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Abstract: We herein suggest a metallurgical method using pure aluminum with no freezing tem-
perature range to derive appropriate roll/melt interfacial heat transfer coefficients in simulation
of twin-roll casting process. This method is inspired by the concept that the position of the kiss
points where two solidifying shells encounter and the roll nip coincides under the condition where
the roll load becomes zero as the roll rotation speed decreases. The conditions where the roll load
becomes zero under various melt supply temperature conditions in the actual TRC process are found
experimentally. These conditions are then applied to simulation models to derive heat transfer
coefficient values. When comparing these values with those derived previously from the empirical
relation for roll rotation speed and heat transfer coefficient, the conclusion is drawn that the deviation
was reasonably low, around 10%.
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1. Introduction

Recently, in the aluminum sheet industry, the twin-roll casting (TRC) process has
gained significant attention due to its economic advantages and high potential in future
advanced alloy products [1]. For decades, the TRC process has been primarily used for
the production of aluminum sheets, focusing on alloys such as 1xxx series, 3xxx, and
8xxx series [2–6]. However, in recent times, there has been active research and development
on the manufacturing of high-alloy Al alloys, particularly for the production of sheets
used in transportation equipment [7,8]. For high-alloy Al, such as the 5xxx series and
6xxx series, manufacturing is particularly challenging during continuous casting due to the
wide freezing temperature range of the alloys [9–12]. This makes the process susceptible
to surface inverse segregation and vulnerable to central segregation, posing significant
difficulties in production [13–19].

An essential technology for overcoming these challenges is solidification analysis
through simulation of the TRC process. For effective simulation of the TRC process, ap-
propriate boundary conditions are fundamentally required [20]. In particular, achieving
accurate predictions of solidification behavior during continuous casting necessitates a
careful consideration of the heat transfer coefficients at the interface between the rotating
rolls and the molten metal [21]. Numerous researchers have made considerable efforts
to derive these heat transfer coefficients [7,20–23]. For basic simulations, it is common to
use arbitrary heat transfer coefficients with constant values [22]. Deriving heat transfer
coefficients through temperature measurements near the roll surface using heat flux tends
to be more reliable for obtaining accurate values [23]. There are cases where thermocouples
are directly inserted between the solidifying shells during the vertical-type high-speed
twin-roll casting process to deduce heat transfer coefficients [21]. In this case, since direct
temperature measurements are conducted, a certain level of reliable heat transfer coefficient
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values can be obtained. However, for high-speed TRC processes, which differ from conven-
tional horizontal-type low-speed TRC processes in terms of strip manufacturing conditions,
validation is necessary to apply existing empirical equations to low-speed processes. Ad-
ditionally, in the case of the horizontal-type twin-roll casting process, the condition of
the continuously rotating rolls and the extremely narrow space where solidification oc-
curs in a very short time make experimental setups challenging and experimentation is
highly difficult.

As shown in Figure 1, the twin-roll casting process fundamentally involves supplying
molten metal between two rotating rolls. Two growing solid shells, formed on the rotating
rolls, meet at a specific point (i.e., kiss point), joining to form a single strip. During this
process, the strip, comprising two overlapping solid shells, expands the roll gap, subjecting
the strip to some load from the rolls. The roll load applied at this point depends on the
location of the kiss point. If the kiss point is formed before the roll nip, the sheet thickness
is greater than the initial roll gap, resulting in a roll load on the sheet. Conversely, if the
kiss point is formed after the roll nip, the combined thickness of the solidifying shells is
less than the initial roll gap, and no roll load is applied. While the position of the kiss
point indeed influences the load on the rolls, defining the kiss point is difficult for most
alloys since the solidifying shells undergo mush-type solidification in a semi-solid state.
On the other hand, for pure metals with freezing temperature ranges close to zero, such
as pure aluminum, the solidification shells form in a planar solid front state, making the
location of the kiss point relatively distinct. Leveraging this characteristic, this study aims
to indirectly deduce the kiss point by examining the variations in roll load in the twin-roll
casting process using pure aluminum. Additionally, this study seeks to develop a relatively
straightforward metallurgical method for deriving appropriate heat transfer coefficients
based on this information.
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Figure 1. Schematic diagram of twin-roll casting process.

2. Materials and Methods
2.1. Strip Fabrication Using Twin-Roll Casting

Commercially pure Al (Al-0.04Si-0.03Fe, in wt%) was melted in an electric furnace, and
degassing was conducted using Ar gas for 10 min prior to casting. Horizontal-type twin-roll
casters were used for strip fabrication. The caster consists of two rolls with a diameter
of 300 mm each. The roll surfaces were polished with #1000 sandpapers before TRC to
maintain consistent cooling capability. The set-back distance and the initial roll gap were
set to be 30 mm and 4 mm, respectively, and 100 mm wide sheets were produced. Twin-roll
casting was conducted under two molten metal supply temperature conditions (730 ◦C,
760 ◦C). To accurately determine the temperature at which the molten metal makes contact
with the roll surface as it passes through the nozzle, thermocouples were installed about
50 mm away from the nozzle tip to measure the inlet temperature, as shown in Figure 1.
The temperature measurement results were 677 ◦C and 707 ◦C, indicating temperatures
approximately 60 ◦C lower than the initial molten metal supply temperature. To vary the
roll load during continuous casting, the roll rotation speed was continuously adjusted in
the range of 5 to 2 m/min. For the cast strip, longitudinal cross-sectioned samples were
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mounted in epoxy resin prior to mechanical polishing. The samples were anodized at 40 V
in a 3.3% solution of HBF4 in distilled water to reveal their grain structures.

2.2. Simulation Model for Twin-Roll Casting Process

Heat transfer simulations were conducted to investigate the temperature distribution
and solidification behavior during the TRC. The model geometry, calculated thermo-
physical data of the pure Al, and the boundary conditions are given in Table 1. Gradual
mesh size was applied to the surface of the model by considering the importance of each
part. The mesh size for the solidification and strip parts was set to 0.2 mm. The thermo-
physical data for pure aluminum were calculated using the PanAl2021 database, and
simulations were performed using the commercial software ProCAST 2021. The simulation
calculations were performed under Scheil cooling conditions, considering a rapid average
cooling rate of over 100 ◦C/s.

Table 1. Model geometry, thermo-physical properties and boundary conditions.
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Casting alloy: Pure Al
Initial melt temperature: 677 ◦C, 707 ◦C
Liquidus temperature: 660 ◦C
Solidus temperature: 659 ◦C

Temperature
(◦C)

Thermal Conductivity
(W/mK)

Density
(kg/m3)

Enthalpy
(kJ/kg)

403 174 2618 374
505 177 2593 486
659 179 2552 673
802 92 2350 1233

Interfacial heat transfer coefficient (HTC, h); hmelt/nozzle: adiabatic; hstrip/air: 12 W/m2K; hmelt/roll: variable; Roll
temperature: 100 ◦C; Air temperature: 25 ◦C.

3. Results and Discussion
3.1. Influence of Roll Rotation Speed on Roll Load during TRC Process

Figure 2 shows the appearance and cross-sectional microstructure of pure Al strips
manufactured through the TRC process. In Figure 2a, the surface of the as-cast strip
illustrates the appearance formed by the rolling load in the conventional TRC process. The
cross-sectional microstructure (Figure 2b) reveals the typical TRC strip structure, where
initially formed columnar crystals were elongated by the rolling load during continuous
casting. From this figure, it can be inferred that the rolling load was applied to the strip
(solidifying shells), indicating that the kiss point, where two solidification shells met during
continuous casting, formed prior to the roll nip. It is worth noting that in this experiment,
careful attention was paid to maintaining a homogeneous surface condition in the strip
width direction at each condition of roll speed to obtain a reliable roll load, which can
be affected by the formation of an inhomogeneous solidification shell thickness in the
width direction of the strip. Therefore, by gradually increasing the rolling speed during
continuous casting using this process, if the thickness of the solidification shell is reduced,
the rolling load applied to the strip becomes zero when the kiss point is formed at the roll
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nip, under the condition where the solidification shell thickness and the initial roll gap are
the same.
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Figure 2. (a) Appearance of pure Al strip fabricated by TRC process, and (b) anodized grain structure
of the longitudinal cross-section of the strip.

Figure 3 shows the variation in roll load on the TRC sheet under various roll rotation
speeds and melt supply temperatures. It can be observed that as the roll rotation speed
increases under each temperature condition, the thickness of the solidified shell decreases,
leading to a decrease in roll load. The roll load decreases until it approaches zero at a
certain speed condition. This indicates that a kiss point is formed at the roll nip, where
the thickness of the two roll shells is equal to the initial roll gap. The experimental results
indicate that under melt supply temperature conditions of 730 ◦C and 760 ◦C, roll loads
approached zero at speeds of approximately 4.2 m/min and 3.1 m/min, respectively.
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3.2. Influence of Heat Transfer Coefficient on Kiss Point in TRC Simulation

Simulation calculations were performed under roll rotation speed conditions of
4.2 m/min and 3.1 m/min, applying various melt/roll interfacial heat transfer coeffi-
cient (HTC) values. Figure 4 illustrates the solidification behavior under different HTC
conditions. The simulation results show that as the melt/roll interfacial HTC decreases,
the kiss point, where two solidified shells meet, moves toward the roll nip. As mentioned
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above, experimentally derived conditions of 4.2 m/min and 3.1 m/min exhibit zero value
in the roll load. It can be conjectured that in these two experimental conditions, during
continuous casting, the kiss point lies at the roll nip. This is because the roll load is imposed
as the two solidifying shells expand the roll gap and engage the strip. However, when the
two solidifying shells meet at the roll nip, the thickness of the solidifying shells is equal to
the initially set roll gap thickness, preventing further expansion of the roll gap, resulting
in zero roll load. The derived casting speed conditions represent the onset of roll load
reduction toward zero, suggesting that the kiss point is likely positioned at the roll nip
at this point. From this perspective, simulation results yielded appropriate HTC values
positioning the kiss point at the roll nip. Figure 5 depicts the variation in the position of the
kiss point with changes in the HTC. The Y-axis represents the distance between the roll nip
and the kiss point in the simulation results, with a negative Y-axis value indicating that
the kiss point is forming beyond the roll nip. The appropriate values for the HTC were
found to be 9700 W/m²K and 7600 W/m²K for the conditions of 4.2 m/min and 3.1 m/min,
respectively, as also shown in Figure 4.
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3.3. Verification of the Derived HTC Values

In general, the twin roll casting process is not standardized and comes in various
forms compared to the traditional direct-chill casting process. For instance, the melt supply
and roll operating systems are categorized into vertical, horizontal, and tilted types [6].
The roll rotation speed also varies from the traditional low-speed range (approximately
0.5~2 m/min) to recently developed high-speed TRC processes, encompassing a broad
speed range (approximately 20~100 m/min) [24,25]. In the case of TRC simulation models,
the heat transfer coefficient between the molten metal and the rolls is a crucial factor for
predicting solidification behavior. However, determining generalized HTCs for various
TRC process conditions can be challenging. Therefore, a previous study derived the
empirical relationships for the variation in HTC with roll rotation speed [21]:

h = 44.8v0.55 (1)
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where h is the roll/melt interfacial HTC (kW/m2K), and v is the roll rotation speed (m/s).
Using this empirical relationship, the appropriate heat transfer coefficient values for current
roll rotation speeds of 4.2 m/min and 3.1 m/min are calculated to be approximately
10,300 W/m²K and 8800 W/m²K, respectively. These values represent approximately 6%
and 16% errors compared to the values derived using the metallurgical method proposed in
this study. From these results, it can be inferred that the metallurgically approached method
for obtaining heat transfer coefficients is quite reasonable. Furthermore, it is evident that
the empirical relationship for heat transfer coefficients obtained under high-speed TRC
conditions is applicable not only in the high-speed range but also effectively extends to the
low-speed range of 5 m/min and below.
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These results imply several important points. Firstly, in the conventional horizontal
low-speed TRC process, the area where solidification occurs is very narrow, making direct
temperature measurement very difficult during the continuous casting. Furthermore,
solving the inverse heat transfer problem [23], which can be inferred from temperature
measurements at the casting roll, is limited to specific equipment or casting conditions,
making it difficult to generalize the results. The metallurgical method proposed in this
study has the advantage of relatively low experimental complexity and applicability to
any metal. Additionally, the results of this study demonstrate that empirical equation
derived from high-speed TRC conditions can also be applied to low-speed TRC conditions.
This indicates that this empirical equation can be practically useful for predicting the
solidification behavior regardless of specific equipment conditions in the TRC process.
However, since this empirical equation does not directly account for various process
conditions such as casting alloys, roll surface conditions, and hydrostatic melt pressure, it
may introduce an error of approximately 10%. Therefore, when applying this empirical
equation to TRC simulation models, it is necessary to consider the factors that can cause
such errors in order to predict the detailed solidification behavior of specific regions.

4. Conclusions

The twin-roll casting process enables the direct manufacturing of aluminum strips from
molten metal, making it considerably more economical and seemingly simpler compared
to conventional direct-chill casting and hot-rolling processes. Despite these advantages,
due to the need to control solidification behavior within a short timeframe, the TRC process
is challenging. Therefore, recent research has extensively focused on studying solidification
behavior and defect control through simulations. However, the TRC process presents
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difficulties in predicting solidification behavior in simulation models, primarily due to
various roll settings and a wide range of process speeds.

This study developed a metallurgical method using pure aluminum to derive ap-
propriate heat transfer coefficient values. This method is inspired by the concept that, in
the case of pure aluminum with no freezing temperature range, the position of the kiss
points where two solidifying shells meet and the roll nip coincide under the condition
where the roll load becomes zero as the roll rotation speed decreases. The conditions
where the roll load becomes zero under various melt supply temperature conditions in
the actual TRC process were found experimentally. These conditions were then applied
to simulations to derive heat transfer coefficient values. When comparing these values
with those derived previously from the empirical relationship for roll rotation speed and
heat transfer coefficient in the high-speed TRC process, the conclusion was drawn that the
deviation was reasonably low, around 10%. This result is considered highly significant in
demonstrating that, even in the horizontal low-speed TRC process where the solidification
region is very narrow, it is relatively straightforward to derive heat transfer coefficients de-
spite the difficulty of actual temperature measurements. Furthermore, it indicates that the
heat transfer coefficient equations derived from high-speed TRC conditions are applicable
to the low-speed TRC processes as well.
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