiding the residues of Al4C3 and Al3Ti in TiCx/Al composites,
reducing preparation costs, and improving the distribution, stoichiometric ratio, and
morphology of the TiCx particles. Different reaction temperatures have a significant impact
on the microstructure of TiCx/Al composites, as found by Jiang et al. [31]. At higher
reaction temperatures, the Al-Ti-C system further reacts and generates more TiCx particles.
Based on the above problems and the solid–liquid in situ reaction principle, in this study,
there was very little Al3Ti phase in the TiCx/Al composites prepared by dissolving graphite
particles from aluminum–titanium alloy, and no Al4C3 residue was found, which is useful
for TiCx/Al composites. The stability of the process has far-reaching consequences. At
the same time, using bulk metal raw materials to prepare TiCx/Al composites can avoid
the defect of Ti powder easily introducing oxygen and greatly reduce the cost of raw
materials. This opens up new ideas for producing TiCx/Al composites with stable service
performance and interface bonding strength.

In this paper, TiCx/Al composites with different composition characteristics were
successfully prepared by dissolving graphite particles from Al-Ti alloy. The influence of
reaction temperature and holding time on the microstructure of the TiCx/Al composites
was revealed. The influence of different graphite particle raw materials on the morphology,
particle size, volume fraction, and stoichiometry of TiCx particles generated in the Al-Ti-C
system was studied. The reaction sequence in the process of dissolving graphite particles
from an Al-Ti alloy to prepare TiCx/Al composites is further discussed. This is crucial to
further optimize the performance of TiCx/Al composites.

2. Materials and Methods

The raw materials used in the experiment were Al-10 wt%Ti alloy (99.99 wt% purity,
3–10 cm) and graphite particles (99.99 wt% purity, particle size 150–300, 100–150, 75–100,
60–75, and 46–60 µm). Scanning electron microscopy (SEM) images of Al-10 wt%Ti alloy
and graphite particles of different particle sizes are shown in Figure 1.
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Figure 1. (a–e) SEM images of graphite particles with particle sizes of 150–300, 100–150, 75–100, 60–
75, and 46–60 µm; (f–i) SEM image and EDS surface of Al-10 wt%Ti alloy analysis. 
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The prepared TiCx/Al composites were cut, ground, and polished according to stand-
ard procedures. In order to avoid the hydrolysis of the Al4C3 phase during sample prepa-
ration, absolute ethanol was used to rinse the sample. The raw material composition, 
TiCx/Al composites properties, and TiCx stoichiometry were studied using SEM, energy 
dispersive spectrometer (EDS), and X-ray diffractometer (XRD, Rigaku-Smart Lab, Tokyo, 
Japan). The particle size distribution of TiCx in the composite materials was obtained 
through Image-Pro Plus. In order to ensure the accuracy of the SEM-EDS detection of the 

Figure 1. (a–e) SEM images of graphite particles with particle sizes of 150–300, 100–150, 75–100, 60–75,
and 46–60 µm; (f–i) SEM image and EDS surface of Al-10 wt%Ti alloy analysis.

In the process of preparing the TiCx/Al composites, Al-Ti alloy and graphite particles
(the molar ratio of C to Ti is 1:1) were mixed and placed in a porcelain boat, which was
then placed in the constant-temperature zone of the horizontal tube furnace. Heating was
performed under an argon atmosphere. The experimental groups and reaction conditions
are shown in Table 1.

Table 1. Components and reaction conditions of TiCx/Al composites in this study.

Sample No. Sample
Component

Graphite Particle
Size (µm) Temperature (◦C) Holding

Time (h)

A1 Al-10 wt%Ti + 2.5 wt%C 75–100 µm 1300 ◦C 4 h
A2 Al-10 wt%Ti + 2.5 wt%C 75–100 µm 1400 ◦C 4 h
A3 Al-10 wt%Ti + 2.5 wt%C 75–100 µm 1500 ◦C 4 h
A4 Al-10 wt%Ti + 2.5 wt%C 75–100 µm 1600 ◦C 4 h
B1 Al-10 wt%Ti + 2.5 wt%C 75–100 µm 1600 ◦C 0.17 h
B2 Al-10 wt%Ti + 2.5 wt%C 75–100 µm 1600 ◦C 1 h
B3 Al-10 wt%Ti + 2.5 wt%C 75–100 µm 1600 ◦C 4 h
B4 Al-10 wt%Ti + 2.5 wt%C 75–100 µm 1600 ◦C 8 h
C1 Al-10 wt%Ti + 2.5 wt%C 150–300 µm 1600 ◦C 4 h
C2 Al-10 wt%Ti + 2.5 wt%C 100–150 µm 1600 ◦C 4 h
C3 Al-10 wt%Ti + 2.5 wt%C 75–100 µm 1600 ◦C 4 h
C4 Al-10 wt%Ti + 2.5 wt%C 60–75 µm 1600 ◦C 4 h
C5 Al-10 wt%Ti + 2.5 wt%C 46–60 µm 1600 ◦C 4 h

The prepared TiCx/Al composites were cut, ground, and polished according to stan-
dard procedures. In order to avoid the hydrolysis of the Al4C3 phase during sample
preparation, absolute ethanol was used to rinse the sample. The raw material composition,
TiCx/Al composites properties, and TiCx stoichiometry were studied using SEM, energy
dispersive spectrometer (EDS), and X-ray diffractometer (XRD, Rigaku-Smart Lab, Tokyo,
Japan). The particle size distribution of TiCx in the composite materials was obtained
through Image-Pro Plus. In order to ensure the accuracy of the SEM-EDS detection of the
raw material components, surface scans were performed in different areas, and the average
value was taken.
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3. Results
3.1. Raw Material Microstructure

As shown in Figure 1a–e, the graphite particles used in this study had an irregular block
structure. The particle size statistical analysis revealed that the particle sizes ranged from
150–300, 100–150, 75–100, and 60–75 to 46–60 µm. The analysis of the Al-10 wt%Ti alloy
revealed that Ti was uniformly distributed in the matrix in the form of AlxTi compounds, as
shown in Figure 1f–i.

3.2. Effect of Reaction Temperature and Reaction Time on TiCx/Al Composites

The properties of the TiCx/Al composites were significantly influenced by their phase
composition, distribution, and morphology. The performance of the material was improved
with a higher stoichiometric ratio and a more uniform distribution of TiCx within the
TiCx/Al composites. Additionally, the stability of the material’s performance was increased
with a reduction of unstable phases within the TiCx/Al composites. Phase formation in the
TiCx/Al composites was primarily influenced by the reaction temperature and reaction
time. Therefore, the effect of reaction temperature and reaction time on the microstructure
of TiCx/Al composites is discussed in this section.

The study found that under the conditions of ensuring sufficient reaction time, the
microstructure of the TiCx/Al composites generated by the Al-10Ti-2.5C system at dif-
ferent reaction temperatures changed significantly. Figure 2 shows the XRD images of
TiCx/Al composites prepared at different reaction temperatures. All samples contained
TiCx, which shows that the Al-Ti melt and graphite particles can react with carbon–titanium
to synthesize TiCx.
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Figure 2. XRD of TiCx/Al composites prepared at different reaction temperatures.

To further analyze the distribution and morphology of TiCx, the SEM image of the
sample was partitioned into three regions: upper, middle, and lower, as shown in Figure 3.
The investigation revealed that the TiCx in the samples synthesized at lower reaction
temperatures exhibited a network-like distribution. As the reaction temperature increased
(e.g., 1500 ◦C and 1600 ◦C), the TiCx generated in the samples showed a more uniform
distribution. This indicates that the TiCx formed at lower reaction temperatures was
primarily distributed along the grain boundaries of the Al grains, while at higher reaction
temperatures, the TiCx was evenly dispersed within the Al matrix.
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Figure 3. SEM images of TiCx/Al composites produced at different reaction temperatures: (a1–a3) A1
sample; (b1–b3) A2 sample; (c1–c3) A3 sample; (d1–d3) A4 sample.

When the reaction temperature of the Al-10Ti-2.5C system was low, a large amount
of Al4C3 and Al3Ti phases were found in the sample, which affected the stability and
plasticity of the TiCx/Al composites during service. A three-layer core–shell structure
(C@Al4C3@TiCx) was observed in the TiCx/Al composites prepared by the Al-10Ti-2.5C
system at 1300 ◦C and 1400 ◦C, composed of incompletely reacted graphite, Al4C3, and TiCx,
as shown in Figure 3(a1–b3). However, similar core–shell structures were not observed
in the samples prepared at 1500 ◦C and 1600 ◦C, as shown in Figure 3(c1–d3). It was
demonstrated that the Al4C3 generated by the reaction between graphite particles and
high-temperature Al-Ti melt reacted with Ti in the Al-Ti melt at the Al4C3/melt interface
to form TiCx and completely react at a higher temperature. This was because the fluidity
of the melt was improved by increasing the reaction temperature, and the activity of the
reactants was increased. As the reaction temperature was increased, the residual Al3Ti in
the TiCx/Al composites gradually decreased. Changes in the microstructure of the TiCx/Al
composites were affected by keeping the reaction temperature of the Al-10Ti-2.5C system
unchanged and extending or reducing the reaction time, as depicted in Figure 4. There
was no residual Al4C3 in the samples of group B, indicating that Al4C3 rapidly reacted
with Ti in the melt to form TiCx at 1600 ◦C. With the prolongation of the reaction time, the
long Al3Ti phase in the melt broke down and further reacted with the C dissolved into the
matrix to form TiCx or promote the increase in the stoichiometric ratio of TiCx. With the
further reaction of the Al3Ti phase, the volume fraction of TiCx in the TiCx/Al composites
also significantly increased.
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The characteristics of no Al4C3 phase residue, very little Al3Ti phase distribution, and
uniformly distributed TiCx particles were observed in the TiCx/Al composites prepared by
the Al-10Ti-2.5C system at 1600 ◦C and maintained for a long time, as shown in this study,
and improvements in the material properties and performance stability during service are
facilitated by these characteristics.

As depicted in Figure 5, it was found through EDS analysis that the TiCx generated
in the Al-10Ti-2.5C system contained a small amount of Al, with the C content slightly
higher than Ti. With increasing reaction temperature, the proportion of Al atoms in the
TiCx generated in the sample gradually decreased. This phenomenon arose because the
TiCx in the sample was primarily formed through the reaction of Al4C3 and Ti rather than
the direct reaction of graphite and Ti. By observing the morphology and particle size of
the TiCx in samples prepared at different temperatures, it was found that as the reaction
temperature increased, the morphology of TiCx changed from irregular polygonal to nearly
spherical, with the particle size further increases. Jin et al. [32] indicate that during the
growth process of TiCx, the stoichiometric ratio approaches 1, and the shape tends to be
spherical. This indicates that the rise in reaction temperature of the Al-10Ti-2.5C system
also contributes to an increase in the TiCx stoichiometric ratio. As shown in Figure 6e–h,
as the reaction time is extended, the proportion of Al atoms in TiCx gradually diminishes
while the proportions of Ti and C atoms stabilize. However, a further extension of the
reaction time in the Al-10Ti-2.5C system does not significantly increase the proportion of
Ti atoms in TiCx. This is because the concentration of Ti atoms in the melt continues to
decrease, leading to a gradual slowing of the growth rate of TiCx, eventually approaching 0.
This study found that with the increase in the reaction temperature and holding time, the
disappearance of Al4C3, the decrease in Al3Ti in the TiCx/Al composites, and the increase
in the dispersion of the TiCx volume fraction further promoted a reduction in the matrix
grain size and increased the effect of fine grain strengthening, improving the hardness and
other mechanical properties of the material.
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3.3. Effect of Graphite Particle Size on TiCx/Al Composites

The particle size variation of the TiCx reinforcement phase in TiCx/Al composites
significantly affects the material’s properties. The smaller particle size of TiCx particles
corresponds to the enhanced performance of TiCx/Al composites. The particle size of the
graphite particle raw material plays a crucial role in determining the particle size of TiCx
generated in the Al-10Ti-2.5C system. Hence, this section explores the influence of different
graphite particle sizes on the TiCx particle size in TiCx/Al composites.

When the particle size of the graphite particle raw material is smaller than a specific
value, the graphite particles will directly react with Ti in the Al-Ti melt to generate TiCx.
However, during the solid–liquid in situ reaction, graphite particles that are too small
are prone to agglomeration, causing the graphite particles to be unable to be completely
wetted by the Al-Ti melt, thus leaving unreacted graphite particles in the sample. At the
same time, excessively large graphite particles will remain due to the decreasing activity
of Ti atoms in the Al-Ti melt. This section uses graphite particles of different particle sizes
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as carbon sources to study the effect of graphite particle size on the microstructure of
TiCx/Al composites prepared by this method. As shown in Figure 7, the phenomena when
graphite particles of different sizes react with Al-Ti alloy melt are basically the same. In
order to analyze the differences in the microstructure of group C samples further, each
TiCx-containing region was divided into upper, middle, and lower parts. As shown in
Figure 7, the TiCx generated in the sample gradually becomes further dispersed as the
graphite particle size decreases.
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As shown in Figure 7(c1–e3), when the graphite particle size is <100 µm, the distribu-
tion of each region in the TiCx sample is basically the same, and as the graphite particle size
further decreases, the degree of dispersion of TiCx in different samples remains unchanged.
When the particle size of graphite particles is >100 µm, the degree of TiCx dispersion in
different areas of the sample varies greatly. When the graphite particle size is between
150–300 and 100–150 µm, there are more unreacted graphite particles and Al3Ti remaining
in the sample matrix, as shown in Figure 7(a1–b3). When the graphite particle sizes are
60–75 and 46–60 µm, a small amount of agglomerated graphite particles and unreacted
Al3Ti phase remain in the sample, as shown in Figure 7(d1–e3). As shown in Figure 8,
different graphite raw material particle sizes have little effect on the stoichiometry of TiCx in
the prepared composite materials. As shown in Figure 9, the particle size of TiCx generated
by the reaction in different samples is basically around 2 µm, and the TiCx with particle
size < 3 µm in the sample accounts for more than 86%. The study found that when the
graphite particle size was 75–100 µm, the sample’s TiCx with particle size < 3 µm was at
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most 98.9%. Therefore, when the Al-10 wt%Ti alloy reacted with graphite particles with a
particle size of 75–100 µm at 1600 ◦C, the TiCx in the generated TiCx/Al composites was
the most uniform, the average particle size was the smallest, and the residual amounts of
Al4C3 and Al3Ti phases in the matrix are the lowest.
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3.4. Synthesis Sequence of TiCx in Al-10Ti-2.5C System

According to current research findings, when Al-Ti melt dissolves graphite particles
in situ to synthesize TiCx/Al composites, the following reactions may occur:

4Al+ 3C → Al4C3 (1)

Ti + C → TiC (2)

Al4C3 + 3Ti → 3TiC + 4Al (3)

In previous studies, we also tried to use Al-Ti melt to dissolve graphite particles to
prepare TiCx/Al composites at a lower reaction temperature (higher than the melting point
of Al-Ti alloy). However, studies have found that too low a reaction temperature will result
in poor fluidity of the Al-Ti melt and the inability to completely wet the graphite particles,
resulting in the incomplete reaction of the graphite particles. By comparison, it was found
that increasing the reaction temperature can improve the fluidity of the Al-Ti melt, better
wet the graphite particles, and generate a large amount of TiCx reinforcement phase.

Analyzing the microstructure of TiCx/Al composites prepared under different con-
ditions revealed the synthesis sequence of TiCx in the Al-10Ti-2.5C system, as depicted
in Figure 10. When the high-temperature Al-Ti melt contacts graphite particles, Al reacts
rapidly with the graphite particles on the surface of the graphite particles to generate a
large amount of Al4C3, and some graphite particles dissolve into Al in the form of C atoms
(Figure 10a,b). As the reaction proceeds, the smaller graphite particles are completely
transformed into Al4C3 particles, while a continuous Al4C3 layer is formed on the surface
of the larger graphite particles (Figure 10c). In Al-Ti alloys, Ti primarily exists in the form of
Al3Ti. Upon melting, Al3Ti readily forms a molten Al-Ti layer within the Al melt, causing
the dispersion of Ti in the Al-Ti melt (Figure 10b) [33]. At this stage, Ti dispersed in the melt
reacts with C at the Al4C3/melt interface to generate TiCx, while the solid C solution in
Al reacts with Ti near the Al-Ti layer to produce TiCx (Figure 10c). As the thickness of the
TiCx layer in the Al4C3 surface continues to increase, cracks gradually manifest in the TiCx
layer, dispersing into smaller TiCx particles within the melt (Figure 10d,e). Concurrently,
the surface of Al4C3 forms a new TiCx layer as the previous TiCx layer fractures. This cycle
of changes in Al4C3 within the Al-Ti melt persists until all of the Al4C3 is converted into
TiCx. As the thickness of the TiCx layer in the Al4C3 surface continues to increase, cracks
gradually manifest in the TiCx layer, dispersing into smaller TiCx particles within the melt
(Figure 10d–f). Simultaneously, with the extension of the reaction time and the continuous
depletion of Ti, the long strips of Al3Ti gradually break into short rods and are gradually
consumed completely (Figure 10d–f). However, due to the ongoing reduction in the Ti
concentration within the Al-Ti melt, the rate of the carbon–titanium reaction gradually
diminishes, approaching 0, leading to the presence of individual small-sized Al3Ti phases
remaining in the matrix.
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4. Conclusions

In this study, TiCx/Al composites were successfully fabricated by dissolving graphite
particles in an Al-Ti melt. The experimental results indicate that the TiCx reinforcement
phase in these composites tends to distribute evenly throughout the matrix, with the
microstructure of TiCx and residual phases changing in response to changes in reaction
temperature and initial graphite particle size. The investigation reveals that as the reaction
temperature increases, the TiCx particles in the TiCx/Al composites produced via the
Al-Ti melt dissolution of graphite particles exhibit a more uniform distribution, and their
morphology gradually transitions toward a spherical shape. In addition, the Ti-C reaction is
easily affected by the Al-C reaction at lower reaction temperatures, resulting in the presence
of the Al4C3 phase and unreacted Al3Ti phase in the sample. Interestingly, different graphite
particle sizes have minimal impact on the stoichiometric ratio, morphology, and volume
fraction of the generated TiCx. Larger graphite particles persist due to decreased Ti activity
in the melt. Conversely, excessively small graphite particles tend to agglomerate in the
Al-Ti melt, hindering complete wetting by the melt and remaining within the matrix.
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